
8888 |  Soft Matter, 2024, 20, 8888–8896 This journal is © The Royal Society of Chemistry 2024

Cite this: Soft Matter, 2024,

20, 8888

Linking local microstructure to fracture location
in a two-dimensional amorphous solid under
isotropic strain†

Max Huisman, ‡*a Axel Huerre, b Saikat Saha,§a John C. Crocker c and
Valeria Garbin *a

Brittle fracturing of materials is common in natural and industrial processes over a variety of length

scales. Knowledge of individual particle dynamics is vital to obtain deeper insight into the atomistic

processes governing crack propagation in such materials, yet it is challenging to obtain these details in

experiments. We propose an experimental approach where isotropic dilational strain is applied to a

densely packed monolayer of attractive colloidal microspheres, resulting in fracture. Using brightfield

microscopy and particle tracking, we examine the microstructural evolution of the monolayer during

fracturing. Furthermore, we propose and test a parameter termed Weakness that estimates the

likelihood for particles to be on a crack line, based on a quantified representation of the microstructure

in combination with a machine learning algorithm. Regions that are more prone to fracture exhibit an

increased Weakness value, however the exact location of a crack depends on the nucleation site, which

cannot be predicted a priori. An analysis of the microstructural features that most contribute to

increased Weakness values suggests that local density is more important than orientational order. Our

methodology and results provide a basis for further research on microscopic processes during the

fracturing process.

1 Introduction

Cracks occur over natural length scales from atoms to earth-
quakes, but a thorough understanding remains elusive due the
unpredictable nature of the fracture process. Generally, materi-
als that display a discontinuous drop in stress at relatively low
strain rates, for instance through fracturing, are referred to as
brittle. This property is fundamentally different from the con-
tinuous evolution over strain of ductile materials.

The field of fracture mechanics was revolutionized by semi-
nal work of A. A. Griffiths,1 showing how the decrease of the
strain energy by breaking the particle bonds should be higher

than the increase in surface energy due to the formation of the
free surface during fracturing. These results were generalized to
any ‘‘somewhat brittle’’ material in later work,2 in which also
the main failure modes during fracturing were identified: shear
cracks form when stress is applied parallel to the plane of the
crack, whereas extensional cracks form when a tensile stress is
applied normal to the plane of the crack. Other important early
findings show how the stress distribution changes around the
propagating crack front.3,4 The fracture mechanics theories
from these reports use a continuum description of the material,
causing the theory to break down near the crack’s tip, where the
stress field diverges.5 Since the microscopic processes occur-
ring in the vicinity of the crack tip are vital in determining the
macroscopic process of crack growth and propagation through
a material,6 it is important to study the dynamics at the
small scale.

Recent advancements in simulations and experimental
methods have accelerated research into the dynamic material
evolution near the crack tip. In simulations, it was shown that
cracks tend to initiate in the regions with highest disorder of a
brittle amorphous material7 and that the direction of crack
propagation can be substantially influenced by the presence of
defects and voids that lie in front of the crack tip.5,8 These
findings were confirmed in experiments where the dynamic
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fracturing of brittle polymeric gels was studied using optical
microscopy, showing the important role of defects and voids in
crack propagation.6,9

Observations from simulations7,10 and scattering
experiments11 strengthen this view by showing how fracturing
is governed by localized plastic rearrangements of individual
particles, which occur in ‘‘soft regions’’. Soft regions are
regions in a material where particles are most likely to rear-
range, characterized by low density and/or high disorder. In the
case of attractive particles, particles in soft regions have fewer
neighbours that fix their position. Experimental observations
on individual particle dynamics in such soft regions during
fracturing would be crucial for obtaining a better understand-
ing of the role of microstructure during fracturing, but have to
this date not been reported. Individual particle dynamic are
often studied using small colloidal particles sized B100 nm–
10 mm, due to ease of use in combination with various optical
microscopy techniques.

Related to fracturing, colloidal systems with small (o100 nm)
particles have been used to study macroscale fracturing during
drying, relevant to, for instance, the aging of paintings12 or dairy
stratification.13 To allow for live tracking of individual particle
movements, colloidal systems with larger particles of size B1 mm
should be used. An advantage of using a monolayer is the relative
ease of imaging all particles in a 2D system with high temporal
resolution, and tracking their trajectories using well-established
methods.14,15 Previously, such experimental systems have been
used to study among others the role of defects,16 the relaxation
time scaling in plastic flow under oscillatory shear,17 and the
impact propagation through a monolayer after a localized mechan-
ical pulse.18

One of the main advantages of individual particle tracking is
that one can quantify the microstructure from the particle
coordinates over time, through so-called ‘‘structural indicators’’.19

These parameters characterize some important features of the
system, such as the local density (for instance through the number
of nearest neighbours, or the area of cells in a Voronoi tessellation)
or the local order (for instance through orientational order para-
meters ci). Recently, it has been suggested that simple, machine
learning (ML) algorithms can also be used to predict how likely
individual particles in a sheared system are to undergo plastic
rearrangement.20–22 The structural indicator called softness char-
acterizes the local structure and was found to be strongly linked to
the system dynamics.20 An extra incentive for applying ML algo-
rithms to such experimental systems, is that it can be used to
identify the most important features in the provided dataset
through analyzing the decision making process.

In this paper, we test the extension of such machine learning
based methods to experimental systems with macroscopic
catastrophic yielding, like fracturing. First, we develop an
experimental method where a monolayer of attractive colloids
is fractured by applying an isotropic strain. Using brightfield
microscopy and particle tracking algorithms we extract particle
coordinates, that we use to characterize the monolayer struc-
ture and its dynamic evolution. This is done by calculating the
orientational bond order parameter and number of nearest

neighbours. Since fracture nucleation is a stochastic process,
we extend our analyses by using a machine learning method20–22

to a priori identify regions that are more likely to be on a crack line
than others, and we term this structural likelihood the Weakness.
Finally, we analyze the relative importance of the microstructural
features used as input for the machine learning algorithm, to gain
insights into the fracturing process.

2 Materials and methods
2.1 Sample preparation

We use polystyrene microspheres with negatively charged sul-
fate functional groups (nominal davg = 5 � 0.5 mm, Thermo-
Fisher, cat. number: S37227, material lot number: 853189). The
colloid suspension (4% w/v) was washed repeatedly by centrifu-
ging and replacing the supernatant with Milli-Q water to
remove possible contaminations. The suspension was diluted
to 0.4% w/v using a 500 mM NaCl aqueous solution to screen
electrostatic repulsion between particles and promote adsorp-
tion to the gas–water interface. When the electrostatic interac-
tions are screened, the particles on the interface are attractive.
The dominant interaction is capillary attraction by the align-
ment of quadrupoles in the local interface deformation, and is
of the order B104 kBT.23

To produce colloid-coated air bubbles in water, we thor-
oughly shake the colloidal suspension to create air bubbles,
which also agitates the colloids so that they adsorb at the
interfaces of the air bubbles in water. The resulting colloid-
coated bubbles are sufficiently stable that they can be indivi-
dually extracted from the vial using a spatula. The bubble was
then placed atop a sample holder, consisting of a 4 mm thick
PDMS spacer on a glass slide (76 � 26 mm2), filled with a 500
mM NaCl solution and subsequently covered by a glass cover-
slip (18 � 18 mm2). Next, the sample was left undisturbed for at
least 10 minutes to equilibrate. A Peltier heating element (RS
Peltier Module, 1.6 W, 1.6 A, 7 V, 30 � 30 mm2) was glued close
to the container, for controlling the temperature of the sample.
After preparation, the entire sample container was placed on an
inverted microscope (IX71, Olympus) equipped with a camera
(Basler ace acA5472-17uc) and a 10� objective. A schematic of
the experimental setup is shown in Fig. 1(a).

The in-focus part of the monolayer in the field of view [see
Fig. 1(b)] contains B5000 particles. The typical surface cover-

age is f ¼ NpartpRpart
2

Asurf
¼ 0:72� 0:05, Npart being the amount of

particles in the field of view, Rpart the particle radius and Asurf the
area of the field of view containing in-focus particles. We note
that in our experiments, we found an effective center-to-center
distance of rij = Rpart/2 E 5.4 mm between particles i and j.

2.2 Controlled monolayer expansion and fracture

In previous work, dynamics of colloidal monolayers under
strain have for instance been studied through the inflation/
deflation of a pendant drop24 or by cooling-induced shrinkage
of compressible air droplets in water.25 Here, we heat colloid
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coated air bubbles to study extensional fracturing while track-
ing individual particles, which would otherwise be difficult to
study simultaneously. Bubble expansion is achieved by heating
the sample holder using a Peltier element. The fluid in the
sample holder was heated only by a couple of degrees, ensuring
slow expansion to allow for particle tracking.

The areal expansion of the perimeter of a colloid-coated
bubble in a typical experiment is shown in Fig. 1(d). The growth
rate slowly increases for t o 100 s. During this stage also some
sudden drops can be observed (inset of Fig. 1(d)), possibly
indicating rapid changes in the structure of the monolayer.
After this initial stage (t 4 100 s), the bubble area increases at a

constant rate. We find possible explanations for this behaviour
by zooming in at the evolution of a monolayer over time (see
Fig. 2(a) and Video S1, ESI†), where we see that the new crack
formation mainly occurs in the early stages of bubble growth.
These results show a rapid crack propagation through the
monolayer that seems heavily influenced by the orientation of
the initial crack (more examples of the crack directionality can
be observed in Fig. S1 in the ESI†). The rapid changes in the
monolayer structure at early times could result in the abrupt
changes we observed in the measured perimeter of the bubble
in the inset of Fig. 1(d). Next, the bubble proceeds to grow
through areal expansion of the already formed cracks, rather

Fig. 1 (a) Experimental schematic of the container for a colloid coated air bubble in water. Fracturing is induced through a Peltier heating element
connected to DC power, and data is obtained through an optical microscope connected to a camera. (b) A segment of the colloid monolayer, visualized
through the raw data, the Delauney triangulation and the amount of nearest neighbours. Scalebar represents 25 mm. (c) Radial distribution function g(r)
for a typical experimental dataset (B5000 particles). g(r) is normalized by the first peak value and the radial distance from the central particle r is
normalized by the measured effective distance between particles dpart = rij = 5.4 mm. (d) Areal expansion (A(t)) of the perimeter of a colloid coated air
bubble in water, normalized by it’s initial value A0. This data was obtained using 5� magnification to track the entire perimeter over time. Inset shows a
zoom-in of the initial stages of areal expansion.
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than new crack formation, which we assume corresponds to the
constant growth rate of the bubble at later times.

2.3 Image analysis and particle tracking

To obtain particle coordinates from our microscopy data we
used manual particle tracking algorithms in Matlab. We found
that a completely automated approach was insufficiently accu-
rate as our microscopy data contains many (B5000) particles
that are subjected to sudden movement, move slightly in and
out of focus during an experiment and where the difference
between a void and a particle is difficult to detect.

In our approach, we first obtain estimates of initial coordinates
using TrackPy.14 These were imported to Matlab and refined by
manually removing voids classified as particles and adding par-
ticles that were not recognised. Even though this procedure was
generally robust, there remained some (at least B10) misclassi-
fied particles in our systems. Particle tracking was performed
using the Crocker and Grier algorithm.15 When particles experi-
enced a sudden rapid movement or when they moved out of focus
such that the tracking algorithm lost a particle, we re-adjusted this
particle’s position by hand. With an image resolution of 150 nm
per pixel, particle tracking has a subpixel accuracy.

To generate sufficiently large datasets to train machine
learning algorithms, we performed 20 separate experiments
following an identical experimental procedure, which combined
together form a dataset containing trajectories of approximately
100 000 particles.

2.4 Fracture detection

To quantify the crack location in the monolayer, we identify the
particles located on the boundary of a crack. To this end we
adapted an image analysis routine originally developed to
visualize connectivity in porous media in a time-series.26

In our analysis, we used only the grayscale image of the final
frame of an experiment. We followed the image processing
procedure prescribed in ref. 26 to construct a binary mask from
the final frame, showing the largest visible cracks. The cut-off
for the crack size was manually adjusted for each experiment.
This mask was morphologically dilated by 1 particle diameter
and overlaid onto the particle coordinates in the final frame to
identify the particles on the edge of a crack. In a typical
experiment, a subset of about 100 to 200 particles were located
on the edges of cracks out of B5000 total particles in the field
of view.

Fig. 2 (a) Brightfield images of the colloid monolayer during a typical experiment. Scalebar represents 50 mm. (b) Overlay of drift subtracted
displacement vectors on the particle coordinates, comparing the their initial position to their position after a typical experiment (here, tend E 100 s).
The vectors are coloured by their clockwise orientation, and the red striped lines show where the cracks appear in the system. (c) Overlay of the c6 values
on the particle initial particle positions. The red striped lines show where the cracks appear in the system.
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2.5 Quantifying the local microstructure

A segment of a typical experimental monolayer is shown in
Fig. 1(b). We can observe rafts of localized crystalline order,
where particles have 6 nearest neighbours (e.g. a hexagonal
centered packing arrangement), interchanged by more amor-
phous regions. This observation is in close resemblance to
systems from other studies on colloid monolayers with medium
range ordering.17,27,28 The radial distribution function g(r)
(Fig. 1(c)) confirms this similarity, with local ordering extend-
ing up to about 6 coordination shells.

We characterize and investigate the monolayer structure
using the number of nearest-neighbours (NN), which relates
to the local density, and the bond order parameter Ci, relating
to the local orientational order. NN is the number of particles
within a cut-off radius Rc = 2 � rpart (= rij = 5.4 mm). We calculate
the hexatic bond order parameter as19

ci
6 ¼

1

ni

Xni

j

ei6yijk

�����

����� (1)

where i is the central particle of interest, yijk is the angle of
particle i with neighbours j and k. Note that i in the exponent is
the unit imaginary number. ci

6 is a measure of hexagonal order,
with ci

6 - 1 for perfect hexagonal order and ci
6 - 0 otherwise.

2.6 A generalized description of local microstructure

We also calculate a structural indicator from a more general
description of the local particle environment, using machine
learning algorithms. This approach was first proposed by
Behler and Parinello29 and later applied to the study of plastic
rearrangements in colloidal systems.20–22

The generalized description consists of two structure func-
tions. The first structure function GX

Y(i,m) essentially acts as a
discretized radial distribution function, that calculates how
many neighbours j are located in a shell of thickness d at a
distance m from particle i, and is defined as

GX
Y ði; mÞ ¼

X

j

e
� 1
2d2 Rij�mð Þ2 (2)

where Rij is the distance between central particle i and neigh-
bour j, d is a fixed quantity (in our case d = 0.25 mm), and m is a
variable parameter (we used 4.6 mm o mo 12 mm, with steps of
0.1 mm). The cut-off distance from the central particle, Rc, in
which this equation is calculated should include several coor-
dination shells but is insensitive to the exact amount.21 In total,
through varying m, we obtained a set of 75 different values for
each particle, which will be referred to as features.

The second structure function CX
YZ(i,x,l,z), related to orien-

tational properties, is calculated as

CX
YZði; x; l; zÞ ¼

X

j;k

e� Rij
2þRik

2þRjk
2ð Þ=x2 1þ l cos yijk

� �z
(3)

Again, Rij is the distance between central particle i and
neighbour j, while yijk is the angle that the central particle i
makes with its neighbours j,k. x,l,z are variable parameters
related to different aspects of the particles’ local environment: x

ensures that the Gaussian exponent goes to zero as interparticle
distance increases, l (set at either l = 1 or l = �1) determines
whether small or large bond angles are used and z determines
or the relative importance of angular properties.20 The values
we used for the parameters x,l,z are given in the ESI,† giving a
total of 60 features for every particle.

2.7 Calculating Weakness

We want to predict the propensity of a particle to be next to a
crack line. To this end, we calculate a parameter that we will
refer to as the Weakness, which is a machine learning-
generated structural indicator, calculated from the generalized
description of the local environment described in Section 2.6.
As observed in Fig. 2(a), crack propagation is heavily influenced
by the initial crack’s directionality. Therefore, we hypothesize
that Weakness could identify a likely crack path in the direction
of the initial crack, after its formation.

As proposed in previous work20–22 we employ one of the
most straight forward machine learning algorithms: the sup-
port vector machine (SVM). Support vector machines (SVM) are
supervised classification methods, widely adopted for classifi-
cation, regression and other learning tasks.30 Generally, classi-
fication algorithms have a training stage and a testing stage.
During the training stage, the SVM takes as input a set
of datapoints with features x1,x2,. . .,xm, providing an m-
dimensional dataset, and for each feature a classification label
(0 or 1). In our case, the datapoints are the individual particles
and the features are values from eqn (2) and (3). The SVM
algorithm then constructs and adjusts a (m � 1)-dimensional
hyperplane that separates the data into classes 0 and 1 with the
highest overall accuracy, see Fig. 3(a). Next, during the testing
stage, the hyperplane is fixed and a dataset with datapoints that
the algorithm has not seen before, but with the same features
x1,x2,. . .,xm, is provided as input. The SVM uses previously
calculated hyperplane to predict which of the two outcomes,
0 or 1, is most likely for the new datapoints.

To prevent under- and over-training we optimized the size of
our dataset to approximately 12 000 randomly selected particles
out of the total 100 000 particles we tracked, see ESI.† The
optimal ratio of particles in the dataset was found to be 45% of
particles with label 1 (crack) and 55% with label 0 (no crack).

We make use of the simplicity of the SVM to gain insight on
the important parameters in the process. This is done by
calculating the distance of datapoints from the hyperplane,
which is analogous to the probability of the datapoint belong-
ing to its classification class. This distance has been previously
used to quantify the probability for plastic rearrangements, and
was termed softness in this context.20–22 In these reports, the
softness values for particles that undergo plastic rearrange-
ments are on average higher compared to other particles,
leading to a positive shift in their probability distribution.
The distinct separation between the probability distributions
in these reports indicates that the hyperplane is able to
differentiate the two classes of particles by the values of
their structural indicators. Applying a similar method to our
experiments, where the prediction labels correspond to the
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probability of the particle to be located on the edge of a crack,
we will refer to this quantity as Weakness.

3 Results and discussion
3.1 Evolution of the monolayer microstructure during
fracturing

Fig. 2(a) and Video S1 (ESI†) show the evolution of the colloid
monolayer in a typical experiment. Cracks begin to appear
shortly after expansion starts. These cracks propagate through
the monolayer until they span the entire field of view, after
which crack initiation ceases and crack growth proceeds
through areal expansion of the already existing cracks.

With exception of the cracks, the monolayer is not
deformed, so that particles move in large rafts with the same
magnitude and direction of the particles’ displacement. This is

visualized in Fig. 2(b) and inset, which shows clearly the
alignment between the directional vectors of the particle move-
ment. After fracturing, particles move away in opposite direc-
tions from the crack location, which confirms our system’s
suitability for studying extensional fracturing dynamics. Also,
we observe that some small pockets of about B10 particles
located on the fracture line sometimes reorient themselves
slightly, as seen by the rotational lines in the inset, which is a
typical feature in all experiments.

An overlay of the bond order parameter c6 on the particle
coordinates is shown in Fig. 2(c). The figure shows that the
cracks generally avoid propagation through regions of high c6.
This is not unexpected, since domains with c6 - 1 are highly
ordered and densely packed so that their constituent particles
are mostly surrounded by other particles fixing them in place,
in contrast to more disordered domains with low c6 where
fewer interparticle bonds have to be broken for a crack to occur,
thus requiring less energy.

In systems where particles are similarly sized, regions with
low c6 bonds contain voids. Other reports on fracturing suggest
that voids in the crack path and near the crack tip are most
prone to yielding from crack tip-induced stresses.7,9 The crack
propagates through the material by rapid growth of these voids
and their subsequent coalescence with the main crack. Relating
to existing fracture theories would be of great interest to study
the stress fields during crack propagation, as for instance
shown in ref. 31. However, our particle tracking resolution is
not sufficiently accurate to track the very small local particle
movement associated with stress buildup. Also it is observed
from our experimental data in ESI,† Video S1 that there is
no clear propagating crack front: many particles appear to be
simultaneously torn apart. Computational methods can be
used to provide more insight on this phenomenon.32

3.2 Identifying weak regions using machine learning

Next, we test ML algorithms for identifying regions that are
prone to fracturing, and obtaining a deeper understanding of
the fracturing process. First, we show how a simple ML algo-
rithm, the SVM, can identify weak regions in the material.
Then, we identify the features of the local particle environ-
ments that are most important for determining whether that
region is weak.

We show the calculated Weakness value for each particle,
obtained using a SVM, for a typical experiment as overlay on
particle coordinates in Fig. 3(b). Similar results are obtained for
experiments with slightly different surface coverage and aver-
age ordering, as shown by the calculated Weakness values in
Fig. S1 in the ESI.†

We provide the characteristic accuracy indicators of the
output of a classification ML algorithm in a confusion matrix
in Fig. 4. We compute the overall prediction accuracy Acctot by
dividing the number of correct predictions by the total number
of particles, see ESI.† For the experiment of Fig. 3(b), we find
Acctot = 72.9%, with similar results for the other experiments
shown in the ESI.† The overall prediction accuracy is however
not fully informative, because of the infrequent occurrence of

Fig. 3 (a) Schematic of the support vector machine (SVM) algorithm.
We identify the distance of the particle to the hyperplane as the particle’s
Weakness. (b) Visual overlay of the calculated Weakness values on the
particles in an experimental dataset. Here, particles coloured red are
located in a ‘‘weaker’’ local environment, so more prone to fracture, while
blue particles are in regions that are less prone to fracture. The approxi-
mate location of the fracture in the monolayer is given by the dashed
green line. Scalebar represents 50 mm.
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particles participating in a fracture. We also calculate the
precision = 33%, which compares the number of particles
correctly predicted to be on a crack line (true positives) with
the total number of particles predicted to be on a crack line
(true positives and false positives), and the recall = 13%, which
compares the amount of true positives to the total number of
particles that was actually on a crack line (true positives and
false negatives). These numbers are both quite low, indicating
that the performance of the SVM algorithm in correctly classify-
ing particles that are on a crack line is not good. The negative
precision = 77% and the specificity = 91% highlight that the
SVM has a high prediction accuracy for predicting that most of
the particles are not involved in fracturing, as we also observe
from our experimental data in Fig. 3(a).

We do not expect the much more infrequent occurrence of
particles on the crack line to have caused a bias during training;
to prevent such bias, we used a ratio in our training dataset of
45% of particles with label 1 (crack) and 55% with label 0 (no
crack). Rather, we attribute the comparatively low precision and
recall in Fig. 4 to the fact that many regions are predicted to be
prone to fracture based on their microstructure, but the actual
location of a crack depends on nucleation, which is stochastic
in nature.

The cracks (green dashed lines in Fig. 3(b)) mostly appear in
regions with higher Weakness values, so that Weakness
appears to identify a likely crack path in the crack direction.
Sometimes the cracks percolate through regions of lower
Weakness values, which shows how the direction of the propa-
gating crack can in some cases be dominant over the structural
Weakness. We hypothesize that the precise location of the
propagating crack is influenced by the interplay between struc-
tural Weakness and initial crack direction.

We can characterize the alignment of cracks with regions of
high Weakness values by calculating the average Weakness
values of particles with label 0 and particles with label 1. We
find for particles next to the crack line with label 1, in the
experiment in Fig. 3(b), a higher average Weakness value
(�0.76) compared to the average Weakness of all other particles
(�1.64) with label 0, as shown in Fig. S2 in the ESI.† The
distribution of the Weakness values in the figure resembles the
observations for softness.20 However, the Weakness distribu-
tion in our experiments exhibits much greater overlap between
the two probability distributions and correlates to the low

precision and recall we find for particles with label 1 in
Fig. 4. We conclude that the SVM algorithm performs poorly
as a classification algorithm for our experimental datasets
because it has difficulty distinguishing the two sets of particles
with label 0 and label 1 by the values calculated from eqn (2)
and (3). This is not unexpected, since we already observed the
importance of the directionality and location of the initial
crack: the crack direction can be dominant over structural
Weakness, meaning that the cracks sometimes propagate
through regions with low Weakness values, while the cracks
also propagate through only a subset of structurally weak
regions in the direction of the initial crack. These observations
highlight the importance of stochasticity in our experiments,
which is not captured by our input parameters, and makes it
unattainable to predict the precise prediction of the crack.

Since our experiments only provide a view of one hemi-
sphere of the colloid monolayer, we are not able to observe
crack initiation, which can occur anywhere on the monolayer
outside the field of view. We envision how crack initiation in
similar experiments can be studied using advanced high-speed
3-dimensional microscopy techniques, which scan the entire
size of the armoured bubble (D E 4 mm), while tracking the
mm-sized particles with a sufficient time resolution.

The observations from the SVM algorithm output agree with
the observations from structural indicators like c6: more disor-
dered or lower density domains are more prone to fracturing. This
can be seen in Fig. 3(b), where particles in more ordered domains
have a negative Weakness value (blue), while particles in more
disordered domains are given higher Weakness values (less blue).

The monolayer is slightly polydisperse, and we hypothesize
that the larger particles might result in energetically costly
point defects in the monolayer, making these points more
prone to fracture.32 In our experiments, it is possible that the
presence of such large particles causes a small out-of-plane
displacement, that might affect the capillary interactions between
particles and cause dynamic heterogeneity in the system. The rare
occurrence of such particles (there are for instance only B4 large
particles in a typical experiment like Fig. 3(b)), makes a proper
analysis of this effect beyond the scope of this paper. Confirming
this phenomenology would require experiments with carefully
controlled defects, for instance through a controlled variation of
the particles’ polydispersity.

3.3 Important features in identifying weak regions

We analyze the role of the particle features on the decision-
making process of the ML algorithm by investigating more
closely the mathematical formulation of the hyperplane in the
SVM. The hyperplane location is determined through satisfying
the equation wTxi � b = 0, where wT is a set of weights for each
feature xi, xi is a set of all features xi and b is some offset, also
referred to as the ‘‘bias’’. We note here that all our data was
normalized to a domain [�1 1] before machine learning. In that
case, the values obtained for wT measure the importance of the
features in determining the location of the hyperplane.

The weights for every feature number, which corresponds to
a specific combination of parameters for either GX

Y or CX
YZ, are

Fig. 4 Confusion matrix of the machine learning predictions from the
experiment in Fig. 3(b).
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shown in Fig. 5. The arrows indicate the range and direction
of the varying parameters. The figure shows that the features
from the orientation-based CX

YZ have a lower weight than those
from the density-based GX

Y. Features 30 and 60 in CX
YZ have a

relatively high SVM weight because for their parameter combi-
nations the density term e�(Rij

2+Rik
2 +Rjk

2 )/x2 is dominant.
These observations indicate that the local density is more

important compared to the local orientational order for deter-
mining whether a domain in the material is weak. Even though
the features from CX

YZ also include information on the local
density through the term e�(Rij

2+Rik
2 +Rjk

2 )/x2

in eqn (3), we still make
the conclusion that density is more important, since the addi-
tion of angular information in eqn (3) does not in fact lead to
higher SVM weight of the orientation-based features.

The profile of the density-based features GX
Y in Fig. 5 bears

resemblance to g(r), shown in Fig. 1(d). In fact, feature number
8, highlighted by the vertical black line and corresponding to
the feature with m = 5.4 mm, we find a peak in the SVM weights.
This is striking because m = 5.4 mm corresponds to the same
location as the first coordination shell in g(r). This indicates
that the presence, or absence, of particles on the first coordina-
tion shell from the central particle is the most important
feature in our dataset to determining Weakness.

In Fig. 5 the second coordination shell only corresponds to
higher feature numbers approximately between 50 and 70
(where the distance between particles is rij B 9.5–11.5 mm).
Seeing that there are multiple peaks between these two points,
there are most likely recurring configurations of particles that
are common in our system, providing information to determin-
ing the Weakness of those particles. Future research could
make it possible to identify those shapes using shape detection
algorithms.

Finally, it should be noted that we also observe high SVM
weights at the lowest feature numbers in GX

Y in Fig. 5.
We attribute these to the mis-classification of voids as particles
in our experimental system. As explained in Section 2.3, each
experimental dataset contained at least order B10 misclassi-
fied particles, which is probably significant enough to show up

in our results. The presence of a (misclassified) void should
indeed indicate that there is a void, and thereby lead to a higher
propensity to fracture.

4 Conclusions

In conclusion, we developed an experimental system to study a
fracturing colloid monolayer on a water–air interface under
isotropic dilational strain, and used structural indicators and
machine learning to obtain more insight into the fracturing
process. From brightfield microscopy data we obtained the
particle coordinates, from which we quantified the micro-
scructure of the monolayer through structural indicators, for
instance c6. These analyses show that cracks tend to propa-
gate through more disordered domains. By defining and
calculating the Weakness of domains in the monolayer using
machine learning, we show how cracks tend to propagate
through regions with slightly increased Weakness values,
but not exclusively; crack propagation remains heavily influ-
enced by the stochasticity in the crack’s direction and initia-
tion site. This is reflected in the values of the prediction
accuracy indicators of the SVM method, which is found to
perform poorly as a classifier for our experimental system.
Furthermore, in our input parameters, the presence of voids
in direct vicinity of the particle was the most important
contribution to high Weakness values. Overall, the methodol-
ogy and results presented here provide a basis for further
studies into and understanding of material microstructure
during fracturing.

Data availability

The datasets generated and analyzed in this study are available
at the 4TU.ResearchData repository at: https://doi.org/10.4121/
c4883858-a901-4e93-b716-2869a664acb0.

Fig. 5 Weights of the SVM features, representing their relative importance. The arrows show the direction and range of the parameter variations, the
numerical values are presented in Table S1 of the ESI.† The vertical black line in the GX

Y plot represents feature number 8, where m = 5.4 mm.
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