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Predicting polymer solubility from phase diagrams
to compatibility: a perspective on challenges
and opportunities

Jeffrey Ethier, a Evan R. Antoniuk b and Blair Brettmann *cd

Polymer processing, purification, and self-assembly have significant roles in the design of polymeric materials.

Understanding how polymers behave in solution (e.g., their solubility, chemical properties, etc.) can improve

our control over material properties via their processing-structure–property relationships. For many decades

the polymer science community has relied on thermodynamic and physics-based models to aid in this

endeavor, but all rely on disparate data sets and use-case scenarios. Hence, there are still significant

challenges to predict a priori the solubility of a polymer, whether it is for selecting sustainable solvents,

obtaining thermodynamic parameters for phase separation, or navigating the coexistence curve. This

perspective aims to discuss the different approaches of applying computational tools to predict polymer

solubility, with a significant focus on machine learning techniques to capture the rapid progress in that space.

We examine challenges and opportunities that remain for creating a comprehensive solubility toolset that can

accelerate the design of a broad range of applications including films, membranes, and pharmaceuticals.

1. Introduction
For decades, the solubility of polymers in solvents has been of
interest to polymer and materials scientists. Polymer solutions
are prevalent in areas where purification, self-assembly, and
compatibility of polymers in solution have critical roles in
formulating a material with desired optical, electrical, and
mechanical properties, as well as in material conversion
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processes including coatings and fiber spinning. Determining
the role of solvent during polymer design has led to many
questions: What is a good solvent? Which solvents will comple-
tely dissolve a specific polymer? How does the role of solvent
affect the macroscopic behavior of the solidified polymer during
a liquid–liquid phase transition? In the past, semi-empirical
techniques using well-known thermodynamic equations and
parameters have helped answer these questions (e.g., Flory–
Huggins w parameter).1,2 While we have learned much about
the physical phenomena of polymer phase separation, an accu-
rate, quantitative prediction of polymer solubility from first
principles has remained undiscovered for many different poly-
mer chemistries. Additionally, the role of solubility differs from
one subject, experiment, or application to another. For instance,
is determining whether a polymer–solvent pair is compatible
sufficient in the design process, or does the entire phase
diagram need to be known? Thus, prediction tools that can
address each of these questions while generalizing to various
approaches and applications can help accelerate, and precisely
control, the synthesis and design of novel polymer chemistries.

One of the most important impacts of polymer solubility is
in polymer processing: in processes such as solution coating, fiber
spinning, and 3D printing, polymers are first dissolved in a
solvent and that solvent is evaporated or extracted to solidify
the polymer. Specifically, film processing techniques such as spin-
coating, blade coating, and slot-die coating are often applied
with mixtures of polymer and solvent followed by temperature-
induced or non-solvent induced phase separation, each of which
can control the resulting morphology or film structure.3 These
methods have been found in technologies such as adhesives,
hydrophobic coatings, and flexible electronics.4–6 However, the
complexity of polymer behavior in solution gives rise to challenges
of predicting a priori the resulting material performance from
the processing conditions (e.g., solvent evaporation rate, concen-
trations, temperature, pressure, etc.). For instance, studies have
shown that solvent quality and incomplete dissolution of the
polymer before casting can affect the aggregation behavior7 and

electronic properties,8 respectively, in semiconducting polymer
films. Additionally, solvent evaporation rate can affect film proper-
ties such as the surface roughness.9 Therefore, tools that can
predict solubility behavior (interaction parameters, phase dia-
grams, solvent selection, etc.) can benefit materials science, drug
delivery, and other areas.

The types of predictions that are most valuable will depend
on the specific question being asked. For designing formula-
tions for polymer processing, predictions of specific solubility
values (mg mL�1) are impactful during solvent selection and
process design. Such specific, experiment-relevant information
can affect industrial processes, such as when supply chain
challenges or regulations produce a shortage of a solvent and
a new solvent must be quickly selected. However, quantitative
solubility values may not be necessary in all applications.
In cases where general compatibility is more important, such
as when selecting tubing material for a solvent-containing
process or when selecting membranes, a classification of
solvent/non-solvent or estimating relative empirical interaction
parameters may be sufficient for materials design. However, for
chemical process design and development of process models,
thermodynamic parameters such as activity coefficients
and solid/liquid equilibrium diagrams are necessary and an
important target of prediction tools. Throughout all of the
aforementioned applications, the common practice for R&D is
to experimentally assess different solvent/polymer combina-
tions, leading to long development times and high costs. Hence,
prediction tools that provide a targeted output required for a
specific application can speed up R&D for polymer materials.

Predicting a priori the solubility of a polymer in solution
has in the past relied on quantum-chemical or group contribu-
tion estimates for thermodynamic interaction or solubility
parameters,10 or estimating the miscible-immiscible phase
boundary from thermodynamic lattice models and field theory
at equilibrium.11 For instance, Flory–Huggins theory is argu-
ably the most common choice to estimate the phase boundary
in binary and ternary mixtures of polymer solutions and
blends due to its simplicity.11 These calculations provide
semi-quantitative phase boundary predictions, due to its under-
lying assumptions, and typically rely on empirical expressions
with fit coefficients to achieve better agreement with experi-
mental data (see Section 2.2 phase diagram prediction and
applications). Alternatively, simulation methods (e.g., Gibbs-
ensemble, molecular dynamics, field-theoretic, etc.) can pro-
vide insight into phase separation behavior as well as provide
estimates of the phase diagram for solutions and blends.12–17

While these methods can explain phase separation mechan-
isms at a molecular level, simulations can be computationally
expensive and/or chemistry agnostic, making these models
inefficient to simulate a vast number of polymer/solvent che-
mistries as a predictive tool. Related to soluble/insoluble clas-
sification, estimating solubility parameters such as Hansen
solubility parameters (HSPs) for polymers from first principles
is typically done via group contribution methods. We discuss
the impact and challenges of these models in more detail
throughout the perspective.
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Aside from first principles calculations and modeling, data-
driven methods are a viable way to accelerate predictions of
polymer solubility. With the rise of artificial intelligence and
machine learning as tools for materials design, there is increasing
interest in predicting properties of complex materials that are not
well described by simple models.18 Given their large size, dis-
persity, and time- and history- dependent response to stimuli,
polymers typically fall into this category. However, one significant
tradeoff of data-driven models is that, compared to physics-based
approaches, they provide minimal insight into understanding the
input-output mapping. For instance, these models typically only
give insight into which of the model inputs impact the prediction
the most, and they do not give any physical relation between the
two. Nonetheless, machine learning is extremely efficient, can be
generalizable, and provides tools that accelerate our understand-
ing of complex data. Recently, research to predict polymer proper-
ties using data science approaches has rapidly increased and
spanned a huge range of properties including crystallization
tendency,19 dielectric properties,20–22 optical properties,23,24 glass
transition temperature,25 solubility26,27 and more. Many of these
approaches are regression tasks that output a continuous value
for the property, such as glass transition temperature, dielectric
constant, density, etc. For solubility, however, prior work has
explored various types of solubility model outputs, ranging from
classifying solvents as ‘‘solvent’’ or ‘‘non-solvent’’27,28 to phase
diagrams29 to interaction parameters.30 Although it appears
inconsistent, the variety of model outputs reflects the varied needs
for understanding and using information on polymer solubility.

In this perspective, we aim to assess the current state of
physics-based and data-driven prediction methods for polymer
solubility such as solvent/non-solvent classification, thermodyna-
mically- and empirically-derived interaction parameters, and coex-
istence curves (binodals), and discuss how these approaches can
be integrated in design approaches to accelerate polymer materi-
als development. We place a heavier emphasis on the data-driven
and machine learning approaches, due to the rapid progress in

that space. We categorize the approaches into three groups:
prediction of coexistence curves, prediction of thermodynamic
parameters, and point predictions of solubility (Fig. 1). Although
these are inherently linked through the thermodynamics of phase
separation, they provide different levels of granularity, use differ-
ent types of data in their predictions, and would be applied
differently by practitioners. Thus, there is value in critically
analyzing the different categories. Throughout, we discuss trade-
offs in amount and quality of data needed, computational time,
and overall accuracy of predictions. The overall discussion will
enable a clearer understanding of the tools available, as well as
the challenges and opportunities present, for predictions of
polymer–solvent solubility.

2. Polymer solution phase diagrams
2.1. Thermodynamics of polymer solutions

To understand how polymer–solvent phase diagrams are pre-
dicted, a brief review of the thermodynamics of polymer solution
mixing is necessary. We begin with Flory and Huggins theory. Our
goal is not to go in depth into the theory but to provide context to
existing methods for predicting polymer phase diagrams. A more
detailed discussion can be found in a recent perspective on phase
behavior of polymer solutions and blends.11 Here, we start with
the simplest expressions for a binary polymer solution and briefly
review several more complex thermodynamic models for predict-
ing the phase diagrams for multicomponent polymer solutions.
We then summarize the current state of phase diagram predic-
tions and their use-case scenarios.

The classical Flory and Huggins (FH) solution theory, origi-
nating in 1942, uses a lattice-fluid model where fluid particles
occupy lattice sites and polymer segments are connected along
neighboring sites.31,32 The Gibbs free energy of mixing for an
ideal polymer solution (where the polymer takes a random walk
configuration) is derived from the mean field as,

DG
nTkBT

¼ f1

N1
ln f1 þ

f2

N2
ln f2 þ w12f1f2 (1)

where nT is the total lattice sites, kB is the Boltzmann constant,
T is the temperature, fi is the volume fraction of component i,
Ni is the number of repeat unit segments (Ni = 1 for solvents),
and w12 is the Flory–Huggins interaction parameter. Here, sub-
scripts 1 and 2 denote the solvent and polymer, respectively.
This well-known expression is derived from the statistical
mechanics of long chain molecules mixed with small molecule
solvents in the lattice fluid. Generally, it results from the
understanding that the free energy is a sum of the combinatorial
entropy of mixing and the enthalpy of mixing, DGmix = �TDScomb +
DHmix in which the combinatorial entropy is determined from
the number of configurations that exist for polymers in the
lattice model.

The liquid–liquid coexistence curve, or binodal, can be
determined by solving for the exchange chemical potential
relative to the pure components for the coexisting phases,
Dmi = (qDG/qni)p,T where ni is the moles of species i. The chemical
potential in the coexisting phases are equal, DmI

i = DmII
i , which

Fig. 1 Predictions of polymer solubility can be grouped into three cate-
gories from the perspective of the output of the predictions, but all are
related through the thermodynamics of phase separation.
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leads to solving for the concentrations of species i in each phase
fI

i and fII
i given a known w12. The spinodal, where spinodal

decomposition occurs, can also be determined from the second
derivative of the Gibbs free energy and resides within the
binodal. The region in between the binodal and spinodal is a
metastable zone, where there is thermodynamic instability of the
two phases but the mixture is robust to small fluctuations in
concentration and temperature. In other words, there is a local
free energy minimum and a thermodynamic barrier to complete
macrophase separation. It is in this region where the nucleation
and growth phenomenon is known to occur, whereas spinodal
decomposition is a spontaneous phase separation and has no
such barrier.

While this fundamental theory provides crucial insights into
liquid–liquid equilibrium behavior of polymer solutions and
blends, the primary shortcoming of FH theory is that quanti-
tative agreement between the binodal and experimental coex-
istence curves is poor due to the highly idealized assumptions,
which were acknowledged by Flory. First, the theory assumed
the interaction parameter w (we henceforth drop the subscript
for simplicity) was a function of temperature only, and was later
shown to be an oversimplification.33 Secondly, eqn (1) assumes
incompressibility and that there are no changes in volume upon
mixing. This prompted additional derivations by Flory and co-
workers,34–36 including an equation of state (EoS) approach that
accounted for the thermodynamic parameters of the pure com-
ponents. Similar in nature to the Flory derivations, a generalized
statistical mechanical model for liquid and gas mixtures was
later developed by Sanchez and Lacombe, namely the Lacombe–
Sanchez lattice fluid model (LS–LF),37 which qualitatively pre-
dicted liquid–liquid and liquid-vapor phase transitions. These
EoS theories reduced to the classical FH theory expressions at
low temperatures. However, compared to experiments, phase
diagram predictions were mostly qualitative.38

We note that the above theories established a foundation for
explaining the physical phenomena behind polymer solution
coexistence behavior. Additional thermodynamic models continued
being developed thereafter to better capture the quantitative agree-
ment with experimental phase diagrams, with many focusing on the
classical Flory–Huggins expression and its modifications. In doing
so, these models were developed to improve upon the oversimpli-
fied thermodynamics in the original expressions. For instance, the
lattice cluster theory of Freed and co-workers was developed as a
mathematical solution to Flory–Huggins theory.39,40 Furthermore,
the double lattice and modified versions thereof were subsequently
introduced based on Freed’s lattice-field theory.41–43 These theories,
unlike the original FH theory, introduced a concentration depen-
dence to w and did not use the mean-field approximations for the
Helmholtz free energy of mixing. Alternatively, several extended
Flory–Huggins equations were introduced to obtain better quanti-
tative agreement with experiments.44–47 In the extended FH theory,
w was generalized to a temperature and concentration-dependent
interaction parameter g(T,f2) that was related to w as w = g � f1g0,
where g0 = (qg/qf2)T. The parameter w12 was written to include
separate functions for the effect of T and f, w = D(T)B(f2). In
that expression, D(T) is commonly written as d0 + d1/T + d2/ln T and

B(f2) can either take the form b0 + b1f2 + b2f2
2 as in ref. 44–46 or

1/1(1 � bf2) as found in ref. 47.
We note here that these extended expressions for the

interaction parameter were not derived from a theoretical basis,
rather, an empirical approach was used to fit experimental
data. The expressions for D(T) and B(f2) were simply algebraic
and included parameters that were fit to each polymer–solvent
chemistry and polymer molecular weight to obtain the correct
phase behavior. In many cases, accurate predictions of the
phase diagram were observed, but required extensive fitting
procedures (see Section 2.2 phase diagram prediction and
applications). Additionally, the equations above only apply to
binary polymer–solvent mixtures, whereas multicomponent
mixtures require additional terms, which create additional
complexities for predicting phase diagrams for ternary mix-
tures. Lastly, without experimental data, the Flory–Huggins w
parameter is challenging to estimate and known values in the
literature often fail to report the monomer or solvent reference
volume. For polymer-polymer mixtures, it is important to fix the
reference volume to compare interactions between two chemi-
cally distinct chains, however for polymer–solvent mixtures the
choice is often the volume of a solvent molecule11 (additional
discussion can be found in Section 3.0 thermodynamic para-
meter predictions).

2.2. Phase diagram prediction & applications

The phase diagram represents the complete thermodynamic
space at which polymer mixtures are miscible, or where multi-
ple different phases can coexist (i.e., phase separation). It is
typically measured via turbidity (cloud point) experiments
using the transmittance from ultraviolet visible spectroscopy
(UV-vis) or higher fidelity thermo-optical measurements.48

Alternatively, coexistence curves may be reported in which the
concentrations of two coexisting phases are measured. From
these experiments, various phase behaviors have been observed,
including upper critical solubility (UCS), lower critical solubility
(LCS), hourglass, and closed-loop curves (see Fig. 2), and depend
on the specific polymer and solvent chemistries. The latter two,
hourglass and closed-loop, are often observed for polymers in
poor solvent, or for polymers with orientation-dependent inter-
actions (e.g. hydrogen bonds), respectively.48–50 For instance,
poly(ethylene glycol) in water exhibits closed-loop behavior,
polystyrene in acetone exhibits an hourglass-like phase diagram,
and polystyrene in cyclohexane exhibits both upper critical and
lower critical solubility curves.48 For some polymers, the lower
critical solubility curve is not feasible to measure due to polymer
degradation or solvent boiling points when approaching the
higher temperatures. Generally, the phase diagram for a parti-
cular polymer will highly depend on its chemistry, architecture,
molecular weight, and other thermodynamic properties, making
quantitative predictions a challenge.

Many existing phase diagram predictions are semi-quantitative,
but there are several examples of when the theory, via fitting
empirical expressions for w, has shown good quantitative agree-
ment when compared to cloud point curves. For instance, several
authors have extensively demonstrated that all types of phase
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diagrams are obtainable with fitting parameters associated
with the extended FH equations. They were able to obtain good
agreement among various polymer–solvent chemistries and
phase diagrams.44–47 More recently, statistical associating fluid
theory (SAFT) and coarse-grained molecular simulations have,
in some instances, quantitatively captured the phase behavior
using intermolecular interaction fitting parameters for the
EoS.13 The main drawback of using these models is that fitting
procedures are required to capture the phase diagram quanti-
tatively for each phase boundary. However, the theory improves
on our understanding of these systems from the empirical
expressions and free energy equations derived.

As an alternative to physics-based models, much of the
published binary solution data in the literature has been used
to train data-driven regression models, such as neural networks
and theory-informed neural networks, to predict the cloud
point curve of various polymer–solvent systems.29,51,52 For

instance, one of us showed that a single ML model can predict
the cloud point curves of various chemistries and phase behaviors
such as UCS, LCS and closed-loop diagrams (see Fig. 3). Com-
pared to theory, ML models learn a mapping from inputs to
outputs, improving accuracy and efficiency but often with limited
physical insight. Nonetheless, contrary to fitting each polymer–
solvent mixture individually as in previous theories, ML has the
ability to learn the various phase behaviors observed experimen-
tally, and with sufficient data can interpolate to similar polymer–
solvent chemistries. While extrapolation to new polymer–solvent
systems is poor due to the lack of polymer chemistries repre-
sented in the data set, adding a small amount of experimental
data to the training set can allow the model to predict the phase
diagrams for these unseen polymers with reasonable uncertainty.
Incorporating existing theory (such as the extended FH equations)
with ML can help improve predictions in the small data limit and
provide physics insight to the phase diagram predictions.29 Thus,
while theory provides a fundamental understanding of the phase
behavior, data-driven models are a powerful way for predicting
phase diagrams of polymer solutions.

We note here that all calculated or estimated binodal curves
(e.g., from theory) are most commonly compared to cloud point
data as these can be, experimentally, simple to measure. This
was first shown in work comparing the precipitation tempera-
ture of polyisobutylene in diisobutyl ketone and polystyrene in
cyclohexane.53 The cloud point represents the temperature (or
composition) at which a mixture is observed to macrophase
separate. However, it is important to note that the cloud point
curve (CPC) does not always represent the binodal curve. In real
systems, the CPC lies on the binodal only for monodisperse

Fig. 2 Schematic representation of three types of phase diagrams (from
left to right): upper/lower critical solubility, hourglass, and closed-loop
solubility curves. Shaded regions represent the region of immiscibility and
the arrow indicates the direction of increasing polymer molecular weight.

Fig. 3 Neural network predictions (lines) of experimental cloud point curves (filled circles) predicting (a) UCS and (b) LCS of polystyrene in cyclohexane,
(c) isopleth of polyethylene in n-hexane, and (d) closed-loop cloud point curves of poly(ethylene glycol) in water at varying molecular weights. Reprinted
(adapted) with permission from Macromolecules 2022, 55, 7, 2691–2702. Copyright 2022 American Chemical Society.
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molecular weight distributions, but the CPC deviates from the
binodal when the distribution broadens. This was extensively
demonstrated by comparing quasi-binary cloud point curves to
theory.46,54,55 Furthermore, the cloud point is often measured
via a fixed turbidity level, but a recent discussion has pointed
out that this can lead to biased results of the phase boundary.56

Lastly, slow kinetics also play a large role in phase separation
behavior and can depend on whether the solution is being
cooled or heated. For instance, the onset of turbidity depends
on time, and if the temperature ramp is too steep compared to
the slow kinetics, the measured cloud point temperature can
include these artifacts.57 Hence, it is clear then that the
experimental technique for measuring the phase diagram, as
well as the molecular weight distribution of the polymer
sample, can introduce noise and lead to deviations between
experimental observations and predicted binodals from existing
theoretical and data-driven methods, and must be considered
when developing future models.

The models discussed above have many potential use cases
in processing polymer materials. For example, it is well-known
that the phase diagram is closely tied to the formation of films
and porous membranes, which are typically processed via solvent
casting where the solvent is allowed to evaporate from an initial
concentration of the polymer solution.58 Then, the resulting
morphology depends on the processing conditions and path in
the phase diagram. Both nonsolvent- and evaporation-induced
phase separation are common in film formation, where both
lead to driving the mixture through the phase boundary. Ternary
phase diagrams are also strongly correlated to film processing via
nonsolvent-induced phase separation. For instance, pore size
distribution is significantly impacted by the starting concentra-
tions and path in the phase diagram.59,60 In other multicompo-
nent mixtures, such as polymer nanocomposites, evaporation-
induced phase separation can impact the microstructure during
the direct ink writing process.61 These examples demonstrate that
a more precise control of the microstructure would be feasible if
the phase diagram of these more complex polymer materials were
known prior to processing. Thus, there are opportunities to
combine processing methods with phase diagram models to tailor
material properties for specific applications.

Overall, the thermodynamics and solubility of polymer
solutions is a direct result of the phase diagram. Generally,
our understanding of the phase behavior directly impacts the
ability to classify a polymer solvent or nonsolvent, estimate
their thermodynamic interaction or solubility parameters, or
process materials via navigation through the coexistence curve.
In Fig. 1, we show these three example categories with a
schematic of the phase diagram in the center, emphasizing
that all of these are tied to the phase diagram. However, as
previously mentioned, predicting the entire phase behavior
from first-principles theory and modeling has remained a
challenge. Therefore, we emphasize that it is not always effi-
cient to predict the entire phase diagram where less detailed
predictions would suffice, such as for solvent selection and
solubilizing a particular polymer. In the future, a combination
of tools to predict the solubility of polymers would accelerate

and improve the processing, sustainability, and design of new
materials.

3. Thermodynamic parameter
predictions

A number of models use data from and aim to predict thermo-
dynamic parameters rather than coexistence curves and full
phase diagrams. This comes in part from the challenge in
obtaining sufficient data for full phase diagrams and in part
from the successful use of thermodynamic parameters in
industrial process design.62–64 In examining the industrial use
of thermodynamics as part of studies by the Working Party of
Thermodynamics and Transport Properties of the European
Federation of Chemical Engineering, Kontogeorgis et al. noted
that industrial survey respondents were enthusiastic for pre-
dictive thermodynamic models, especially those that were
accurate and validated for complex materials and mixtures.
However, there was a significant concern across the industry
about the lack of available high-quality data to fit and validate
the models. The lack of data was more significant for systems
that are not ‘‘trendy’’ but are industrially relevant, and they
specifically mention the lack of ‘‘high-quality data in the
literature for the solubility of larger molecules in solvents’’.62

Due to this weakness, thermodynamic parameters are often
estimated through group contribution methods, molecular
simulations, or quantum chemical calculations, which can
lead to inaccuracies for complex systems. In this section, we
discuss progress in predicting thermodynamic parameters
including the Flory–Huggins w parameter, Hansen solubility
parameters, and activity coefficients, focusing on advances
made possible through computational tools and data science
but highlighting the tradeoff between accuracy and effort for
the different cases.

For polymer solubility analysis and prediction, three sets of
thermodynamic parameters are widely used (Fig. 4). The first is
the Flory–Huggins w parameter, which represents the degree of
interaction between two materials, such as a polymer and a
solvent and is tied to the free energy of mixing as discussed
previously. The second set of parameters includes solubility
parameters, most commonly the Hansen solubility parameters,
but also the Hildebrand solubility parameters. These character-
ize the chemical similarity between polymer and solvent and
prediction of solubility is based on a ‘‘like dissolves like’’
principle. Finally, the activity coefficients for a polymer in a
solvent are used to capture the thermodynamic solubility, in
particular capturing non-idealities. We will discuss each of
these parameter sets, examining prediction methodologies
based on both physics-based and data-driven prediction, with
discussion of machine learning techniques that can incorpo-
rate both types of input data. Overall we see that these thermo-
dynamic parameters are helpful for industrial product and
process design, but are very sensitive to the data quality and
become more problematic as the complexity of the materials
increases.
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3.1. The Flory–Huggins interaction parameter

The Flory–Huggins theory for polymer solutions ties phase
equilibrium to a parameter that represents the interactions
between the polymer and solvent, the w parameter. Knowledge
of the w parameter at the temperature and molecular weight of
interest combined with the volume fraction of the polymer in
the solvent enable calculation of the free energy of mixing
through eqn (1). Flory–Huggins theory assumes that the volume
does not change on mixing and uses a mean-field approxi-
mation, leading to some limitations (see Section 2.1 thermo-
dynamics of polymer solutions), but it’s success in predictions
relies most heavily on how well the w parameter represents
the system.65,66 Hence significant effort has been expended to
measure the w-parameter for existing systems and predict the
temperature and molecular weight-dependent w parameter for
new polymer–solvent mixtures.

Experimental measurement of the w parameter can be per-
formed through osmotic pressure measurements,67 vapor pressure
measurement,68 scattering,69,70 and inverse gas chromatography
(IGC).71 These techniques are time and money intensive and thus
are not well-suited to collecting a large amount of data.72 Addi-
tionally, their utility is limited in the polymer/solvent property
space. For example, for IGC the polymer must be able to form a
film on the test substrate, which is not possible for all polymer/
solvent combinations.71 In many cases, information is left out
when reporting experimental results for w, such as the molar
reference volume, which makes it challenging to directly compare
to computational predictions. These weaknesses lead to insuffi-
cient data for direct look-up, and results in biased data for more
recent modeling techniques such as machine learning. It is
particularly concerning for applications where the solubility beha-
vior of a wide variety of polymer–solvent pairs must be predicted.

Complementing direct measurement of the w parameter
is computational prediction, the most common of which is
the Hansen solubility parameter (HSP) approach. HSP uses
an empirical model with three components: the dispersion
(van der Waals forces), polarity, and hydrogen-bonding forces
between the polymer and solvent. We will discuss the HSP
model, its relation to w, and solubility parameter predictions in

more detail later. Other computational predictions of the w
parameter include the use of corresponding states theory,73,74 or
the use of quantum chemical calculations such as the conductor-
like screening model for realistic solvation (COSMO-RS)75 and
molecular simulations.76–78 These methods can be highly accu-
rate; however, for polymers they are computationally expensive,
making it challenging to screen a large chemical space. Thus,
there is increasing interest in using machine learning to improve
predictions over a large parameter space with limited experi-
mental or computational data.

Recent efforts have focused on using machine learning
models to rapidly estimate polymer–solvent interaction parameters
directly from the chemical structures of polymer–solvent pairs. For
instance, Nistane et al. used a Gaussian process regression–based
machine learning model to predict temperature-dependent w
parameters for pairs of polymers and solvents using experimental
data from literature and online databases. Both the polymers and
solvents were represented with a hierarchical fingerprint method
that captures essential chemical features spanning from the
atomistic level descriptors (such as the presence of atomic frag-
ments), up to high-level morphological descriptors that describe
the overall chemical species (such as the side chain length or van
der Waals volume).79 The temperature at which w was measured
was also included as a feature, allowing the model to capture the
temperature dependence. The model performed well, especially
when trained on a data set containing a random sampling of all
polymers and solvents, as seen by high test R2 values (0.83 for
random split training) and low root mean square error (RMSE)
values (0.27 for random split training). However, they did show
that if a particular polymer group was held-out for testing, the
model performed significantly worse (R2 = 0.36 and RMSE = 0.44)
because there are only 58 polymers in the data set and thus there is
insufficient polymer diversity to extrapolate well to unseen poly-
mers. They also tested the predictive performance of the model on
two new polymers with properties that did not occur in the data
set, spirobiflourene aryl diamine (SBAD-1) and PIM-1, a polymer of
intrinsic microporosity. The model significantly underpredicted
the w parameter for these polymers, likely due to their significantly
different structure (ladder and semi-ladder polymers) compared to

Fig. 4 Three common types of thermodynamic parameters calculated and used to predict polymer solubility.
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the polymers in the database (linear and branched).79 This high-
lights the challenge in data-driven predictions of the w parameter
for novel polymers and for a broad parameter space, especially
with limited experimental data.

The work by Nistane et al. used a training data set of 1586
data points with 58 polymers and 140 solvents, which is a
relatively small data set for ML models. Aiming to provide
better predictions with an improved data set, Aoki et al. used a
combination of an experimental data set containing 766 pairs
from 46 polymers/140 solvents with a polymer property data-
base PoLyInfo80 containing 29 777 polymer–solvent pairs and a
new w parameter data set predicted by COSMO-RS with 9575
polymer–solvent pairs.26 The goals of using the three data sets
were to increase the amount of training data and to decrease
the bias that occurs when only the experimental data is used
due to the limitations of the experimental techniques discussed
earlier. This work by Aoki et al. represents the polymer and
solvent with 397-dimensional chemical descriptor vectors that
are formed from concatenating chemical features from the
RDKit Cheminformatics package, force-field descriptors, and
the measurement temperature. This input is then fed into a
neural-network architecture that simultaneously outputs pre-
dictions of the experimental w parameter, the COSMO-RS
computational w parameter, and a binary soluble/insoluble
label. Using this multi-task approach, the predictions for the
experimental w-parameter (R2 = 0.834) were significantly better
than when using COSMO-RS (R2 = 0.620) and HSP (R2 = 0.629)
methods alone.26 Furthermore, the authors demonstrate that
training on all three datasets results in improved performance
over single-dataset learning- thereby highlighting the perfor-
mance improvement that is possible through generating larger
solubility datasets from multiple data sources.26 Interestingly,
this strong performance was achieved even though there was
insufficient data to capture the trends in the temperature and
molecular weight dependence of the w parameter.

3.2. The Hansen solubility parameters

Although the w parameter is an important tool for assessing
polymer/solvent compatibility and the phase diagram, Hansen
solubility parameters (HSP) are the most widely used predictors
of solubility. They are an empirical and quantitative represen-
tation of the concept that molecules that are more similar are
more likely to dissolve one another. HSP can be broken into
three components, the dispersion (van der Waals forces), dd,
polarity, dp, and hydrogen-bonding tendency, dh of the
molecule.81 The distance of the solubility parameters, Ra, for
a polymer, p, and solvent, s, can be determined from:

Ra
2 = 4(ddp � dds)

2 + (dpp � dps)2 + (dhp � dhs)2 (2)

The HSP distance alone is insufficient for predicting solubility;
it must be compared to the interaction radius, which is the
radius of a sphere containing all the good solvents, Ro (illu-
strated in Fig. 5). This comparison is the relative energy
difference RED = Ra/Ro if RED 4 1 then the solute will not
dissolve in the solvent, otherwise if the RED o 1 then the solute
will dissolve in the solvent.

The ability to use the HSP approach to predict polymer
solubility requires knowledge of the solubility parameters
for the polymer and solvent and the interaction radius, Ro.
The determination of the HSP values is labor intensive
and cannot be directly measured for large molecules such as
polymers. Generally, the solubility parameter, d, as defined first
by Hildebrand, is the square root of the cohesive energy
density:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=Vð Þ

p
(3)

where E is the energy of vaporization and V is the molar
volume.82 The energy of vaporization is then divided into the
three parts of the HSP approach, Ed, Ep and Eh, enabling the
calculation of the three HSP.81 However, the heat of vaporiza-
tion cannot be experimentally measured for non-volatile com-
ponents such as polymers, requiring the use of the assumption
that the properties of the polymer are equal to that of the
summation of the properties of the chemical functional groups
that comprise the polymer, the group contribution approach.83

This enables the polymer to be broken down into representative
functional groups that are volatile and whose heats of vaporiza-
tion can be measured. The weakness in this approach, however,
is that it is challenging to determine the most representative set
of functional groups for a given polymer, especially for more
complex chemistries.

We briefly note here that HSPs have a direct relation to the
Flory–Huggins w parameter through both the Hildebrand and
Hansen solubility parameters, allowing one to estimate w based
on these parameters (note that the reverse is not possible for
HSPs). For a nonpolar solvent and nonpolar polymer, one can
use the relation,

w12 ¼
V d1 � d2ð Þ2

RT
þ b (4)

where the interaction parameter w12 between the polymer (1)
and solvent (2) is a function of the molar volume V, Hildebrand
parameters of the polymer and solvent from eqn (3), the gas
constant R, and temperature T. Additionally, the empirical
parameter b is a correction term and is typically set to a value

Fig. 5 Hansen solubility parameter sphere. Ro is the radius of the sphere
in dd, dp, and dh space that contains all the good solvents.

Perspective Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

3-
07

-2
02

5 
 1

2:
26

:0
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00590b


5660 |  Soft Matter, 2024, 20, 5652–5669 This journal is © The Royal Society of Chemistry 2024

of 0.34. For HSPs, the relation is,

w12 ¼
VRa

2

4RT
(5)

where Ra
2 is calculated from eqn (2). There are additional correc-

tions that can be applied but for brevity can be found elsewhere.84

These expressions provide opportunities to compare experimen-
tally measured interaction parameters with those calculated from
eqn (4) and (5). This was done by Hansen, where it was found
that in many polymer–solvent systems large discrepancies were
observed whereas good agreement was observed for others.
The discrepancies were most likely attributed to the fact that w
depends on the polymer concentration and to the variations in
the experimental reports for w and HSPs. For instance, one can
generate the phase diagram (see Section 2.2) from HSPs, or for
nonpolar mixtures can generate Hildebrand solubility parameters
from measurements of w. It is critical for these measurements to
include the polymer characterization (e.g., molecular weight,
dispersity, etc.) and procedures (e.g., solvents, concentration,
etc.). Hence, challenges still exist in combining these datasets
and applying useful relations to capture the solubility of polymers
due to the lack of polymer HSP measurements.

The simplest way to determine the HSP experimentally is to
test the solubility of a polymer in a wide variety of solvents that
have known solubility parameters. With the solvents plotted on
a 3D graph with axes for dd, dp, and dh, a sphere of radius Ro can
then be drawn around the good solvents and the center of the
sphere is the set of HSP for the polymer (Fig. 5).81 This method
is used by the HSPiP software85 and requires experimental
testing of the solubility in a large number of solvents, with
the HSPiP recommending 20–30 solvents across the dd, dp, and
dh space. There are different optimization methods used for
correlating the solubility in the large set of solvents with a
predicted set of solubility parameters, with HSPiP providing a
number of options including optimal binary, dividing the data
into sets of 0 (bad solvent) and 1 (good solvent) and finding the
best fit to HSPs with an exponential penalty function and a
genetic algorithm from YAMAMOTO.86 Others have developed
their own optimization schemes, for example Vebber et al. also
used a genetic algorithm, but with a stochastic evolutionary
strategy that improves coverage of the Hansen parameter space.
This led to significantly improved HSP fits, for instance the
improved HSP found for polyether sulfone.87

Given the experimental challenges with determining HSP,
but its wide use for industrial applications, there has been
significant interest in computational predictions beyond fitting
of experimental data for each new polymer. One approach to
accomplish this is to use the existing data on HSP of polymers
and solvents and apply machine learning algorithms to predict
the solubility parameters for unknown polymers. Early work on
this used a large data set for the overall solubility parameter,
d2 = dd

2 + dp
2 + dh

2 to develop a quantitative structure–property
relationship (QSPR). They correlated a training set of 51 poly-
mers to a set of 13 descriptors and found that 6 descriptors
were significant and the solubility parameter could be pre-
dicted by the following optimal equation with an R2 of 0.973,88

d = 18.078 � 163.375hb � 0.039Eint + 2.222nN � 2.249alk

+ 15.263QH � 0.071Qii (6)

where hb is the hydrogen bond and electrostatic descriptor, Eint

is the thermal energy descriptor, nN is the number of nitrogen
atoms, alk is the alkane descriptor, QH is the descriptor for
the most positive charge of a hydrogen atom, and Qii is the
quadrupole moment. They used this relationship to predict the
solubility parameter values for a test set of 46 polymers and
found that all but 3 predicted values were close to the experi-
mental value (standard error less than 2.0 (J cc�1)0.5, with most
experimental values B18–22, which means approximately
10% error).88 Note that this work enabled the prediction of
the Hildebrand solubility parameter and not the specific HSP
components. Additionally, the model was only tested on a small
number of polymers that all had a similar backbone structure
of –(CH2–CR3R4)–, limiting its applicability.

Newer machine learning modeling approaches are also
being explored to use existing HSP data sets to predict sol-
vent/non-solvent behavior. Venkatram et al. aimed to provide a
baseline for performance of data-driven ML models that use
HSP data sets to predict HSP for unknown polymers.30 They
assessed prediction accuracy separately for solvent (defined as
pairs with d within 8 MPa1/2) and non-solvent (defined as pairs
with a d difference 48 MPa1/2) and found that the ML model
for HSP had an accuracy of 69% with solvents and 76% with
non-solvents.30 Surprisingly, this was a similar accuracy to
predictions for solvent/non-solvent for a ML model with the
Hildebrand solubility parameters, despite the supposed
improved accuracy of HSP. They suggest that this is due to
the bias of the HSP towards its dispersion component (multi-
plier of 2), leading to problems predicting polar solvent beha-
vior as well as to the complexity of polymer solubility and its
dependence on other factors such as temperature, concen-
tration, polymer molecular weight and more that are not
accounted for in the data that comprises the HSP database.30

Furthermore, the baseline assumption that R0 = 8 is poor
for polymers. Nonetheless, this work provides a baseline for
predicting a polymer’s HSP and could be improved through
more comprehensive and curated data sets and advanced ML
models.

Rather than treating experimental, computational, and
machine-learned solubility methods separately, combining all
of these methods into a unified framework can be a powerful
approach for predicting solubility. Sanchez-Lengeling et al.
developed gpHSP, a Gaussian process machine learning model
that combines molecular information from COSMOtherm
simulations and quantum chemistry simulations to predict
experimentally measured HSP values.89 Specifically, this
approach represents each molecule with Morgan fingerprints,
the s-profile (charge density from the COSMO solvation
model), electrostatic descriptors obtained from electronic
structure calculations, and the molecular shape, which is given
by the COSMO solvation surface. These molecular descriptors
were chosen due to their known relevance for predicting HSPs.
All of these molecular descriptors are then fed into the
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Gaussian process model and trained to predict experimental
HSP values.89 The authors found that this approach consis-
tently outperformed comparable baseline models at predicting
the HSP values for both polymers and their solvents, predicting
experimental polymer HSP coefficients with R2 values of 0.56,
0.58, and 0.62 for dd,dp, and dh, respectively. The development
of such prediction tools that combine multiple information
sources is an exciting direction since the strengths of different
sources can compensate for the drawbacks of others.

Another approach to overcoming limited datasets for poly-
mers in solvents is to use representative small molecule data
sets, which tend to be available in larger numbers and with
greater chemical variety. Ethier et al. showed that ML predictions
of small molecule HSPs can be used to estimate polymer repeat
unit HSPs for predicting coexistence curves. The method was
very accurate when training on B10 000 small molecules from
the HSPiP dataset (best R2 of 0.95, 0.88, and 0.92 for dd, dp, and
dh, respectively).52 This is much improved over the gpHSP model
discussed above, with reductions in the mean absolute error of
approximately 60% and reductions in the root mean square error
of 50–60%, an improvement that is in part due to the larger
amount of small molecule data available to train the model and
its applicability to linear polymer repeat unit structure (which
are small compared to the polymerized structure).

In addition to improved predictions of HSP, there is interest
in identifying features beyond the three contributions from HSP
(i.e., hydrogen-bonding, dipole interaction, and dispersion
forces). Aoki et al. created a machine-learned parameter system
that is analogous to the HSP.26 Within their neural network
architecture, a 397-dimensional descriptor vector that describes
the polymer (subscript p) and solvent (subscript s) is encoded
into 34-dimensional machine-learned latent vectors, (up, rp) and
(us, rs). In a manner analogous to HSP distance, they propose
that these latent vectors can be interpreted similarly as:

distance = (up,i � us,i)
2 � rp,i

2 � rs,i
2 (i = 1,. . ., k) (7)

Specifically, the first term captures the similarity of the
latent vectors up and us, and the second and third terms are
analogous to the HSP sphere interaction radius. They examined
how correlated the 34-dimensional latent vectors were with the
three HSP factors (hydrogen-bonding, dipole interaction, dis-
persion force) and found that a number of them correlated well
with each HSP term. Among the 34 latent dimensions, they
showed that 5 of the latent variables were correlated with both
the hydrogen-bonding and polarity HSP term.26 A completely
separate set of 5 latent variables were shown to be highly
correlated with the three HSP energy terms. This is important
in that it shows that the machine-learned latent variables have
a grounding in chemical interactions represented by the
commonly-used HSP. Interestingly, there were a number of
these variables that did not correlate with any HSP, indicating
that they capture forces or other chemical behavior that are not
represented well by the HSP and are excellent candidates for
future research into the physical phenomena driving solubility.

While data-driven approaches are promising because they
can exploit existing experimental data sets, the w parameter and

HSP data sets still do not cover a sufficient chemical space,
leading to sparse data sets that independently lead to low
accuracy predictions. In addition, pure data-driven models
(aside from QSPR models) are unable to provide meaningful
insight into the mapping between the models inputs to its
predictive target. Thus, combining physics-based models such
as quantum chemical calculations with data-driven models
currently show the most promise in predictive performance
while also providing model interpretability, especially for novel
polymers that have not been seen before.

When considering what types of solubility predictions would
be most valuable to an end user, we notice that the w parameter
and HSP have two major areas of impact. The first is for
predicting solubility for a newly synthesized polymer, which
could be needed for purification or for developing processing
techniques. In this case, the more extensive predictions that
combine experimental data and quantum chemical calculations,
which were shown to be most accurate for novel polymers, would
be the most appropriate. The other common use case for w
parameters and HSP is in formulation and process development,
where solvents or non-solvents need to be selected for existing
compounds, often as part of a balance of multiple properties
(vapor pressure, surface tension, etc.) or for mixtures. In this
case, the prediction tools need to cover a broad chemical space,
but do not need to be able to handle novel materials, so the
existing data-driven approaches, either through machine learn-
ing or fits to experimental data, are a strong choice.

Another important consideration when using prediction
tools for HSP (e.g., RED) is the acceptable amount of uncer-
tainty in the prediction. For example, when predicting solvents
for selective dissolution of components from mixed plastic
waste, Soyemi and Szilvási suggested that a spread of at least
0.2 in the RED is needed to be conclusive about whether a
solvent would dissolve one polymer and not the other, although
in their final recommendations they suggest a RED o 0.6 for a
good solvent and RED 4 0.9 for non-solvent. This means that
the error in predictions must be significantly lower than 0.2 so
that one can be confident in the predictions and ability to apply
them.90 Sanchez-Lengeling et al. considered the error in the Ra

and Ro values as well as the uncertainty in the experimental
data, analyzing the accuracy of the model at different extremes
of Ro values. They found that the average model accuracy at low
values of Ro was low when RED o 1 and high when RED 4 1
and vice versa when Ro was high. Although they did not set a
specific target error in RED to consider the model acceptable,
they highlight the complexity in drawing conclusions from the
results and the importance of assessing how each contribution
impacts the mean error.89 This is a particularly important point
when considering the end user of the prediction tools, as the
acceptable error and relevant differences between parameter
values will vary based on the precision needed for the applica-
tion. As discussed here, HSP and w parameter are most fre-
quently used industrially for solvent selection and, while some
precision is needed to differentiate a solvent vs. non-solvent,
the values are not often used for phase equilibrium calculations
(although both could be) and thus categorical and ranking
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accuracy (e.g., ranking solvents by their RED value) is more
important than their numerical accuracy.

3.3. Activity coefficients

The third important thermodynamic parameter, the activity
coefficient, accounts for how phase equilibrium deviates from
ideality and is a function of the temperature, pressure, compo-
sition, and chemical species. The calculated activity coefficients
can be used to perform thermodynamic calculations for process
design and to predict the phase diagrams, though prior work
has shown that this is complex due to the high molecular
weight asymmetry between polymer and solvent91 and insuffi-
ciently detailed experimental data.92 The activity of component
i in a polymer solution mixture is related to the activity
coefficient as, ai = gixi where xi is the mole fraction of species
i. From Flory–Huggins theory, the activity coefficient can be
determined from the activity of the solvent a2,

a2 ¼ 1� f1ð Þ exp 1� V2

�vMw

� �
f1 þ w12f1

2

� �
(8)

where V2 is the molar volume of the solvent, Mw is the polymer
molecular weight, and %v is the particle specific volume of the
polymer. We note here that the activity can also be written in
relation to the osmotic pressure as �ln a2 = RTPV2 and can be
combined with eqn (8) and expanded in powers of concen-
tration to obtain the Flory–Huggins expression for the osmotic
virial expansion,

P
RTc

¼Mw
�1 þ

X
i

Aic
i�1 (9)

where c is the mass concentration defined by c = f2/�n.
The second virial coefficient A2 can further be shown to be
related to w as,

A2 ¼
1

2
� w12

� �
=f2r1

2 (10)

where r1 is the density of the polymer in solution. The full
derivation can be found elsewhere.33 From the above expres-
sions, one can relate the activity, activity coefficient, and
second virial coefficient to the Flory–Huggins interaction para-
meter and therefore estimate a Hildebrand solubility parameter
or generate the phase diagram knowing w. However, to generate
the phase diagram, one must assume a functional form for w
(see Sections 2.1 and 2.2). Note that the reverse can not be done
(i.e., w to activity) without the other osmotic virial coefficients,
but nonetheless this provides a method to connect these
thermodynamic parameters together as well as connect solubi-
lity predictions.

Activity coefficients have frequently been predicted based on
theoretical models fit to experimental data. These methods
are limited in that they require experimental values and often
the molecules must be able to be split into representative
functional groups since, for polymers, the models are built
on group contribution theory. This makes these methods
appropriate for common polymer/solvent pairs that are
well-characterized, but have limited utility for new materials.

In addition to the existing theoretical models, molecular
dynamics-based calculations have been used for thermodynamic
property prediction, including activity coefficients.10,92 Most
promising of these is use of the COSMO-RS model, which uses
quantum chemical calculations to predict the chemical potential
in the liquid state, and thus many thermodynamic properties.75

COSMO-RS does not need experimental data on the polymer
molecule and only relies on element-specific parameters, but it
does require expensive calculations to arrive at the predictions.
Thus, COSMO-RS and similar approaches are promising in that
they do not require extensive experimental data, but they are still
limited for screening a large polymer–solvent chemical space.

To overcome the weaknesses of classic theoretical models
and simulation-based prediction tools like COSMO-RS, machine
learning tools trained on experimental measurements are being
explored. Sanchez Medina et al. developed a novel Gibbs–Helm-
holtz graph neural network (GH-GNN) approach to predict
infinite dilution activity coefficients of polymer solutions.10

The GH-GNN architecture first represents the polymer and
solvent with separate graphs. These graphs are passed through
a GNN to create vector embeddings of the chemical species,
which are then used to build a mixture graph that represents the
solute/solvent interactions. They curated a data set of weight
fraction-based activity coefficients, which was drawn from
volume XIV of the DECHEMA Chemistry Data series.93 They
showed that for interpolation, where the model predicted sys-
tems within the polymer and solvent space of the training data,
their GNN-based methods significantly outperformed a random
forest model for predicting activity coefficients (Fig. 6). Interest-
ingly, the authors show that pretraining their GH-GNN on a
dataset of 40 219 small molecule activity coefficients reduced the
error for predicting polymer activity coefficients by up to 23.5%
(GH-GNN (PSS) in Fig. 6).10 This result highlights the effective-
ness of transfer learning in overcoming persistent challenges of
data scarcity for polymer informatics. The performance of the
models when extrapolated to new solvents that had not pre-
viously been seen was poorer, though it still had a lower mean
absolute error than when the UNIFAC-ZM and Entropic-FV
phenomenological models were used.10

Interestingly, Sanchez Medina et al. created three data sets,
one with the number-average molar mass, Mn, one with the
weight-average molar mass, Mw, and one with Mn/Mw, which
accounts for the distribution of molecular weights. This poly-
mer molar mass information is added directly into the polymer
graph global features, allowing the model to input the polymer
mass distribution.10 This helps overcome one of the challenges
in making material property predictions for polymers: the
molar mass of a polymer is not a single, well-defined value.
In splitting this data set, however, they decreased the number
of data points for each category, with the number of Mn/Mw

data points being approximately 60–70% of the number of data
points for Mn and Mw since not all data sources reported both
Mn and Mw. Nevertheless, for the systems tested in Sanchez
Medina et al. the mean absolute error for the activity coeffi-
cients was not significantly different with each data set.10 This
could be due to the use of the infinite dilution activity
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coefficient, where variations in polymer molar mass are less
important, or due to the particular polymers chosen. It high-
lights the unique challenges in creating data sets for polymer
property predictions and the need to examine how important it
is to include complex behavior in the model development for a
given property.

We discussed three important thermodynamic parameters: the
Flory–Huggins interaction parameter, the Hansen solubility para-
meters, and the activity coefficient. In all cases, there are challenges
in obtaining sufficient data for accurate predictions using purely
data-driven approaches, especially for extrapolation to unseen
polymer–solvent pairs. This can limit the use of these approaches
for novel polymers or uncommon solvents. However, improve-
ments can be made through additional experimental data collec-
tion and integration of computationally predicted data. When
considering use of these predictions for process design, greater
quantitative accuracy is needed than for uses such as assessing
solvent compatibility or some formulation applications. Strong
consideration of both the type of desired output (i.e. whether
HSP values alone are sufficient or whether a specific difference in
RED between two polymer/solvent pairs is needed) and the level of
accuracy needed can help research and development scientists and
engineers assess the value of a given solubility prediction tool.
Similarly, tool developers can consider how the target customer
would use the predictions and optimize the experimental data
collection and computational time to provide the right level of
output. Taken together, the significant number of approaches used
in prior studies for these three parameters for polymer solubility
show the diversity of approaches and needs for considering the
thermodynamic compatibility of polymers and solvents.

4. Point predictions of polymer solubility

Although thermodynamic parameters have great value in
designing chemical processes and understanding solubility

behavior, they require significant data from each polymer/
solvent pair to predict accurately and thus are labor intensive
to determine for new materials. There are also many instances
when that level of detail is unnecessary and classifications,
such as labeling a chemical a ‘‘solvent’’ or ‘‘nonsolvent’’ for a
polymer can still greatly aid experimentalists in designing
systems, in particular for preparing formulations with polymer
solutions or selecting nonsolvents to drive precipitation. Addi-
tionally, given the complex parameter space in most multi-
component formulations, reporting solubilities in experimen-
tally useful units such as mg mL�1 or weight percent is
desirable to speed up formulation development. Thus, many
researchers have been developing methods to classify solvent/
nonsolvent and make quantitative solubility predictions, out-
comes we refer to as ‘‘point predictions of polymer solubility.’’

These point predictions can be developed with different
levels of granularity. For example, one could classify the mix-
ture based on a ‘‘solvent’’ or nonsolvent’’ description, or use
multiple descriptions of solubility as is done in the pharma-
ceutical industry using the USP29-NF24 solubility criteria
shown in Table 1.94 In addition to these classifications, one
may group solvents into ‘‘good solvent,’’ ‘‘poor solvent,’’ and
‘‘theta solvent,’’ which have a specific meaning in polymer
science based on the second virial coefficient (note that the
second virial coefficient can be mathematically shown to be
related to w). The second virial coefficient for the chemical
potential of the polymer and solvent mixture is positive for a
good solvent, zero for a theta solvent, and negative for a poor
solvent.95 We will not discuss this case specifically here, as it is
related to thermodynamic parameters discussed previously, but
it is important to be cautious with nomenclature for solvent
classifications due to these precise definitions.

Simple classification of solvent/nonsolvent is particularly
valuable for covering a wide chemical space where selection
of a solvent or nonsolvent is the desired outcome. Chandrase-
karan et al. used a fully data-driven approach with a large
database of 4500 polymers and provided information on
whether 24 solvents were solvents or nonsolvents for a given
polymer.27 They trained a neural network model on the dataset,
with the neural network functioning as a binary classifier. They
found the model accuracy to be 93.8% accurate for the test set
containing polymers/solvents that the model was not trained
on. To assess how this compares to existing methods, they
predicted the Hildebrand parameter for all polymers in the data
set and classified the solvents into solvent or nonsolvent for the
polymers based on the predicted Hildebrand parameter. The
accuracy of the classification of ‘‘solvent’’ was only 50% and
70% for nonsolvent using this method, significantly worse than
the neural network classification model.27 The predictions
from this classification model have been implemented in the
Polymer Genome informatics platform.96

Although the polymer space in Chandrasekaran et al. was
large, only 24 solvents were used and therefore predictions were
unable to be made outside of the 24 solvents. This was in part
due to the use of one-hot encoding, which gives each solvent a
specific numerical value but does not account for the solvent

Fig. 6 Mean absolute error (MAE, darker colors) and coefficient of deter-
mination (R2, lighter colors) for both interpolation (blue colors) and
extrapolation (purple colors) predictions of activity coefficient for three
models used in Sanchez Medina et al., the random forest model, the GH-
GNN (Gibbs–Helmholtz graph neural network) and the GH-GNN (PSS),
which is the GH-GNN with transfer learning through pre-training. Data
was extracted from Table 2 in ref. 10 using the data set for the system
trained on the weight average molar mass.
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properties, thus limiting its generalization ability. Further work by
Kern et al. aimed to overcome this through use of a hierarchical
fingerprinting method with 690 features at 3 different length
scales.28 Using an expanded data set with 3373 polymers and 51
solvents, they found that when encoding solvent structure, the
model performed better and had less uncertainty than when using
a one-hot encoding for the solvent structure. The performance of a
random forest classifier model on unseen solvents, which was only
possible with the solvent structural encoding fingerprinting, was
only modest, which was attributed to the model not seeing many
solvents that were similar to the test solvent given a total of 51
solvents in the data set.28 This highlights that, although classifica-
tion models are promising for experimental guidance with less
data than thermodynamic solubility predictions, a diverse
chemical space for training data is still necessary to enable good
predictions of unseen polymers and solvents.

Another type of point prediction for solubility is prediction
of a specific amount of polymer that can dissolve in a given
amount of solvent at a specified temperature. Although this has
similarities to the phase diagram predictions, and finally con-
nects all aspects discussed in this perspective, it can also be done
with simulation and data-driven approaches. Furthermore, the
specific output of these models is more convenient for experi-
mentalists to use. In one example, Zhou et al. predicted the
solubility for polymers typically encountered in plastic waste
using MD simulations and COSMO-RS.97 Specifically, MD simu-
lations were used to predict conformations of oligomers and
DFT calculations were performed on selected conformations to
generate screening charge densities. COSMO-RS was then used
to predict thermodynamic properties including the chemical
potential of the polymer in the solvent from which the solubility
was quantitatively predicted through the following equation,

xj ¼ e
ðmpure

j
�msolvent�DGfusÞ=RT (11)

where xj is the solubility of the polymer in units of weight
percent, mpure

j is the chemical potential of the polymer in the
solvent, msolvent

j is the chemical potential of the polymer in the
solvent at infinite dilution, and DGfus is the free energy of fusion
for the polymer, as determined experimentally. Unlike the
thermodynamic predictions discussed earlier, this method
doesn’t target thermodynamic parameters, but instead focuses
on predicting the quantitative solubility.97

The results from this method reported in Zhou et al. were
found to match reasonably well to experimental solubility

measurements, though the solubilities were overestimated for
nonsolvents. The accuracy was found to be very sensitive to both
the length of the oligomer chosen and the number of conforma-
tions taken from the MD simulations through the DFT and
COSMO-RS calculations, with a clear tradeoff between accuracy
and computational cost.97 Although this initial study (2021)
focused on two polymers, polyethylene and ethylene vinyl alcohol
(EVOH), further work in 202398 extended this to 8 waste polymers
and 1007 solvents. Interestingly, in the 2021 study, the authors
took the specific solubility predictions and set classification stan-
dards, defining solvents to selectively dissolve a polymer in a
2-polymer mixture as solvents having solubility greater than
10 wt% for one polymer and lower than 1 wt% for the other.
From the predictions of solubility and subsequent classification, a
few solvents were determined to be selective for EVOH over
polyethylene, providing value to the solvent-targeted recovery and
precipitation (STRAP) process.98 This highlights the value of
classification results for industrial problems, but in this case using
thermodynamic predictions rather than the machine learning
models discussed above.27,28 The 2023 Zhou et al. work used a
similar method to determine selective polymers as the 2021 work,
but instead of a single classification (selective or not), they ranked
the solvents through a selectivity value based on the solubility
difference between the target polymer and the other polymers at
the operating temperature, with the best solvents having the
maximum separation (highest selectivity), providing greater gran-
ularity to classifying the solvents and more valuable predictions.98

To our knowledge, there are no current studies that use a
purely data-driven approach to predict quantitative values of
polymer solubility. This is likely due to the low availability and
low quality of polymer solubility data (e.g., important informa-
tion is often missing from reported values, including polymer
molecular weight, degree of crystallinity, temperature, etc.).
However, existing data sets for organic small molecule com-
pounds, in particular active pharmaceutical ingredients (API),
are more controlled, diverse, and well-reported. Thus, we will
briefly discuss a purely data-driven approach from the pharma-
ceutical industry that focused on predicting API solubility
values at a single temperature.99 The model performance for
the scenario where the API/solvent pair were previously seen
was relatively good with an R2 of 0.68 and an MAE of 0.43, but
when applying the model to previously unseen solutes, the
performance dropped significantly, with an R2 of 0.39 and MAE
of 0.69.99 In practical terms, the first scenario applies when
some API solubility points are known, but more are desired,
while the second applies when a new API molecule is being
investigated, a more common industrial need. Interestingly,
the study compared these purely data driven predictions to
COSMO-RS predictions and to a hybrid method of the data
driven and COSMO-RS approaches. The purely data driven
approach significantly outperformed the purely COSMO-RS
approach, but was not as accurate as the hybrid method.99

This highlights that, at least for the data set size used (75 API
and 49 solvents), supplementing data-driven models with ther-
modynamic calculations and vice versa can significantly
improve predictive performance, especially for components

Table 1 United States pharmacopeia criteria for solubility classification.
Adapted from ref. 94

Descriptive term
Parts of solvent required
for 1 part of solute

Very soluble Less than 1
Freely soluble From 1–10
Soluble From 10–30
Sparingly soluble From 30–100
Slightly soluble From 100–1000
Very slightly soluble From 1000–10 000
Practically insoluble or insoluble 10 000 and greater
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unseen in the training data, a scenario of significant value in
new materials development.

Predicting polymer solubility at points or through general-
ized compatibility has value in leading experimental planning
and decreasing trial-and-error approaches used to find suitable
solvents for polymers. These point predictions of solubility
range in granularity from the most specific solubility values
(e.g., in parts polymer/parts solvent at a given temperature and
molecular weight) to binary classification (e.g. solvent/nonsol-
vent). Moreover, there is a positive correlation between the
levels of granularity (e.g., solvent/nonsolvent classification can
be estimated from thermodynamic interaction parameters,
which can in turn be determined from the phase diagram)
and the number of data points (experimental or computational)
needed to obtain accurate predictions. Often the tradeoff is
made between data fidelity and chemical composition space.
For instance, models developed to cover a broad parameter
space are restricted to binary classification or other simple
point predictions, while models providing entire phase diagrams
(broader applicability) are developed for only select polymers.
Combining experimental and computational data for model
training can improve accuracy in the small data limit, but they
still require significant investment in time and money to improve
accuracy. Considering these types of predictions as a spectrum,
rather than each application separately, can help in developing
models for specific R&D needs and enables assessment and
management of the tradeoffs in level of detail vs. effort required.
Although the discussion of granularity here focused on classifica-
tion schemes and specific quantitative values, it can also be
considered for granularity in temperature, molecular weight,
crystallinity and other polymer solution properties that are known
to affect the observed solubility, but add significant experimental
needs if they were to be fully included in predictions.

5. Future outlook

We have shown throughout this perspective that there are many
approaches to predicting the ability of a solvent to dissolve a
polymer. The output of these models ranges from phase diagrams
to classifications of solvent/nonsolvent to thermodynamic para-
meters, with each providing their own value for research and
product/process development. This analysis of the field also
highlights the need to combine disparate data sets for one
purpose. The rising capabilities in ML provide an opportunity to
take a new approach to solve a decades-old challenge, providing
prediction capabilities beyond what is covered in an experimental
dataset and incorporating experimental and simulation data to
improve prediction accuracy. However, there are still a number of
persistent challenges in developing accurate predictions for a
broad polymer chemistry and structure space. A large hurdle is
the small amount of high-quality data available, a common
problem throughout materials informatics, but particularly sig-
nificant in the polymer field. As we showed here, computational
predictions merged with experimental data and integration of
small molecule datasets can help for some simple cases, but due

to the complexity of polymers, these models are limited. A second
crucial challenge is the availability of next-level polymer features.
The commonly used databases have a strong set of representative
solubility, thermodynamic parameter, or classification data that is
tied to the polymer name, but further details such as molecular
weight, dispersity, temperature, monomeric composition and
ratios, degree of crystallinity, and process history are lacking
and, if available, do not cover a broad space. Given the known
sensitivity of solubility to these factors, the prediction capability is
limited without more available information on these features.

In addition to the broader array of polymer chemical and
structural features that would improve generalizability of the
predictions, applications in polymer processing and assembly
would benefit from additional data and prediction of the kinetics
during dissolution and precipitation. For instance, Amrihesari
et al. developed an experimental method for data collection of two
kinetic parameters, the induction time and delta-t, which tie to
the time to first measurable precipitates and plateau extent of
precipitation, respectively, with a moderately high throughput
method.57 As large molecules, polymer dissolution and precipita-
tion can be prohibitively slow, preventing some formulations
from being used beyond the lab. However, to our knowledge,
predictive capabilities for polymer dissolution and precipitation
kinetics have not yet been investigated, especially by data-driven
methods, which would be particularly valuable given the scarcity
of computational predictions for these long timescale kinetics.

Moving beyond the property prediction capabilities that are
the primary focus in this perspective, there is potential in using
explainable artificial intelligence (AI), or combining the data-
sets with AI tools to develop new theories. In the simplest view,
this could include identification of new patterns that might
indicate new directions for research, as was done in Aoki et al.
with the identification of latent variables beyond those that
correlated with the three HSP forces and that could be potential
significant contributors to solubility.26 However, in the long
term, explainable AI could be used to find corrections to
current theory, derive new functional forms, or seed develop-
ment of new theoretical models, pushing forward fundamental
science on the backbone of data science.

Throughout this perspective, we have highlighted the potential
use cases for the different approaches to predicting polymer
solubility. What we have not thoroughly considered here is how
accurate the predictions need to be in practice. As we have noted,
to improve accuracy, the most important developments require
increasing the amount of available data. Running computational
models, especially when they require simulation-provided data, is
energy intensive and can have a large carbon footprint. Addition-
ally, experimentation, even when high throughput methods can
be used, is resource intensive. Two of the studies discussed in the
HSP section analyzed the allowable error that would enable these
predictions.89,90 However, most research is focused on maximiz-
ing the accuracy without assessing what an acceptable error
tolerance should be for the application of interest. Further
collaboration between end users and scientists and engineers
developing the models could provide interesting insights that save
significant time and money as these tools mature.
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Overall, exciting developments in predicting solubility, poly-
mer/solvent phase behavior, and compatibility have been made in
recent years and, importantly, these innovations are coming from
many directions. The breadth of approaches provides usable
predictions for many industries and research applications, while
also helping overcome weaknesses in some methods to still inform
material and process design. For example, classification methods
can more easily cover a broad chemical space and improve screen-
ing, while predictions of phase diagrams can inform processing
pathways for precise control. Despite the progress, challenges exist
in obtaining sufficient high quality datasets and covering a broad
enough feature space for complex polymer material needs. Colla-
borative efforts between end users and model developers as well as
between scientific domains of chemistry, physics, computer
science, chemical engineering and materials science provide excit-
ing opportunities for further advancing these predictions and
pushing forward the science and engineering of polymer solutions.
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