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Charging of the ice—vapor interface is a well-studied topic in ice physics and atmospheric electrification.
However, these effects were not yet considered to examine chemical processes in snow in polar regions
because electric potentials at ice surfaces have so far been considered insufficient to initiate chemical
reactions and processes. In this review, we analyze literature data to estimate levels of electrification in
snow and other frozen objects that can be caused by different processes occurring at the Earth's
surface. This analysis demonstrates that threshold values of electric field strength can be exceeded for
the appearance of corona discharges and even for the formation of Rayleigh jets due to combined
effects of different meteorological and physical processes. The accumulation of electrical charges can
lead to different chemical modifications such as electroosmotic phenomena or the accumulation of
impurities from the atmosphere in growing ice crystals. Moreover, highly energetic states that occur and
dissipate in microseconds as "hot spots” have the potential to initiate free radical processes and even the
production of charged aerosols. The review also discusses in detail selected field observations to point
out how processes driven by electrical charging may help to interpret these observations, which are at
least partly inconsistent with our present understanding of snow and ice chemistry. Finally, some
approaches are presented how these effects can be studied in field and laboratory experiments. A
further development of this new field at the intersection of ice physics and snow chemistry seems very
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rsc.li/esatmospheres promising for a better understanding of relevant chemical processes related to the cryosphere.

Environmental significance

The role of chemical reactions in snow and ice for the atmospheric composition in polar regions is now well established, but mostly focusing on photo chemical
reactions. However, well-known physical and meteorological processes can also lead to high electrical charging of snow and ice. In this critical review we analyze
the potential charges that can occur under natural conditions and the chemical transformations that these charges are capable to initiate. Taking into account
such processes due to electrostatic forces help to explain many poorly understood phenomena, some of them having been discussed for decades. They also open
the possibility of chemical transformations under meteorological conditions that are so far considered as unfavorable (e.g. during the polar night) or even enable
completely new chemical mechanisms.

not only affect the levels of different chemical substances in
snow, but also the composition of the atmospheric boundary
layer above the snow especially in polar regions. The snow/
atmosphere distribution of many chemical compound cannot

1. Introduction

Until the end of the last century the snow cover in polar regions
was mainly viewed as a sink of atmospheric trace compounds.

In 1999, Honrath et al.* demonstrated that sunlit polar snow
can transform deposited species like nitrate into volatile
compounds that are reemitted to the atmosphere. As a result,
the levels of a number of reactive species above the snow cover
are significantly higher than expected if only long-range trans-
port into the polar regions is considered. The polar snow cover
acts as a chemical reactor,?> and chemical reactions in the snow
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be described only by chemical equilibria and adsorption
processes.* Photochemical reactions in snow appeared in the
focus of polar researches related to ice cores,” atmospheric
chemistry,” the oxidation potential in the boundary layer above
the ice shields in Greenland and Antarctica,” and pollution®
leading to a strong increase of the number of snow photo-
chemistry studies since 2000.> However, while the vast majority
of the studies considered only photochemical processes for
chemical transformations, observed concentrations of several
species were even higher than those predicted by photochem-
ical models (e.g. (ref. 7 and 8)). Such discrepancies may be
reconciled if further mechanisms also initiating chemical
reactions in snow are considered.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Here, we analyze the possible role of electrical phenomena
in triggering chemical reactions in snow. The Lenard effect,
also known as balloelectricity, refers to the phenomenon of
water droplets being charged through splashing and spray-
ing. This effect has been known since the 19th century (e.g.
(ref. 9-11)), yet its underlying mechanism remains under
ongoing investigation."> Recently, it was shown by Lee et al.*®
and confirmed by Mehrgardi et al.** that sprayed water
microdroplets are able to generate H,0,. Since electrostatic
processes can modify the chemical composition of water
droplets, it also seems plausible that this can happen in ice
particles.

The charging of ice-vapor interfaces has been well studied in
the field of atmospheric electricity mainly related to lightning and
other atmospheric processes.”” A more limited number of
studies has also dealt with the electrification of snow during
blowing snow events and snowstorms. First field measurements
were made by Simpson in 1919, whose observations were
confirmed more than 20 years later.*>** The peak of interest in this
topic was in the 1960ies* > and included also measurements in
Antarctica.”® All these studies aimed to collect qualitative and
sometimes quantitative results on the electrification of blowing
snow. More recent observations are motivated in part by the
effects that charging has on snow particle motion and saltation

distances*? and hence on avalanche risks®** and the mass
balance of ice sheets.*
Chemical consequences of atmospheric electricity

processes are well known (e.g. (ref. 32)) and the conditions
leading to the charging of ice particles in clouds can also be
encountered at sea level. Nevertheless, electrical phenomena
have so far rarely been discussed in the context of snow
chemistry. In the 1990ies, Finnegan et al.** proposed that
chemical reactions can occur in growing ice crystals. Ten
years later, Shavlov et al.** observed an acceleration of the
corrosion of metal caused by ice growth processes. Finally,
Tkachenko and Kozachkov®® - hypothesized that tribo-
electrification of snow during blizzards can lead to corona
discharges with following free radical reactions, while Tka-
chenko®**” pointed out that sharp tips of grounded ice
structures can accumulate significant electrical charges
possibly leading to the emission of reactive bromine. Here, we
review potential processes leading to ice surface charging
depending on meteorological conditions like temperature
and wind speed. Low temperatures play an important role in
the stimulation of charging due to friction or other mecha-
nisms and also because of the absence of a quasi-liquid layer
on the ice surface at sufficiently low temperatures. We further
estimate the strength of the electric fields that can be gener-
ated as well as the conditions required to enable corona
discharges considering also that some of these charges
dissipate relatively slowly, while some charges can dissipate
very quickly like hot spots inside an ice medium. We also
analyze for each process leading to the charging of snow and
ice, which electric potential can be achieved and which
changes in the chemical composition can potentially be
initiated. Subsequently, we present a number of field studies
to evaluate if electrical phenomena related to the discussed
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processes may help to explain the biases between expected
and observed concentrations of some trace compounds and
other poorly understood field data. Finally, we propose some
approaches how to study these effects in field and laboratory
experiments.

2. Factors generating a static
electrification of snow and ice crystals

In this chapter, we describe briefly how macro- and microscale
processes interact to cause enhanced electric fields in snow and
ice crystals and we present the relationship between the electric
field strength and relevant chemical processes. In the following
sub-chapters, single processes occurring in snow generating
electric fields are described and analyzed in detail.

2.1. Macro and micro scale electric fields and thresholds for
the initiation of chemical processes

Electric fields in the atmosphere appear as a result of the redis-
tribution of charges of opposite polarity on macro and micro
scales. The Earth can be regarded as a spherical capacitor where
the Earth surface constitutes a negatively charged inner sphere
and the ionosphere a positively charged outer sphere. The atmo-
sphere acts as an isolator within this capacitor with a non-uniform
electric field strength. The maximum values are encountered close
to the Earth surface with the field strength decreasing exponen-
tially with altitude. The usual background electric field strength is
about 130 V m ™ (ref. 32) and directed from the top to the Earth
surface. While this macroscale electric field is always present, it is
not sufficiently strong to stimulate chemical reactions. However,
in the presence of charged clouds or due to geomagnetic
phenomena like in auroral ovals, the direction of the electric field
can flip and its value increase substantially. Even in these cases
the background electric field is not sufficient for direct initiation
of chemical reactions in snow and ice. Nevertheless, the enhanced
background electric field has the potential to intensify the redis-
tribution of charges causing a localized accumulation of charges
at the microscale.® The combined effect of such microscale
processes can lead to an increase in the macroscale electric field
as observed during blizzards (see below).

When the wind blowing over consolidated snow is free of
particles, changes in the electric field strength are small. With
the addition of snow particles, however, the field strength
increases significantly.”” Dry snow is a loose material, which
undergoes electrification when drifting snow particles are rub-
bed against each other and touch the underlying surface due to
the mobilization caused by wind.******** Such snow electrifi-
cation achieves maximum values at low temperatures and high
wind speeds. Reports of such events can already be found in
personal accounts in the 1950ies of scientists spending the
winter in Antarctica like described by Silin,* who stayed a full
year at the Pionerskaya station in a zone influenced by katabatic
winds: “when the wind increased, the snow carried particles of
static electricity, and all the objects at the station were so elec-
trified that if somebody brought a neon bulb to them, it started
to glow, and sparks flew between the insulators. All this would
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be amusing, but it damaged the accuracy of our instruments.
And from time to time there were unique records in our
logbook: ‘strong electrification, no observations can be done’
“[original text in Russian, translated by the authors].
Unfortunately, available literature data with quantitative
measurements of electric parameters during blizzards and
blowing snow events concern more moderate conditions. Never-
theless, while under fair-weather conditions it can be assumed
that, the strength of the observed electric fields obtained during
a blizzard increased by two orders of magnitude. For example, at
a temperature of - 12 °C and wind speeds from 10 to 17 m s *
a field strength of +30 kv m™" was observed at 4 cm above the
snow surface (Table 1). Table 1 summarizes available studies
attempting to measure the electrification of snow during high
wind speed conditions (a list of parameters, used symbols, and
units is given in Table 3 in Annex 1). These atmospheric electric
field values resulted from a combined influence of positively and
negatively charged snow grains. Measurements of charge-to-mass
ratios of snow grains were also conducted and each new study
with improved equipment gave higher values than those reported
previously.”** The most recent data of snow charge-to-mass ratios
were obtained by Schmidt et al.”” during experiments performed
in Wyoming resulting in values varying from +72 to —208 uC kg .
Schmidt et al” concluded that earlier reported data with typical
average charge-to-mass ratio on the order of —10 pC kg™ * were
likely under-estimated. Since drifting particles with opposing
charges coexist during saltation, the Faraday cage typically used to
determine the charge-to-mass ratios during the experiments most
likely registered only net values of opposing electrical charges.
In summary, macroscale electric fields during blizzards and
storms appear as a result of the joint action of different microscale
charging processes, but due to the positive feedback this macro
fields stimulate and enhance microscale charging processes (see
Chapter 2.9). The mechanisms of charge accumulation on ice
particles are of interest for atmospheric physicists and, therefore,
it has been studied extensively. It is still under debate, which
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mechanisms are the most important for thunderstorm
electricity.*~** Here, we present a selection of processes that can
be relevant for snow-air interactions since the resulting electric
field strengths can achieve high values at the microscale.
Depending on the field strength, different chemical processes are
possible as demonstrated in Fig. 1.

If the electric field strength increases sufficiently it can reach
the threshold of the oxidation potential of species present in the
snow and ice. The value of the oxidation potential is different for
each ion, but when it is achieved redox reactions become possible.
If the electric field strength increases further it can overcome the
threshold value of 10° V m™" for corona discharges (this value is
valid for a pressure of 1000 mbar,*** it decreases with pressure
and, thus, with altitude). The corona discharge can occur as
a channel of energy dissipation and activates molecules in the
zone of its influence with the subsequent formation of active
species such as free radicals. When the electric field grows even
further, it may overcome the Rayleigh limit leading to the direct
emission of ions from the condensed to the gas phase.

Such highly energetic areas appear and disappear like pulses.
Their lifetimes are different for various processes and also
depend on the initial conditions. Shibkov et al.*” studied the
persistence of strong electric charges in ice measuring the elec-
tromagnetic emission (EME) frequency during the growth of ice
from supercooled water. They observed EME frequencies on the
order of ~10~" to10® Hz, which corresponds to 0.1 to 100 pulses
per second, with a duration of the pulses from 10 ms to 10 s. They
detected a further band of signals with EME frequencies between
~10% and 10° Hz corresponding to pulse durations from 1 ps to 1
ms. The authors attributed these observations to the develop-
ment of cracks during growth, friction, etc.

2.2. Charging due to friction

The so-called ‘asymmetric rubbing’ mechanism consists in the
separation of charges during friction as the result of tempera-
ture and concentration gradients.'>*****° Friction does not heat

Table 1 Values of electric field strengths E observed at different wind speeds

Temperature Wind speed E, maximum Location Reference
—5to —6 °C 8to15ms " 10kvm™* Byrd station, Antarctica 26
—12.5 to —10.5 °C 10to17 ms* +30 kv m™* Wyoming, USA 27
—22 to —24 °C 15to 16 ms™* +26.2kvm™* Iqaluit, Nunavut, Canada 28
—1.9to —2.9 °C >7to8ms " +10 kv m™* Hermon, Israel 29
-15kvm™"
Oxidation potential Limit for the onset of a Rayleigh limit
corona
Threshold
E L]
Cpraica Reactions due to th Spraying of nanoparticles
. eactions due to the a anopa
process Redox reactions Sl P

corona discharge

and direct emission of ions

Fig. 1 Relationship between the electric field strength and different chemical processes and corresponding thresholds.
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Fig.2 Schematic representation of the effect of ‘asymmetric rubbing’
leading to electric charging of snow grains. Intensive friction creates
higher temperature gradients and increases charge carrier concen-
tration gradients because protons migrate faster toward cold regions.

ice surfaces homogeneously: the surface of the mobile ice is
heated more strongly than the stationary ice surface (Fig. 2). The
temperature gradient leads to an ion concentration gradient
because protons (H') moves faster toward cold regions
compared to hydroxide ions (OH).*® Thus, the colder parts of
the snow/ice particle obtain positive charges, while the warmer
part becomes negatively charged (Fig. 2). This phenomenon is
known as the thermoelectric effect.”

Petrenko and Colbeck,*** who studied electromechanical
properties of ice, found that friction electrification became
stronger when the experimental temperature decreased. They
measured the charging due to friction of a cylindrical ice sample
made from very pure, deionized, and degassed water using

View Article Online
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2.5 cm thick strips of polyethylene, aluminum, and stainless
steel as sliders. The measurements were performed at temper-
atures T from —5 to —35 °C and friction velocities v varying from
0.5 to 8 m s~ *. When T was reduced from —10 °C to —35 °C, the
observed that the charge density ¢ on the ice surface increased
by an order of magnitude from 1.6 x 10 °*Cm 2to 10 °Cm 2

The electric field strength on the surface can be calculated

according to eqn (1):
E = ale (1)

with the permittivity of the vacuum ¢y = 8.85 x 10 *CV 'm 1.

Thus, the electric field strength can be calculated as E = 10>
Cm %8.85 x 1072 CV 'm ' =1.13 x 10° Vv m™', which is
sufficient to overcome the threshold value for corona discharges
(see Ch. 2.1). Moreover, while ¢ is proportional tov at T= —10 °
C, it increases proportional to v*-®, at T= —14°Cand tov?at T =
—25 °C, so the decrease of temperature leads to a more and
more rapid growth of the electric charge density.

2.3. Charging due to sublimation and ice crystal growth

It has been reported by many authors'®**~>* that condensation
growth and sublimation processes are accompanied by
charging of the ice-vapor interface. The level of electrification is
higher, the faster the ice crystal growth occurs.'®* When the
growth stops, the charge diminishes. Various authors have
interpreted this phenomenon differently. For example, the idea
of the redistribution of impurity ions in the boundary layer of
the growth zone was once popular.>® Recently, many authors
have agreed that the creation of charges at the interface is the
result of different migration rates of the main charge carriers in
ice during the rearrangement of the interface.'****” In ice, the

Fig. 3

(a) Charge distribution in growing ice crystals of various habits generating electric 'multipoles’ (reproduced from ref. 61 with permission

from Elsevier, copyright 1988); (b) distribution of charge during ice growth — H* and L~ defects are concentrated inside the crystal, OH- and D-
defects on the tips; (c) T-shape ice crystal aggregates as a result of charging (reproduced from ref. 61 with permission from Elsevier, copyright

1988).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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main charge carriers are Bjerrum defects,”® H', and OH™ since
ice is a proton semiconductor.’>* Bjerrum defects appear as
a result of the proton mobility in the crystal lattice. Two protons
between two oxygens are known as D(+) Bjerrum defect and
a vacancy due to a missing proton corresponds to an L(—)
Bjerrum defect. H', OH~, and Bjerrum defects have different
mobilities in ice. The charging of growing ice crystals has been
observed in laboratory experiments®* and was simulated in
various studies (e.g. (ref. 16, 56 and 60)). The growth due to
condensation is accompanied by the accumulation of D(+)
defects and OH™ at the ice-air interface leading to an accu-
mulation of L(—) defects and H' inside the crystal (Fig. 3). In the
case of sublimation, however, the reverse mechanism is
observed and H' and L(-—) defects are accumulated at the
interface. These are dynamic processes and the surface charges
disappear quickly after stopping growth or sublimation.
According to Nelson and Baker,'® different ratios between
concentrations of these basic charge carriers at the interface can
explain the variety of measured experimental charge values.

According to Nelson and Baker'® growth rates near 1 pm s~
at —15 °C lead to an increase of the amount of Bjerrum defects
and OH- on the surface by a factor of more than 10, resulting in
a surface coverage coy of 8.4 x 10'® m™2, Petrenko and Whit-
worth derived for the same conditions a value of 6 x 10"> m~>.%
The equivalent charge density ¢ is 10 *-107® C m 2. Using
formula (1), the corresponding electric field at the surface
corresponds to E=10"*Cm %/8.85 x 107> CV 'm ' =1.13
x 10 V. m™', which is sufficient for overcoming the corona
threshold value (see Ch. 2.1).

Recently, Mukherjee et al.*’ illustrated the electrification of
the sharp tip of an ice crystal growing under the influence of
a strong temperature gradient and, thus, humidity gradient.
During their laboratory experiments they observed the detach-
ment of ice fragments, which were attracted by a polar liquid film
placed above the growing ice crystal. Mukherjee et al.>” consid-
ered this system as a particle moving in the field of a capacitor
and indirectly estimated the charge density of the ice crystal
fragment from the measured time of flight and the size of the
fragment. The estimated value of the surface charge density was
1077 C m~>* which is a few orders of magnitude smaller than
the charge density calculated by Nelson and Baker.'® Such
differences may be due to the high temporal variability of the
electric field indicating that Mukherjee et al.*” possibly did not
capture the maximum value during their experiments.

1

2.4. Charging due to cracking

According to Petrenko>® a “frozen in” or “intrinsic” electrical
field is present in both sea and freshwater ice due to the
extrusion of impurity ions to the periphery of ice grains. If ice is
split by a crack that grows rapidly in the direction perpendicular
to this intrinsic electric field, surface charges of the opposite
signs can be generated on the two surfaces of the crack with
a maximum at the tip of the developing crack and a rapid
decrease with distance and time.

Petrenko*” estimated the maximum value of the electric field
strength on the tip of a crack according to eqn (2)

148 | Environ. Sci: Atmos., 2024, 4, 144-163
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where ¢ is the ice dielectric permittivity (=100) and E, is the
component of the electric field perpendicular to crack surface.

If £, is about 100-1000 V m ' according to the estimations
by Petrenko,’** the value of the electric field strength at the
crack’s tip is around ES" = 10*-10° V m~1.*?

2.5. Charging due to cracking of ice during its growth/
sublimation

Petrenko's algorithm** presented in Chapter 2.4 can be used for
evaluation of ES resulting from the cracking of ice during its
growth or sublimation. For the case of ice crystal growth, the
intrinsic electric field £, appears as a result of redistribution of
main charge carriers as it was discussed in Chapter 2.3. It is
directed along the path of crystal growth (Fig. 3b) and to the
opposite direction for the case of ice crystal sublimation. Situ-
ations of fast crystal growth or sublimation appear quite often
under natural conditions. If these crystals are cracked as a result
of their collision with each other or with other objects, cracks
perpendicular to the direction of growth (or sublimation) can
create “hot spots” with highly localized electric fields, like dots
of flame in ice media (Fig. 4).

Using the charge density ¢ of the detached fragment
observed by Mukherjee et al.>” of 1077 C m™?, an intrinsic
electric field strength can be estimated according to eqn (1) as
E, =E=1.13 x 10* Vm . The electric field strength at the tip
of the crack developing rapidly perpendicular to this intrinsic
electric field of a growing crystal corresponds to ES" = 100 x
1.13 x 10* Vm ™ = 1.13 x 10° V. m " according to eqn (2),
which is sufficient for overcoming the threshold of the corona
discharge (see Ch. 2.1).

However, this high electric field in a “hot spot” dissipates
within microseconds. Petrenko estimated a charge relaxation
time 7, of ~107° s for not-growing crystals of pure ice at —10 °C.*

Fig. 4 Schematic presentation of the cracking of a growing column
ice crystal (growth + cracking) under the influence of pressure (p). The
blue arrow represents an electric field E. The ‘Hot' spot is a point at the
tip of a crack with a highly localized electric field ES".

© 2024 The Author(s). Published by the Royal Society of Chemistry
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In natural ice, which is always doped by ions and impurities, this
dissipation is even faster.*> As a result, the impact of the electric
field is limited to very short distances. As crack propagation
velocity varies in the range from 100 to 1000 m s~ (ref. 63 and 64)
the highly charged space is likely limited to a radius of 0.1 to 1
mm.* It can be assumed that cracking during sublimation also
creates similarly charged “hot spots”, but their properties cannot
be estimated due to a lack of initial data.

2.6. Charging due to the combined influence of cracking,
growth, and friction

Charging of ice crystals under the combined influence of
cracking, growing, and friction has been studied in laboratory
experiments aimed to model atmospheric electricity
processes.'”**” Avila and Caranti'” measured the charge transfer
during the collision of ice particles with a target from a cylinder of
ice growing by riming in a cold wind tunnel. The target was
collided with ice spheres with a diameter of 100 um at a speed of
5m s ' and in a temperature range from —10 to —24 °C. The
transferred charge g ranged from —50 fC at higher to —80 fC at
lower temperatures. A charge of +50 fC is equivalent to an esti-
mated surface charge density of 5 x 10~* C m ™2 corresponding to
an electric field at the surface of 5.6 x 10’ V. m™ " sufficient for
exceeding the corona discharge limit. Keith and Saunders®®
detected light emission from corona discharges as a result of the
collision of ice crystals and concluded that during contact of the
colliding crystals large charge transfers occurred. Furthermore,
they hypothesized that the net charge transfer remained small
due to the breakdown of the corona. Overall, they observed
approximately 10* photons per fC.

2.7. Charging of grounded objects

For each point in the Earth's atmosphere the electric field
potential U can be calculated according to eqn (3).%

U=hx E, (3)

where £ is the height of the object's tip above the ground level
(AGL) and E, is the ambient electric field strength around
the tip.

This electric field potential of a grounded conductor creates
an electric field strength E at the tip. E depends on the radius r
of the curvature of the conductor's tip and can be derived from

eqn (4)
E=Ul, 4)
The combination of eqn (3) and (4) results in eqn (5):
E=(h x Ey)Ir, (5)

Thus, the electric field strength at the tip of a grounded
conductor depends linearly on the ambient electric field E,, the
height above the ground level (or the conductor length in the
case of a vertically oriented object) and it is inversely propor-
tional to the radius of the tip of the conductor. Thus, a very

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) A schematic presentation of a frost flower as an example of
an ice structure with a very sharp tip leading to a negative charge on
the tip of the structure; (b) image of real frost flowers for comparison.

sharp tip of grounded conductors leads to strong electric field
gradients.

Since ice acts as a proton semiconductor,***** it can conduct
electric current. Tkachenko®® considered frost flowers (Fig. 5) as
grounded conductors and evaluated E at their tips. Frost flowers
appear on freshly formed sea ice in the conditions of strong
vertical temperature and humidity gradients. The temperature
of thin sea ice is close to that of the sea water temperature in
contact with the sea ice, which is normally about ~—2 °C. Lower
temperatures can lead to a local oversaturation of the atmo-
sphere in moisture and dendritic ice crystals form as long as
these temperature and humidity gradients exist.”*”* According
to Gonda” the radius of a needle-like tip of a growing dendritic
ice crystal is on the order of 7 to 15 pm. The tip remains sharp
during the entire formation of the frost flower. Frost flower can
reach heights of up to 10 cm above the sea ice surface.” The
ambient electric field strength E, of around 130 Vm ™" (ref. 32)
increases towards lower latitudes.” Therefore, we can estimate
a lower limit of E=130 Vm ™' x 0.03 m/10 °m = 4.2 x 10° V
m ™" for the electric field strength E on the needle-like tip of
a 3 cm high frost flower. When the radius is smaller, E
increases. For example, a radius of 7 um results in £ = 130 V
m ' x 0.03m/(7 x 10°%)m = 5.6 10> Vm™ ", Taller frost flowers
also result in higher E: for instance, at the tip of a 10 cm high
frost flower, E corresponds to approximately 1.85 x 10° V. m ™.

Galactic cosmic rays and also the interaction of the solar
wind with the Earth's magnetosphere can significantly increase
the ambient electric field strength E,. It can increase up to an
order of magnitude to reach values of about 1000 V m~".7* In
this case, the estimated electric field strength E can be as high
as E=1000Vm ' x 0.03m/10 °m = 310°Vm "

When E is so high, even less high grounded objects, as
surface hoar or frost flower with a height of 1 cm (ref. 75) can
achieve field strengths of 10° Vv m™":

E=1000Vm™' x 0.0l m/10°m = 10°Vm™!

Open water areas like polynyas or leads in the sea ice-covered
regions can strongly impact atmospheric conditions, as the
ambient electric field strength in their zone of influence
increases. This happens because fog droplets trap “small ions”
such as NO;~ (H,0)s and H;0" (H,0), that are responsible for
atmospheric conductivity.”® As a result, the conductivity in areas
with “sea smoke” or sea fog consistently decreases. For
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instance, Deshpande and Kamra” observed a change of total
electric conductivity from ~2.3 to less than 0.7 S m during the
period of sea fog. Since the electric field strength is inversely
related to the conductivity, it increased by the same factor of
approximately 3.5. This is an agreement with observations by
Bering et al.,”* who demonstrated that the decrease of conduc-
tivity in clouds can enhance the strength of the electric field by
a factor of 3 to 30. Moreover, humidity gradients near the leads
may stimulate the rapid growth of ice crystals with sharp tips.
Under these conditions, surface hoar tips will be more charged
due to higher ambient electric fields and smaller radii. For
instance, if we use the same equation for 1 cm long hoar crys-
tals” with a median radius of about 10 pm (ref. 72) and a 3.5
times stronger ambient electric field, the value of the electric
strength on the tip of the surface hoar dendrite will be

E=450Vm'x0.0lm/(l10°m)=4510°Vm .

An estimation for needle-like morphology with a minimum
radius of 7.5 um (ref. 72) and a 1.5 cm hoar height™ gives E =
450 Vm™' x 0.015 m/(7.510°m) = 910° Vm™".

This result is very close to the critical value of 10° Vv m™* for
the start of corona discharges. The examples given above show
how even small changes in environmental conditions can result
in achieving the threshold, after which corona discharges can
appear. The morphology of the ice crystal, i.e. the crystal tip
radius and length, depends on ambient temperature and
humidity during the growth of the crystals.”® If the ice tip radius
has the size of about a few um, even small changes in the
average electric field strength due to diurnal or seasonal varia-
tions can turn corona discharges on or off. Significant changes
of E, by an order of magnitude during geomagnetic storms
especially in the auroral zone in spring’ or by two orders of
magnitude during blizzards (Table 1) can make corona
discharges also possible for crystals with not so sharp tips.

2.8. Fresh snow metamorphism - grounded system with
growth/sublimation processes

Snow on the ground undergoes continuous re-organization until it
reaches the most stable thermodynamic state. The metamorphism
of snow has been intensively studied and the different stages and
snow types have been described in detail (e.g. (ref. 79-81)). Since
snow is close to its melting point, it can sublimate directly from
the solid to the gas phase with following condensation at colder
surfaces. The rates of the sublimation and condensation inside
the snowpack strongly depend on the temperature as well as on
the temperature gradient inside the snowpack. However, subli-
mation can occur even in an isothermal snowpack in order to
reduce the surface area of the grains ultimately leading to rounded
crystals. Maximum growth rates observed in laboratory experi-
ments varied from 1.6 to 5 x 1077 kg m~> s~ at temperature
gradients from 16 to 50 K m ™" (e.g. (ref. 82-84)). As a result, 60% of
the mass of freshly fallen snow can be redistributed within 12
hours®*® and after 2-3 days 100% of the freshly fallen snow may
have undergone sublimation and condensation® depending on
the strength of the temperature gradient.
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Since the time of complete evaporation of an ice sphere () is
proportional to the square of its radius,*” small snow particles
evaporate faster than large ones according to eqn (6):

t = prI2D(en — €u) (6)

where ¢ is the time of a complete evaporation of an ice sphere
(s),  is the radius (m); p. is the density of ice (g m™%); (e, — €.,) is
the humidity deficit in the air, the difference between the
saturation humidity e.., and the actual humidity e, (g of water/
m?® of air); and D is the diffusion coefficient of water vapour in
the atmosphere (m? s~ 7).

Sharp edges and branches of freshly fallen snowflakes evolve
quicker and according to eqn (6) a particle with a radius of
0.1 mm disappears 100 times faster than a particle with a radius
of 1 mm at the same humidity deficit.

When the sublimation of small crystals increases the mois-
ture content in the pores of the snowpack up to the saturation
value e., new crystals start growing. The process progresses
only in one direction - only large particles grow, i.e. small snow
grains are reorganized into large ones making the snowpack
over time coarse-grained.

According to eqn (6), the rate of sublimation (as well as
growth) during metamorphism processes is highly variable in
time with its maximum for freshly fallen snow. Available liter-
ature data about rate of snow growth due to metamorphism
(from 1to 3 x 10> um s~ " according to ref. 88) can represent an
average value.

Moreover, these initial snowflakes with small radiuses of their
tips undergoing redistribution due to metamorphism can be
considered as grounded conductors that concentrate the poten-
tial on their tips (Chapter 2.6). The increase of the radius leads to
a decrease of this potential. Taking both of these considerations
into account, freshly fallen snow can be understood as highly
active electrodynamic system as described by Kazakov.*

2.9. Charging due to blizzards - combined influence of all
factors

Blizzards create the most favorable conditions for friction and
cracking of ice. The collision of cold and warm air masses under
cold temperatures leads to snow formation. Therefore, ice crystals
growth is most intensive at blizzard fronts. The conditions in the
central area of a blizzard also stimulate sublimation processes
because the turbulent mass exchange leads to the continuous
removal of vapor-saturated air masses and their replacement by
drier air.*” The moisture deficit accelerates particle sublimation
according to eqn (6) and high wind speeds intensify the friction
and cracking. E, increases during blizzards by two orders of
magnitude up to 30 kv m " (ref. 27) (Chapter 2.1, Table 1).

Chapter 2.6 demonstrated how changes of ambient condi-
tions can change E values at the sharp tips of grounded objects
like frost flowers. Previous evaluations have shown how this
value can be changed by conditions of geomagnetic storm or
near polynya. If we use same algorithm for evaluation of electric
field on the sharp tip of frost flower under the electric field
produced by blizzard*® it can be seen that E increases
significantly:
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E=3x10"Vm!'x3x102m/(10°m) = 10 Vm .

So, that overcoming of Rayleigh 1imit**** becomes possible
with “spraying” of submicro particles known as Rayleigh
jets.®*? In other words, it leads to the production of small
aerosol particles that will be discussed below (Ch. 3.6 and 4.4).

2.10. UV irradiation

Khusnatdinov and Petrenko,” who studied the electrolysis of
ice, showed that the irradiation with UV in the range from 180 to
370 nm strongly increased the observed electric current (i.e. the
number of charge carriers formed in the ice) contributing to an
enhanced rate of the ice electrolysis (Fig. 6a). A larger number of
free charge carriers increases the ability of the ice crystal to
accumulate charges. As a result, the charging of ice by the
different mechanisms described above such as friction, growth,
etc. is potentially more effective under the influence of UV
irradiation.

Fig. 6b presents a scheme how UV irradiation not only trig-
gers photochemical reactions, but it can also increase the
possibility of the enhancement of free radical processes due to
a more efficient accumulation of electrical charges. How these
two parallel processes can influence each other remains an
open question.”* For example, the radicals produced by both
processes may interact with each other.
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2.11. Summary

We demonstrate that friction, cracking, growth/sublimation as
well as charging of grounded object described in the previous
chapters appear as the most important processes for the elec-
trical charging of snow and ice at the Earth's surface. These
mechanisms have been considered since a long time in atmo-
spheric electricity (e.g. (ref. 32)) and have been studied in ice
physics laboratory experiments.'*'7*>%*¢* For each described
process we examined literature data and estimated the potential
electric field strengths that can be achieved. These values are
summarized in Table 2. If only charge density values were
available, they were used to recalculate electric field strengths
using eqn (1). The combined influence of all mentioned
mechanisms acting during storms and blizzards accompanied
by high wind speeds and strong gradients in humidity can
enhance the estimated values by a factor of hundred or more
due to more effective friction, cracking, growth or sublimation
of ice and snow.

In almost all cases the electric charges dissipate quickly. For
instance, the charge at the tip of a newly-formed crack decreases
within microseconds or even faster.*” Growth/sublimation
processes lead to more stable electrical fields, but as soon as
the process stops, the charge also disappears.*®

Since these highly charged states are quite transient and can
dissipate in fraction of seconds, huge differences between
laboratory (Table 2) and field values (Table 1) are possible. It is
likely that the values of the charge-to-mass ratios of snow

Photochemical

" reactions \

? Products

\ Chemical /
reactions due to

electric charging
b)

——— —well known processes
— processesdiscussed in present review

— potential interactions

(a) Increase of measured electric current due to the increase of the number of electric carriers caused by UV irradiation. The arrows

indicate the time interval when the UV light was on (reproduced from ref. 93 with permission from American Chemical Society, copyright 1997);
(b) schematic illustration of how UV irradiation initiates photochemical reactions with simultaneous influence on reactions stimulated by electric

charging and possible interaction between these processes.

Table 2 Ranges of electric field strengths that can be achieved by different processes

Process Range of field strengths [V m '] Reference
Friction Up to 1.13 x 10° 42°
Growth/sublimation 1.13 x 10* 577

1.13 x 107 (model) 16”
Cracking® 10" to 10° 42°
(Cracking + growth)” ~1 x 10° Estimated value
(Cracking + growth + friction)® ~5 x 107 177¢
Grounded objects 4 x 10° to up to 10° Estimated value
Friction + sublimation + cracking + grounded objects” Up to 10° Estimated value

“ Charge decreases within microseconds or even faster. ” Charge density data. ¢ Electric field strengths.
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Table 3 List of parameters with used symbols and units

Parameter Symbol Unit
Temperature T °C
Charge density o Cm?
Velocity v ms "
Dielectric permittivity of ice &s

Component of the electric field E, Vvm™*
perpendicular to the crack surface

Electric field strength inside the crack's tip EY vm?'
Saturation humidity €o gm?
Actual humidity en gm™®
Humidity deficit en — € gm?
Diffusion coefficient of water vapor D m? sec™"
in the atmosphere

Electric potential U \Y
Density of ice Pe kg m~*
Time of complete evaporation t sec

of an ice sphere

Ambient electric field E, Vvm!
Charge relaxation times 74 s
Distance d m

particles measured with a Faraday cage®® or by a special trap*”
represent only “secondary” residual charges. But although these
highly energetic hotspots inside an ice media appear and
disappear in fractions of seconds they can lead to chemical
consequences. The closest analogy is possibly the activation of
chemical reactions in liquids by ultrasonic radiation.*

3. Potential chemical processes
caused by the electrical charging of
snow and ice

In the following chapters we discuss potential chemical
processes that can occur under natural conditions as a result of
the electrical charging of ice.

3.1. Changes of pH

Charging of ice results from redistribution and local accumu-
lation of charge carriers like H', OH ™, and Bjerrum defects, thus
it can lead to pH changes with maximum changes at the
previously described “hotspots” at the tips of a growing crystal
or growing crack. Since ice is a highly dynamic system these
changes are quite variable. The detachment of a charged frag-
ment (Fig. 4) with excess of either H" or OH™ can result in
a change of the pH value. Nelson and Baker,' who modelled ice
microstructure changes during growth or sublimation, argued
that charging during growth may make the ice surface more
alkaline due to the enrichment of OH ", while sublimation leads
to an acidification. According to their estimates the tip of
a growing ice crystal with a growth rate of 1 um s~ ' and a charge
of 20 fC has a pH of 9.6.

3.2. Redox reactions

Redox reactions were used by Finnegan et al®** and Shavlov
et al>>® as a tool with the aim to detect the quite transient
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charging of growing ice boundaries. Finnegan et al.** studied the
redistribution of charges in a growing ice crystal and demon-
strated that such charging leads to the formation of so called
“electric multipoles” (Fig. 3a). Such charging affects the ice crystal
shape, the configuration of ice crystal aggregates (Fig. 3c), the
rates of aggregation, and the formation of secondary ice crystals.
Chemical reactions occurred rapidly during ice crystal growth in
a supercooled liquid water cloud at —16 °C.* Sulfide was oxidized
to sulfate, while halide ions were oxidized to higher valence ions
in a coupled set of chemical reactions occurring simultaneously.
The reduction of silver ions to elemental silver and of sulfate ion
to lower valence species have also been documented.*® Similar
reactions have been reported to occur during the freezing of bulk
dilute solutions of ammonium and/or halide salts.*

Shavlov et al.***® also studied redox reactions in ice and
theoretically examined the mechanism of ice charging during
growth. They developed the idea of charging due to redistribu-
tion of main charge carriers in the ice further (e.g. (ref. 16, 42, 60
and 62)) (Ch. 2.3). Redox reactions were used with the aim to
illustrate the electric activity of phase boundaries during
growth. Shavlov et al.** showed that films of copper, aluminum,
iron, and silver decreased their electrical conductivity in contact
with growing ice due to corrosion.

Despite the experimental evidences in favor of the occurrence
of redox reactions, it should be noted that Khusnatdinov and
Petrenko® demonstrated that electrons cannot be charge carriers
in ice. Thus, redox reactions can occur only on the ice boundaries.

3.3.
gases

Increased scavenging of aerosols, pollutants, and trace

Electric forces play a significant role in microscale aerosol
scavenging along with other factors as thermo- and dif-
fusiophoretic forces, Brownian diffusion, and inertial impac-
tion.*® The role of charging during growth in more effective
collection of ions, aerosols, and droplets by ice was pointed out
by Nelson and Baker.'* Snowflakes are ~28-50 times more
effective in scavenging per equivalent water content compared
to rain drops.?”'* As a result of the combined effect of different
factors the impact is especially large for the so-called Greenfield
gap size (0.2-2 pm).*** Such microscale aerosols are always
charged, so in this case the role of electrostatic forces become
comparable to the role of developed surface area and filtering
ability due to porosity. Scavenging effectiveness due to electric
forces of snowflakes and grounded growing objects such as
frost flowers, hoarfrost, or rime depends on the average electric
field strength (Ch. 2.7), humidity, and temperature conditions.
Probably, the most effective scavengers are rapidly growing
rime, hoar, and frost flower crystals with morphology and
ambient conditions leading to corona discharges at their sharp
tips (see below, Ch. 3.5), so that they can capture pollutants as
effective as industrial electrostatic precipitators which remove
40 to 95% of the particles.*

3.4. Electro osmotic processes: redistribution of ions

Electric fields can stimulate electrophoretic migration of ions in
a quasi-liquid layer on the surface of ice crystals or inside
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capillaries. Like in capillary electrophoresis ion drift velocities
depend on their charges, size, polarization ability, steric effects,
and ions planarity'®'** leading to similar processes of ion
redistribution under the influence of an electric field. This can
be important if the redistributed ion enters, for example, an
electric field sufficient for a corona discharge.*® As a result, the
supply of various ions to the reaction zone proceeds at different
rates. If the products of these reactions initiated by corona
discharges trigger other free radical processes like the forma-
tion of reactive halogen species, the changes in the composition
of the atmosphere above the snow can be significant.

3.5. Corona discharge: free radical processes

Corona discharges appear in regions with a high gradient of
electric field as channels of energy dissipation.® Such
discharges are microscopic and dissipate instantly, therefore,
they will be difficult to observe under natural conditions.
However, their impact may not be negligible.

Corona discharges occur when electric field overcomes the
critical value of 10° V m ™" at standard pressure.***° The charge
accumulation can be the result of any of the processes dis-
cussed in Chapter 2. Under the influence of a corona discharge,
molecules become excited and the degradation of the excited
states leads to the formation of reactive species. OH" radicals,
H', oxygen, and nitrogen atoms, and ozone can be formed from
the atmospheric nitrogen, oxygen, and water vapor. H" and
nitrogen atoms undergo oxidation due to the presence of ozone
and oxygen. Recombination of hydroxyl radicals can increase
the concentration of hydrogen peroxide in the snow.

Under the influence of the corona discharge, organic
compounds (for instance, persistent organic pollutant) can
undergo degradation or chemical transformation. Thus, the
occurrence of corona discharges in snow can result in increasing
levels of NO,, OH', and O; and the transformation of persistent
organic pollutants (POPs). However, since corona discharges
persist only a fraction of a second, only conditions that stimulate
a strong electrification of the snow (extremely low temperatures,
low humidity, high wind speeds) offer the possibility to incur
visible changes of the concentration of these compounds.

The strongest impact of such intermittent radical formation
can be expected if they trigger chain reactions leading to
a detectable impact on major trace gases. The most prominent
example is potentially the complete destruction of boundary layer
ozone in polar regions mainly occurring during springtime,'®
which are regularly accompanied by a comparable depletion of
atmospheric mercury.” The depletion is driven by radical reac-
tions involving reactive bromine species, likely accompanied by
reactive chlorine and iodine compounds.'***® While the radical
reaction mechanism leading to the effective destruction of ozone
is well known (e.g. (ref. 106, 109 and 110)), the processes leading
to the initial formation and the efficient recycling of bromine
radicals are still under debate. Here, corona discharge processes
may also contribute to the activation of bromine species since
bromide is omnipresent in natural snow in polar regions (e.g. (ref.
106 and 111)). In fact, radical formation due to corona discharges
may also be possible under conditions, which are often discussed
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as limiting the bromine radical formation and recycling. This
concerns limiting factors related to the pH as well as solar radi-
ation. The traditional bromine radical formation processes
require acidic conditions since protons are directly involved in the
heterogeneous reaction of HOBr with Br~ (or Cl7), which is a key
step in the formation of reactive halogens.'”® However, the
formation of reactive bromine species in corona discharges are
likely independent of pH values. Moreover, since the ozone
depletions are traditionally observed during springtime after
polar sunrise the reaction mechanisms mainly rely on photolytic
reactions. Nevertheless, a limited number of observations also
exist demonstrating a partial depletion of ozone and mercury
already during dark conditions (e.g. (ref. 112 and 113)) (Ch. 4.5).
Due to the widespread nature of the depletion of tropospheric
ozone for example over the Arctic Ocean*'** it appears unlikely
that radical formation due to electrical charging of snow and ice
are always at the origin of the formation of the involved radical
species. Nevertheless, a substantial contribution especially during
the initial formation of halogen radicals cannot be excluded and
should be considered in the further analysis of such events.

3.6. Aerosol production events

Maximum charge values according to our estimates occur when
different factors act together: at the tip of a grounded conductor in
a strong electric field under the influence of wind (Ch. 2.9, Table
2). Overcoming of the Rayleigh limit*>** is followed by “spraying”
of aerosol submicron particles known as Rayleigh jets.***> These
highly-charged sub-micrometer aerosols can also dissipate the
energy through free radical processes and redox reactions.

This phenomenon has been widely investigated in laboratory
experiments aimed at understanding atmospheric electricity
processes.®**'**® The overcoming of the Rayleigh limit can lead
to avalanche-like aerosol formation events, well known under
natural conditions (Ch. 4.4).

The phenomenon of charged particles being ejected from
droplets under high electric potential is used in electrospray
ionization mass-spectrometry to produce gas-phase ions.'**
Charged micro-droplets in Rayleigh jets decrease in size as
a result of solvent evaporation until they reach the Rayleigh
limit and break up again. This disintegration process continues
until the formation of molecular ions. Sharp grounded objects
like frost flowers concentrate electric field on their tips and, so
they can act like emitters in electrospray mass spectrometry®®
(Fig. 7) potentially leading to the direct transfer of bromine or
iodine ions from the condensed to t