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Optical sensors (optodes) for multiparameter
chemical imaging: classification, challenges, and
prospects
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Chemical gradients and uneven distribution of analytes are common in natural and artificial systems. As a

result, the ability to visualize chemical distributions in two or more dimensions has gained significant

importance in recent years. This has led to the integration of chemical imaging techniques into all

domains of analytical chemistry. In this review, we focus on the use of optical sensors, so-called optodes,

to obtain real-time and multidimensional images of two or more parameters simultaneously. It is impor-

tant to emphasize that multiparameter imaging in this context is not confined solely to multiple chemical

parameters (analytes) but also encompasses physical (e.g., temperature or flow) or biological (e.g., meta-

bolic activity) parameters. First, we discuss the technological milestones that have paved the way for

chemical imaging using optodes. Later, we delve into various strategies that can be taken to enable multi-

parameter imaging. The latter spans from developing novel receptors that enable the recognition of mul-

tiple parameters to chemometrics and machine learning-based techniques for data analysis. We also

explore ongoing trends, challenges, and prospects for future developments in this field. Optode-based

multiparameter imaging is a rapidly expanding field that is being fueled by cutting-edge technologies.

Chemical imaging possesses the potential to provide novel insights into complex samples, bridging not

only across various scientific disciplines but also between research and society.

Introduction

“A picture is worth a thousand words.” It is sayings like this
that demonstrate how important visual representations are for
us as humans and for that matter scientists. It is much easier
to understand if we can see something with our own eyes.
Maybe, therefore, chemical imaging has become so popular.
Using as diverse methods as mass spectrometry,1,2 Raman
spectroscopy,3,4 or X-ray spectroscopy,5,6 scientists have devel-
oped approaches to visualize chemical elements or molecules
in 2 or even 3 dimensions. While vastly different in terms of
the underlying analytical methodology, all those methods can
be referred to in one way or the other as chemical imaging. It
is beyond the scope of this review to address all these
methods, rather this review focuses on chemical imaging
using optical sensors, so-called optodes.

Contrary to several other chemical imaging methods,
optodes often enable the real-time visualization of small mole-
cules (gasses and ions) and often use rather cheap instrumen-

tation. Furthermore, optode-based chemical imaging can also
be used to image multiple analytes and parameters at a time.
This multiplexing possibility will be at the center of this
review. The ambition is to identify and describe different
approaches to obtain multiparametric images and to discuss
the respective advantages and challenges.

In the field of chemical imaging, it is crucial to establish a
clear definition of sensors and their application. There exist
various interpretations of the term “chemical sensors”;
however, we will focus on two definitions that are relevant to
our discussion. The first one is the “Cambridge” definition:
“Chemical sensors are miniaturized devices that can deliver
real-time and online information on the presence of specific
compounds or ions in even complex samples”.7 The second
one implies that sensors aim to “obtain information about the
substantial matter, especially about the occurrence and
amount of constituents including information about their
spatial distribution and their temporal changes”.8 Thus,
chemical sensors should be designed and utilized in a manner
that provides information on the spatial distribution of the
analyzed parameter(s), i.e., provides the possibilities for chemi-
cal imaging.

Chemical sensors are categorized based on their operating
principles, and one of those is based on utilizing optical
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signals. Optodes convert changes in analyzed parameters (e.g.,
analyte concentration) into changes in optical phenomena.
“Compared to several other imaging techniques, optodes can
often be applied in a non-destructive way and respond almost
in real-time with typical response times in the range of
seconds to minutes and in a reversible fashion. Furthermore,
optodes are flexible in their design, allowing chemical imaging
over a wide range of scales from single cells (sub-μm) to larger
organisms or small ecosystems (dm × dm)”.9

One of the main advantages of optodes is the possibility of
multiparameter imaging at the exact same spot and time. In
this review, we use the term “multiparameter” as the synonym
for “multianalyte”, “multiple”, and “multiplexed”. Conducting
chemical imaging with optodes for multiparameter sensing
requires addressing various challenges. Those challenges arise
as chemical imaging is a highly interdisciplinary field building
on developments in fields such as electronic noses/tongues,10

organic synthesis,11 chemometric data processing,12 colori-
metric sensor arrays,13 device development,14 etc. In this
regard, chemical imaging requires bringing all those aspects
together and even further utilizing them to address biological
or medical questions.

In 2007, Stefan Nagl and Otto S. Wolfbeis claimed the fea-
tures of true multiparameter sensors:15

(a) Two or more parameters can be sensed at the very same
site and simultaneously;

(b) They enable chemical sensors to be compensated for the
effects of temperature if combined with a temperature sensor
chemistry;

(c) They enable unspecific sensors to be made more
specific;

(d) They enable smaller sample volumes to be analyzed for
more parameters than with monosensors;

(e) They enable the sensing of several parameters in cases
where the sample volume is limited (such as in the case of
blood), or in the case of microscopy or microfluidic devices.

For the last 15 years, several comprehensive reviews of
imaging with optical sensors and multiparameter analysis
have been published (Table 1). This review will focus on the
systemization of the present and generally possible approaches
to multiparameter chemical imaging with optodes rather than
duplicate previously published information.

Historical overview

To provide robust two-dimensional (2D) imaging, planar
optical sensors have been utilized for almost three decades.
The first “conventional” imaging setup, which was devoted
to O2 determination in benthic communities, was intro-
duced by Glud et al. in 1996.22 However, only one analyte
could be measured in 2D at that time. Since then, a lot of
progress in this field has been made including approaches
to provide simultaneous determination for two or more ana-
lytes. Nevertheless, before delving deeper into multipara-
meter imaging, let us see how it became possible to develop
the first imaging setup based on optodes. To do that, we
would like to indicate three main sections, the advancement
of which made Glud’s work possible eventually: Fluorescence
and optode development, Sensitive paint utilization and dual
sensing, and CCD and CMOS implementation in chemistry
(Fig. 1).
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Table 1 The most important reviews of imaging with optical sensors published since 2007

Title Authors Year Summary Ref.

Optical multiple chemical sensing: status
and current challenges

Stefan Nagl, Otto S. Wolfbeis 2007 The first systematic review of true dual optode
used for imaging. The authors envisaged
introducing triple sensors and sensing schemes
for important analytes such as O2, pH, CO2, and
temperature

15

Multiple fluorescent chemical sensing and
imaging

Matthias I. J. Stich, Lorenz H. Fischer,
Otto S. Wolfbeis

2009 A critical review of the state of the art in terms of
spectroscopic principles and materials (mainly
indicator probes and polymers), and gives
selected examples for dual and triple sensors

16

The art of fluorescence imaging with
chemical sensors

Michael Schäferling 2012 A review of the basic functional principles of
fluorescent probes, the design of sensor
materials, and approaches of multiple sensors
development and methods for their signal
readout

17

Optical methods for sensing and imaging
oxygen: materials, spectroscopies and
applications

Xu-dong Wang, Otto S. Wolfbeis 2014 A comprehensive review of optical methods for
sensing oxygen including spectroscopies and
readout schemes in luminescent sensors and
multiple sensing techniques

18

Planar optode: a two-dimensional imaging
technique for studying spatial-temporal
dynamics of solutes in sediment and soil

Cai Li, Shiming Ding, Liyuan Yang,
Qingzhi Zhu, Musong Chen, Daniel C.W.
Tsang, Gen Cai, Chang Feng, Yan Wang,
Chaosheng Zhang,

2019 A comprehensive overview of the research
progress on 2D imaging with planar optodes in
sediment and soil including the progress in
multiparameter imaging

19

Optical sensing and imaging of pH values:
spectroscopies, materials, and applications

Andreas Steinegger, Otto S. Wolfbeis,
Sergey M. Borisov

2020 The first comprehensive review of methods and
materials for use in optical sensing of pH values
and on applications of such sensors including
commonly used optical sensing schemes,
luminescent sensors design, imaging of pH
values, and selected applications of these
sensors

20

Optode based chemical imaging—
possibilities, challenges, and new avenues
in multidimensional optical sensing

Klaus Koren, Silvia E. Zieger 2021 A perspective article on novel state-of-the-art
technologies for optode-based chemical imaging
including the discussion of possibilities for
multiparameter imaging

9

Fiber optic sensor designs and
luminescence-based methods for the
detection of oxygen and pH measurement

Jan Werner, Mathias Belz, Karl-Friedrich
Klein, Tong Sun, K.T.V. Grattan

2021 A comprehensive review of luminescence-based
fiber optical sensors, sensing methodology,
optical sensor platforms, and multiple
luminescence sensing concepts

21

Fig. 1 Timeline of milestones in the development of the first imaging setups based on optodes.
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Fluorescence and optode development

The journey to optode development might have begun in 1919
when Stern and Volmer published a theory and equation relat-
ing the change in fluorescence quantum yield and fluo-
rescence lifetime as a function of added quencher.23 Twenty
years later, Kautsky provided reports on the possibility of
observing the luminescence quenching effect using oxygen.24

Nowadays, it is generally accepted that almost all the phos-
phorescence and fluorescence dyes are quenched by molecular
oxygen.18,25 Therefore, it is no coincidence that the first
implementation of imaging with optodes was devoted to
oxygen determination.

The term “optode” was introduced by Lübbers and Opitz in
1975.26 By analogy to electrodes, they called such an optical
sensor with an indicator film separated by a membrane from
the sample an optode. The latter is a reason optodes might
still be called opt(r)odes since it is a combination of two words
“optical” and “electrode”. They began the investigation of
optical measurement of gas pressures (especially oxygen) using
fluorescent dyes. It appeared to be a bifurcation point in the
era of dissolved and gaseous oxygen measurements predomi-
nately done using Clark electrodes27 since the O2 optode did
not consume oxygen and a reference electrode was not
required anymore. In 1987, Opitz and Lübbers published a
comprehensive overview of the theory and development of
fluorescence-based optochemical oxygen sensors.28 In this
article, they demonstrated the superiority and perspective of
using optodes in general.

Sensitive paint utilization and dual sensing

The first sensor most similar to 2D optodes was sensitive
paint.29 Pressure-sensitive paints (PSPs) have been developed
for measuring air pressure on surfaces. The response mecha-
nism of PSPs is also based on luminescence quenching by
molecular oxygen, which was established by Kautsky. Peterson
and Fitzgerald demonstrated a preliminary approach for
surface flow visualization using spray-coating on shapes of
interest in 1980.30 This approach led to the development of
PSPs in 1985 by Ardasheva et al.31 Since that time, it has
become possible to determine at least one of the quantitative
parameters in 2D. However, this emerging field of chemical
imaging unintentionally unlocked the possibility of perform-
ing simultaneous dual measurements.

In 1931, Kautsky and Hirsch obtained luminescence depen-
dency on temperature.32 Although the basis of using lumine-
scence probes for dual sensing had been known for many
years, one of the first reports was published only in the 1990s.
Buck suggested using perylene dye sorbed on silica to perform
simultaneous luminescence pressure and temperature
measurements using paints.33 Despite the possibility of dual
sensing with optical sensors, the temperature cross-sensitivity
was a significant interfering factor for numerous real appli-
cations. Thus, researchers tried not to utilize this feature of
the luminescent dyes but to eliminate it. Coyle and
Gouterman proposed a method of correcting lifetime measure-

ments for temperature by adding a non-oxygen quenched,
temperature-dependent phosphor.34

CCD and CMOS implementation in chemistry

Unarguably, modern chemical imaging is not possible without
digital imaging devices. Widely used devices such as mono-
chrome, color, hyperspectral cameras, or scanners are based
on the three main sensor types and device architectures,
namely, CCDs (charge-coupled devices), CMOS (complemen-
tary metal–oxide-semiconductor) and CIS (contact image
sensor). To trace the path that led Glud et al. to utilize the
CCD camera, let us turn to the beginning.

Boyle and Smith developed the concept of a charge-coupled
detector in 1969.35,36 The scientific applications of CCDs were
first demonstrated in astronomy research in 1976.37 However,
a chemical application was first demonstrated by the CCDs’
utility in a spectroscopic measurement; Ratzlaff and Paul
employed a linear CCD for molecular absorption in 1979.38

They showed that the CCD-produced signals are linear with
both intensity and integration time in the visible region. For
the proof-the-concept, the absorbance spectrum of the cali-
bration tool, the didymium oxide filter, was recorded within
250–750 nm. Subsequently, the high sensitivity of CCDs made
these devices well-suited to molecular luminescence measure-
ments. The properties of CCDs and their application to the
high-resolution analysis of biological structures by optical
microscopy were shown for three-dimensional imaging using
an epifluorescence microscope in 1987.39 In 1988, the first 2D
visualization of fluorescently labeled objects was reported by
Jackson et al.40 Furthermore, Denton et al. demonstrated the
acquisition of fluorescence spectra for the first time in 1989.41

Although it is Glud’s optode design (Fig. 2B) that one could
consider as “conventional” now, the combination of CCD
camera and optical sensor fibers was reported by Bronk et al. a
year earlier, in 1995.42 The authors used approx. 6000 optical
fiber-sensors in a bundle with a 4 µm spatial resolution
(Fig. 2A).

Nowadays, although CCD image sensors are still used in
some high-end cameras and scientific applications, CMOS
sensors, invented in 1963 by Wanlass and Sah,43 have emerged
as the predominant technology in consumer electronics. This
transition has primarily occurred due to the cost-effectiveness,
energy efficiency, and rapid processing capabilities offered by
CMOS sensors.

The road to multiparameter sensors

Thus, both improving knowledge of physicochemical processes
and technological advancements played pivotal roles in devis-
ing strategies for chemical imaging. Nearly three decades have
passed since 1996. Consequently, what are the most significant
changes that have occurred during this period? It is challen-
ging to precisely identify these changes; however, we would
like to highlight some we consider essential, namely: (1)
advancing chemical materials and utilizing different modes of
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signal formation/readout, (2) using different approaches to
create optodes including nanoparticle formation, (3) utilizing
technologies beyond monochrome CCDs including color and
hyperspectral devices. Eventually, the combination of these
factors has led to a push towards multiparameter imaging.

Undoubtedly, the latter is paramount to gaining a more
comprehensive understanding of the analyzed system,
especially where the distribution of the analytes measured

simultaneously might reveal any intimate interplays between
them. For instance, the dual determination of oxygen and
carbon dioxide at the same time and in the same spot could
shed light on oxidative respiration and photosynthesis process
differentiation. This problem was in fact tackled by the first
created dual imaging setup based on optodes.44

Before diving into examples, we must ask, how can one
create a multiparameter optical sensor in general? To address
this question, let us look closer at what an optode is as well as
what components and steps are involved to obtain physico-
chemical information from samples (Fig. 3).

Optodes are optical sensors that translate information
about samples into optical analytical signals. The type of infor-
mation could be different: from physical (temperature, partial
pressure) to chemical (analyte concentration or activity). We
would like to underline that an optode should be considered
not as a probe or sensing film per se but rather as a compound
device. Conventionally, an optode includes two parts: a
sensing element (receptor) and a transduction element (trans-
ducer). The receptor provides the recognition of a parameter
being analyzed, e.g., the concentration of a measuring analyte,
temperature, pH, gas partial pressure, etc. Providing that the
optode changes at least one of the optical properties (absorp-
tion, fluorescence, reflectance, refractive index, optical activity,
surface plasmon resonance, etc.) depending on the magnitude
of the parameter. The transducer converts the optical signal
generated by the receptor (the actual concentration value, a
non-electric quantity) into a measurable signal that is appro-
priate for processing, i.e., an electric quantity: voltage, current,
or resistance.8

Consider, for instance, the first 2D imaging setup described
by Glud et al.22 In this case, the sample was a marine sedi-
ment, and the authors were interested in measuring O2 con-
centration over both space and time. To achieve this, they pre-
pared an O2-sensitive luminescent optode. The receptor of this
optode kind consists in its most primitive form of an oxygen-

Fig. 2 Different designs of multiparameter optodes. (A) Fiber-bundle
sensor design: polyHema/fluorescein-modified imaging fiber with
mouse fibroblast cells.42 (B) Planar 2D sensor design (“Glud’s design”):
calibrated images of the O2 distribution at the sediment-water interface
with sodium dithionite grains added.22 Reprinted with permission from
ref. 42. Copyright 1995 American Chemical Society.

Fig. 3 Schematic depiction of measurements conducted using optical chemical sensors. The color blocks and numerical annotations indicate the
specific sites enabling the simultaneous analysis of multiple parameters, presented in the order listed (see text for more details). PC denotes the per-
sonal computer.
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sensitive dye (indicator) dispersed within a host polymer,
which is applied onto a transparent surface, such as a glass
plate or polymer foil.

In addition to those basic components, others can be
added, like enhancers (scatters like titanium dioxide or
diamond particles) and additional dyes (for referencing).
Furthermore, this optode layer might be protected by an
optical isolation layer, which serves to minimize the influence
of ambient light on the sensor while not interfering with the
chemical receptor.

When this optode comes into contact with the sample, exci-
tation light is needed to excite the luminescence of the dye,
and a detector (e.g., camera) to record the emission of the
receptor. Filters are employed to ensure that only the analyti-
cally relevant light reaches the camera. In summary, a basic
chemical imaging starter kit needs some sensor chemistry,
including indicators and a host polymer, a light source, filters,
and a camera. Remarkably, this is the very same configuration
that Glud and co-workers used in their pioneering work, and it
continues to be employed today in similar research.

In addition to this conventional setup, in recent years,
researchers have explored the use of external stimuli to
enhance data collection from sensors. In this context, an exter-
nal stimulus refers to any external changes or influences that
can impact the response of a sensor. For instance, the lumine-
scence of a sensor can be affected by temperature changes.
Therefore, altering the temperature during analysis can lead to
variations in the sensor response. Additionally, when using a
luminescence-based optode, it is necessary to use excitation
light to trigger the sensor. Let us assume that an optical
sensor consists of several indicators. Changing the excitation
wavelength, in this case, results in altering the emission
spectra of the optical sensor. Consequently, applying external
stimuli causes the measurement signal to depend not only on
the parameters being analyzed but also on the nature of the
stimulus itself. By considering these factors, the use of exter-
nal stimuli opens possibilities for distinguishing between
different analytes or their compositions. This, in turn, facili-
tates multiparameter analysis.

Thus, to enable simultaneous analysis of multiple para-
meters, various approaches can be classified based on the pro-
cesses or designs involved, as shown in Fig. 4. These
approaches include (1) sensor arrays, (2) dual/multiple reco-
gnition, (3) changing external stimulus, (4) multiple transduc-
tion, and (5) utilizing chemometric techniques.

Multispot sensors and sensor arrays

Multispot sensors and arrays are composed of single sensor
systems for given analytes, merged and miniaturized to a
compact optical sensing device.16 Nowadays, the most
common approaches to making sensor arrays are using optical
fibers (fiber bundles)21 and the microspheres of optical
sensors in microwells.45 Recently, a similar technique to the
last one has been widely utilized in tissue profiling
approaches.46 The recent comprehensive review on the devel-

opment and state-of-the-art of colorimetric and fluorometric
sensor arrays has been published in 2019.13

Although this approach for simultaneous measuring several
parameters is cost-efficient and relatively easy, sensor arrays do
not fulfill the requirement of determination of analyzed para-
meters in the same compartment. Usually, the distance
between the adjacent elements is 5–20 µm; however, depend-
ing on the array geometry, measurements can be up to several
100 µm apart. This can be considered a large distance, in par-
ticular in systems where steep chemical gradients form like
within biofilms.47

Fig. 4 Designs of optical sensors and involved processes provide multi-
parameter analysis.
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Recognition

As mentioned, recognition is the first step to obtaining sensor
response. Typically for planar optodes, the receptor function is
fulfilled by a thin layer that can interact with analyte molecules
or participate in a chemical equilibrium together with the
analyte.8 For example, the most important processes under-
lying the response of ion-selective optodes are ion exchange
and co-extraction in the case of cation- and anion-selective
optodes, respectively.48

One of the key properties of the recognition phase of
optode response is selectivity. Selectivity is the ability of the
sensor to respond preferentially to the analyte but not to an
interfering species or interfering parameter. However, there is
no one absolutely selective sensor, and some cross-sensitivities
are generally always present. Should one acknowledge such
cross-sensitivities as a possible source for multiparameter ana-
lysis? We think—yes—if any approaches allow the determi-
nation of both the analyzed and the interfering parameters
separately.

Optical detection schemes. There are various approaches to
a read-out of analytical signal occurring due to the changes of
optical properties: absorption/reflectance, luminescence inten-
sity, luminescence decay time, two-wavelength referencing,
dual lifetime referencing (DLR), Förster resonance energy
transfer (FRET).20 While absorption is often considered a
straightforward choice for chemical imaging due to its simple
instrumentation, techniques that rely on luminescence inten-
sity and decay time are currently more prevalent. In this
section, we want to discuss the possibility of utilizing these
two techniques individually and their combinations.

Luminescence intensity. In luminescent sensors, the exci-
tation of an indicator dye leads to the emission of photons
either via fluorescence or phosphorescence. Those photons
generally have a lower energy (longer wavelength) than the
excitation light and the amount of those photons (intensity)
can be correlated to an analyte of interest. Take for example
the classical optical oxygen sensor. Paramagnetic O2 is an
effective luminescence quencher resulting in reduced indicator
emissions with increasing oxygen concentrations.18 In this way
the intensity of the indicator emission can be correlated to the
O2 concentration following e.g., the Stern–Volmer relation.

Despite this being a very straightforward approach relying
solely on luminescence intensity can be problematic as also
other factors than the analyte concentration can influence this
parameter. Those factors include fluctuations in the excitation
light, bleaching of the indicator, or simply uneven distribution
of the indicator within the sensor.49 Currently, these limit-
ations are often overcome by adding a second, inert, dye into
the sensor matrix.50,51 In this way the emission of the two dyes
can be set into proportion (ratio) enabling a more robust
readout as several of the factors mentioned above can be elimi-
nated or reduced. At the same time, the use of an extra refer-
ence dye comes with challenges in terms of multiparameter
imaging. Separating the reference signal from the indicator
signal is one of those.

Luminescence decay time. Contrary to the above, decay time-
based imaging does not use the amount of photons to quantify
an analyte, but rather another property of the emitted
photons, their decay time. The decay time represents the
average duration between photon excitation and emission and
can range from nanoseconds to milliseconds, depending on
the indicator and the type of luminescence used (e.g., phos-
phorescence or fluorescence). Measuring decay time offers
several advantages over intensity-based methods. Firstly, the
decay time is not affected by the concentration of the indi-
cator. No additional referencing (additional dye) is needed as
decay times as such is intrinsically referenced. Additionally,
fluctuations in the optical setup have less impact on the
measurement.49

On the flip side, chemical imaging based on decay times
requires somewhat more sophisticated equipment. Essentially,
cameras used for this approach need to be able to measure
(time) when photons are emitted relative to the excitation,
either in the time or frequency domain. In a recent article, we
evaluated those approaches, and the interested reader is
referred to this study.52 While being technically more challen-
ging, decay time-based imaging enables the separation of mul-
tiple signals not only on spectral but also temporal domain.
This capability holds significant potential for applications in
multiparameter imaging.53

Combination of luminescence and decay time. It is also poss-
ible to combine different detection schemes. For instance,
HPTS (8-hydroxypyrene-1,3,6-trisulfonic acid) was used to
measure both pH and O2.

54 In order to measure pH and the
concentration of oxygen, various optical properties were
measured. Specifically, pH was determined by analyzing the
ratio of intensities between the isosbestic point and the emis-
sion peak of the HPTS anion. Meanwhile, oxygen concen-
trations were measured based on fluorescence decay time,
which decreased as the oxygen concentration increased.

Individual/dual/multiple recognition. The single parameter
sensing strategy employs one receptor usually, such as a pH
indicator for the pH-optode,55 oxygen-sensitive luminophores
for the O2-optode,

51 etc. However, to address dual or multi-
parameter analysis, it is necessary to utilize more than one
receptor or recognition process. We differentiate these options
into three categories (see Fig. 5): (1) receptors that are sensitive
to several parameters, (2) several single-selective receptors in
two- or multilayer sensors (known as “sandwich sensor”), and
(3) the incorporation of several single-selective receptors into a
single-layer sensor (more often (nano)particles into polymer
binder).

2.2.1. Receptors that are sensitive to several parameters. One
evident and desirable solution for multiparameter sensing is
using chemicals that are sensitive toward at least two para-
meters each with a distinct influence on the optical properties,
either spectral or via decay time (Fig. 5). It is generally challen-
ging to find a suitable dye or pigment to measure two or more
parameters simultaneously. However, one can argue that one
natural additional parameter for measuring is temperature as
it affects every sensor. Nevertheless, the latter enables tempera-
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ture compensation which could be essential to reduce
measurement errors.

Typically, the fluorescence intensity or fluorescence decay
time of a single luminophore is used for multiparameter
sensing. In section 2.1.3, HPTS is shown as an example of a
probe selective to O2 and pH simultaneously. Other indicators
for the determination of two parameters (pH/O2, pH/T, O2/T,

56

CO2/O2, pH/Cl−) were proposed. More details can be found in
section 10.7 of ref. 20.

Nevertheless, other types of luminescence are also used to
achieve multiparameter sensing. Schwendt and Borisov
showed that the simultaneous monitoring of O2 and tempera-
ture can be achieved with a single metalloporphyrin-based
indicator through thermally activated delayed fluorescence
(TADF) and phosphorescence.57 O2/T determination was
demonstrated for a naphthoquinone-extended Pt(II) benzopor-
phyrin embedded in polystyrene, which operated within temp-
erature region from 5 to 55 °C and oxygen partial pressure
from 0 to 202 hPa.

Recently, diazobenzocrowns with pyrrole residue as a part
of the macrocycle were utilized as a dual Pb2+/pH indicator.58

The authors suggested using absorption followed by digital
color analysis. Both pH and lead(II) concentration influence
optical signal: increasing lead(II) concentration leads to the
color change from pink to blue-gray.

In addition, there are functional synthetic probes for multi-
parameter sensing.11 Although it is possible to distinguish three
main aminothiols (homocysteine, cysteine, glutathione) due to
producing three distinct products and fluorescent emission
signals in blue, green, and yellow channels, it was demonstrated
for imaging in live cells only.59 Thus, there is enough room for
collaboration with organic synthesists and for implementing
such probes for planar 2D imaging of similar analytes.

2.2.2. “Sandwich” sensors. The scarcity of existing probes
for multiparameter sensing via a single dye can be overcome
by utilizing multilayer sensors (Fig. 5). This kind of sensor is
based on the use of two or more layers, each of which contains
single-selective receptors. Besides that, different analytical
signals from each layer could be utilized to differentiate
various parameters. Nevertheless, even though “sandwich”
sensors allow to performing true multiparameter sensing at
identical sites, there are some drawbacks. Stefan Nagl and
Otto S. Wolfbeis revealed these disadvantages as follows:15 (1)
cross-sensitivities concerning the analyte as well as spectral
crosstalk including FRET and PET processes, (2) cross-leaching
of the components between layers, and (3) increased photo-
decomposition and signal drift compared to single sensors.

Despite all the drawbacks, the rather easy fabrication of
such multilayer sensors and the increasing popularity of
cameras with >3 color channels are the main reasons for the
increased use of this sensor type.60

2.2.3. Polymer binder with (nano)particles suspension. An
effective solution to address the challenges described above
involves compartmentalizing the sensing chemistry for specific
applications. This can be achieved by preparing nano- or
micro-particles that are sensitive to a specific analyte.61,62 In
this way, each particle can be designed to provide a favorable
microenvironment for the respective sensor chemistry. These
multiple particle-based sensors can then be combined into a
single layer (see Fig. 6). To hold these particles together, a suit-
able binding material, or “binder”, is needed.

Hydrogels are particularly suitable for this purpose due to
their biocompatibility and hydrophilic nature, which helps
prevent the often hydrophobic components of the particles
from leaching into the surrounding matrix.15 This approach
has enabled the development of multiparameter imaging tech-
niques for various applications. For instance, the collaboration
between the research group led by Wolfbeis and medical pro-
fessionals has demonstrated how extracellular pH gradients
and tissue hypoxia affect wound healing in chronic wounds.63

Those insights have been made possible by using a dual O2/
pH optode employing three types of particles within the same
matrix (Fig. 6).

Importantly, this innovative approach is not limited to
medical applications, as shown by Fischer et al.64 In this
study, a technique involving spray painting was utilized to
color complex structures with a mixture of O2 and tempera-
ture-sensitive particles. This novel pressure-sensitive paint
method offers the advantage of easy application through spray
painting and straightforward removal by washing the coating
off with water. The proposed approach is more environmen-

Fig. 5 Schematic of the three most common designs for creating mul-
tiparameter optical sensors via different recognition options: (1) mul-
tiple-sensitive receptor, (2) multilayer sensors, (3) (nano)particles into
carrier layer.
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tally friendly while still providing high-resolution images for
monitoring of O2 and T.

External stimuli

External stimuli could be used to alter the response signal of
the sensor. For example, the analytical signal might be depen-
dent on a stimulus such as temperature, pressure, pH, humid-
ity, or light. One could implement this dependency deliber-
ately by incorporating specific materials or components into
the optode matrix that are sensitive to these external stimuli.
These components can then trigger a change in the optical
properties of the sensor, resulting in a measurable change in
the response signal. However, conventionally used dyes and
other active components could also be sensitive to changes in
temperature, pH, humidity, etc.

Moreover, the use of external stimuli can provide a way to
control and manipulate the sensing properties of optical
sensors, creating more versatile platforms for multiparameter
imaging. By tuning the external parameters, the response
signal or readout of the sensor can be controlled, providing
the ability to discriminate different parameters or to enhance
the sensitivity and selectivity of the sensor.

Using masking agents. The most obvious external stimulus
is using masking agents to eliminate every interfering para-
meter due to chemical reactions occurring with it. This tech-
nique is well established in classical “wet” analytical chemistry
and especially in the determination of ionic species. For
example, benzothiazole calix[4]arene-based optodes were used
for dual Ag+ and Hg2+ detection.65 For the determination of
Ag+ in the presence of Hg2+, the interfering effect of Hg2+ was
successfully eliminated by adding EDTA at a pH of 5.0.
Otherwise, eliminating the Ag+ was done by using a NaCl solu-
tion that produced AgCl precipitation.

Unfortunately, this approach is concerned with the destruc-
tion of the sample being analyzed. Furthermore, in samples

containing intricate matrices, such as blood, the introduced
chemicals may easily alter the properties of the sample itself,
thus resulting in the infeasibility of analysis or significant
inaccuracies in the interpretation of the results.

Alteration excitation wavelength. The fluorescent response
of most optodes is influenced by the excitation light. For
example, using “sandwich” optical sensors is limited due to the
overlapping of emission spectra or luminescent lifetimes of
dyes being used. Although this issue could be solved for
optodes with double sensitive layers, creating optodes for
sensing four or more parameters using appropriate chemicals
remains a complex task. To address the problem of distinguish-
ing between the emission spectra of different luminophores,
the use of dyes with distinct excitation spectra can be employed.

Borisov et al. introduced the first quadruple luminescent
sensor for measuring O2, CO2, pH, and temperature.66 The
multilayer sensor combined two spectrally independent dually
sensing systems; the latter was possible due to the use of color
filters and two different excitation lights: a blue LED (450 nm)
for CO2/O2 and a red LED (605 nm) for pH/temperature sensi-
tive layer. The schemes of the sensor and measuring setup are
shown in Fig. 7.

Fig. 6 Scheme of multiparameter (pH, O2, and T) optical sensor with
(nano)particles suspension.63 Oxygen-dependent palladium(II)-meso-
tetraphenyltetrabenzoporphyrin incorporated in oxygen-permeable
poly(styrene-co-acrylonitrile) particles (Pd-TPTBP-PSAN), pH-sensitive
fluorescein-isothiocyanate bound to aminocellulose particles (FITC-AC),
and the pH-independent reference dye ruthenium(II)-tris(4,7-diphenyl-
1,10-phenanthroline) in oxygen-impermeable polyacrylonitrile particles
(Ru(dpp)3-PAN). Microparticles were embedded in a polyurethane
hydrogel matrix on poly(vinylidene-chloride) (PVdC) foils. Dye leakage
was prevented by binding the dyes to or incorporating them into micro-
particles. By embedding the particles in the hydrogel, leakage of par-
ticles from the sensor was also prevented. The insets show transmission
electron-microscopic (TEM) pictures of the sensor particles (bars: left
and right image 0.5 µm, middle image 2 µm).

Fig. 7 The first quadruple luminescent sensor for measuring O2, CO2,
pH, and temperature.66 (A) Cross-section of the multi-analyte sensor. (B)
Schematic representation of the device and the optical arrangement for
interrogation of the multi-analyte sensor. The device consists of dual
detection channels, each equipped with an LED and a photomultiplier
module (PMT). Excitation is achieved with LEDs and appropriate filters,
and emission light is filtered accordingly. LED modulation was carried
out using a two-phase lock-in amplifier at distinct frequencies for each
channel.
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Electrochemically mediated stimuli. An alternative stimulus
could be an electrochemical reaction. Recently, Steininger
et al. demonstrated that an electroactive polymeric mesh can
be placed in front of an optode.67 This mesh was coated with
conductive polymer polyaniline (PANI), known as a proton
pump.68 Protons can be released from the polymer by simply
applying a mild potential that alters the pH locally in front of
the optode. This change in pH over time can be correlated
with the buffer capacity of the sample. Therefore, chemical
imaging of pH and buffer capacity at the same time was
enabled by combining this 2D proton release with 2D pH
imaging, the first-ever attempt at imaging buffer capacity.

In a follow-up study, Wiorek et al. combined the same 2D
proton pump with a CO2 optode, enabling the imaging of dis-
solved CO2 and subsequently total dissolved inorganic carbon
(DIC).69 Based on those two images, total alkalinity, and pH
images can also be calculated based on certain assumptions.
Thus, this setup represents a four-parameter imaging
approach (Fig. 8). However, it should be noted that the acqui-
sition of the two images (CO2 and DIC) involves a time delay of
approximately 10 minutes, which violates the definition of a
sensor should sense both parameters simultaneously at the
same point. This limitation should be considered, particularly
in fast-changing systems, although it is less problematic for
systems in a steady state.

Particle image velocimetry. A very different approach toward
multiparameter sensing was taken by Ahmerkamp et al.70

This team combined particle image velocimetry (PIV) with O2-
sensitive particles (Fig. 9). PIV as such is a method that
enables the visualization of flow fields by tracking particle
movement in a fluid using high-speed imaging. By incorporat-
ing an O2 indicator into the seeding particles utilized in PIV, it
became possible not only to image the flow field but also to
measure local O2 concentrations. This rather unique combi-
nation of measuring both a physical and a chemical parameter
was furthermore used to study the dynamics of oxygen
exchange of a living coral with the surrounding water.71 Via
this method, it was possible to visualize how the coral trans-

ports O2 from areas of O2 production to areas of O2 consump-
tion by generating surface vortexes using cilia located on the
coral surface.

Fig. 8 Imaging of an epiphyte-covered leaf of the freshwater plant V. spiralis during dark respiration with PANI-based CO2 and DIC optode.69

(A) Setup of the leaf on top of the PANI-optode architecture. (B) Image of free CO2 after 1 h of incubation in freshwater under dark conditions. (C)
Image of DIC right after PANI-based acidification. (D) Line profiles for CO2 and DIC are associated with the gray lines traced in (B and C) from the top
to the bottom area. The gray area represents values below the CO2 optode calibration range. (E) Calculated images for carbonate alkalinity and pH.

Fig. 9 The flow and O2 visualization around corals with the sensPIV
approach.70 (A) Color image of sensPIV particles around the coral
surface (in the top left corner, the O2 microsensor used to cross-refer-
ence measurements). (B) Combined particle image velocimetry (PIV) and
particle tracking velocimetry graph of sensPIV particles. Arrows indicate
the flow along the coral’s surface. Colored dots represent individual par-
ticles, and the color indicates the velocity component perpendicular to
the coral. (C) 2D mapping of O2 concentration inside the coral boundary
layer obtained with sensPIV.
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This example highlights that multiparameter imaging is
not only limited to multiple chemical species but also includes
physical parameters. Furthermore, it shows how entwined pro-
cesses are in nature and how important multiparameter
sensing is to be able to untangle these intricate processes.

Multiple transduction

Generating an optical signal through the recognition stage
alone is insufficient for conducting analysis using optical
sensors. The next crucial step for quantitative analysis using
any analysis tool, in addition to the naked eye, is the transduc-
tion stage. As mentioned, conventional devices for chemical
imaging coupled with optodes are digital cameras. In this
case, metal–oxide semiconductors function as transducers.
Here, we want to look at multiple transducers for intensity-
based imaging with optodes.

RGB cameras. Historically, monochrome CCDs were intro-
duced first. Since such monochrome cameras operate only in
one grey mode, only one value could be obtained as an output
signal. Thus, even if the sensor consists of several recognition
processes, hardly would it be possible to distinguish different
optical signals from the different recognition sites, if not
filters were exchanged during the imaging process. That was
one of the reasons why researchers started using color RGB
digital cameras. Typically, color cameras are based on a Bayer
filter, which is a color filter array including Red (R), Green (G),
and Blue (B) channels. Having had such devices with three
different transducers, the information about the analyzed
object can be increased by three times. This occurs when the
absorbance or luminescence spectrum of the studied object
coincides with more than one of the R, G, or B channels.

Let us imagine using an RGB camera to measure two para-
meters independently with color referencing. For that, one
needs to use a system based on three dyes: a reference dye, a
dye selective to the first parameter, and a dye selective to the
second parameter. To minimize the possible errors and uncer-
tainties, each dye must emit light only in R, G, or B channels.
It leads to two significant disadvantages: (1) spectral properties
of the indicators must match an absorption spectrum of color
filters and (2) chosen dyes must have a negligible spectral
overlap with each other. Thus, to measure more than two para-
meters with this approach is almost impossible with RGB
digital cameras.

Modern cameras with a dual RGB/NIR (near-infrared) chip
might help to overcome the spectral overlapping of several
luminophores. Moßhammer et al. showed that utilizing RGB/
NIR camera provided a dual-analyte for imaging setup opti-
mized to have low cross-sensitivity between the two analytes
O2 and pH.51 OHButoxy-aza-BODIPY was the chosen pH indi-
cator that had emission in the NIR channel, while Eu
(HPhN)3dpp was used as an O2-sensitive dye with a narrow
emission fitting the red channel.

Hyperspectral imaging systems. Following the arguments
mentioned above, it is only natural that sensor developers and
users sought to expand the possibilities of recording even
more spectral information in one image, thereby expanding

the possibilities of performing multiparametric analyses.
When readout approaches provide more high-quality data and
information about the spectral behavior of the sensor, the
challenge of assigning different optical signals to different
receptors is reduced to a mathematical and chemometric chal-
lenge of digital image processing. Devices that have the poten-
tial to overcome spectral limitations of common readout
systems are hyperspectral imaging systems (HSIS).72

Hyperspectral imaging systems are camera systems that
capture spectral information of an image scene in each pixel
with a narrow or nearly continuous spectral bandwidth. It is
common for the number of spectral channels in an HSIS to
exceed 100 spectral bands at a high spectral resolution of
approx. 3 nm (1–5 nm), which preferably matches the spectral
characteristics of the sensing layer (Fig. 10). Thus, HSIS has
more than 100 transducers, surpassing the capabilities of
monochrome CCDs and even that of color digital cameras
which are equipped with only 1 and 3–4 transducers,
respectively.

For instance, Kühl et al. utilized an advanced hyperspectral
visible near-infrared (NIR) camera system for imaging O2 levels
and metabolic activity (respiration and photosynthesis) in a
single sample.73 This approach demonstrated that optodes not
only enable imaging of physicochemical parameters but also
extend to biological measurements. By employing techniques
like hyperspectral imaging, microscopy, and O2 imaging, this
study revealed that Chl f-containing cyanobacteria in bea-
chrock biofilms exhibit significant NIR-driven oxygenic photo-
synthesis, particularly crucial for primary production in
shaded environments. Such studies provide promising tools
for unraveling the ecological importance of intricate inter-
actions within real-world complex samples.

Fig. 10 Comparison of (A) a 4-channel RGB-NIR system with (C) a
150+ band hyperspectral camera system. (B and D) Respective infor-
mation obtained for the emission spectrum from individual and com-
bined optical O2 sensors.72 Reprinted with permission from ref. 72.
Copyright 2021 American Chemical Society.

Analyst Critical Review

This journal is © The Royal Society of Chemistry 2024 Analyst, 2024, 149, 29–45 | 39

Pu
bl

is
he

d 
on

 1
3 

 2
02

3.
 D

ow
nl

oa
de

d 
on

 0
3-

11
-2

02
5 

 2
:0

9:
11

. 
View Article Online

https://doi.org/10.1039/d3an01661g


Hence, from a technical point of view, HSIS approaches
pave the way for more promising concepts of intensity-based
multianalyte imaging with two or even more analytes.
However, the sole use of such HSIS does not grant multipara-
meter imaging per se. To make this ultimately possible, image
and signal processing, including chemometric techniques,
must be employed. The problem of accessing multiparameter
imaging can thus be compared to the task of performing
multivariate calibration based on spectral data. In this context,
we have already shown that depending on the strength of the
optical overlap of the different receptors, signal deconvolution
can be achieved either with simpler algorithms such as spec-
tral linear combination and least-square fitting72 or with more
complex machine learning algorithms.74

Chemometric analysis

According to the order-based classification of sensors,75,76

single-selective planar optical sensors are at least four-order
sensors, given that their output signal (R) is dependent upon
four variables: the magnitude of the analyzed parameter (C),
chosen wavelength (λ), and the position in 2D (x and y):

R ¼ f ðC; λ; x; yÞ:
In the case of multiparameter imaging, the amount of data

in the output signal becomes enormous. Not only that the
number of variables change from an individual analyzed para-
meter (C) to a list of i different parameter values, denoted as
C = {C1, C2, …, Ci}, but the number of wavelengths j at which
the total signal response of the optode is acquired, denoted as
λ = {λ1, λ2, …, λj}, also increases. In addition, the sensor can be
subjected to k different external stimuli (E), denoted as E = {E1,
E2, …, Ek}.

Considering the temporal variation (t ) being a part of the
sensor response as a spatiotemporal variable (P), denoted as
P = {x, y, t}, the sensor response is a point in the high i × j × k ×
3 multidimensional space:

R ¼ f ðC; λ;E;PÞ:
To address the challenge of translating this large amount of

data into valuable information and to enable multiparameter
analysis, diverse chemometric techniques must be applied.
Thus, chemometrics as a multivariate approach to assessing
overlaid signal responses is an essential tool in imaging with
optode sensors and has become increasingly important over
the years.77 It involves extracting chemical information from
datasets generated by imaging sensors to identify patterns and
relationships between the measured parameters. The most
pivotal aim, where chemometrics is employed, is developing
multivariate calibration models, which are used to predict the
characteristics of unknown samples.12 However, it should be
noted that a significant limitation of chemometrics is the need
for extensive experimental characterization and data
treatment.

Chemometrics utilizing for feature extraction. “Data sets
generated by chemical imaging are large, are multivariate, and
require significant processing.” Lavine and Workman noted

back already in 2002 in ref. 78 This statement highlights some
challenges that chemometrics faces. Since then, compu-
tational performance has increased due to advances in compu-
tational engineering. However, measured data are still
complex; interwoven, and overshadowed by noise, scattering
effects, or artifacts coming from the matrix background. To
translate the data and extract the true underlying pattern large
investment in resources and time as well as extended explora-
tory and processing algorithms may be required.12,79

Therefore, to improve the accuracy and robustness of the result
and to allow a subsequent analysis model to work more
efficiently, it is recommended to implement a signal pre-pro-
cessing step. Besides smoothing, outlier removal, or baseline
correction methods, it might be advisable to focus only on the
features in a large data set that contains the most relevant
information for the task at hand (so-called discriminative
features).77,79 This step is then referred to as feature extrac-
tion.80 Fig. 11 shows one of the possible approaches for
extracting meaningful data related to chemical processing and
its separation from “noise”. Utilizing machine learning tech-
niques, it was shown that optimal selection using only 6% of
the original dataset leads to drastically reducing the error of
prediction.81 The proposed approach is based on a hybrid
strategy involving interval partial least squares, variable impor-
tance in projection, modified variable combination population
analysis, iteratively retaining informative variables, and genetic
algorithm. For completeness, we note that in HSIS, where we
obtain a narrow or near-continuous spectrum throughout the
image scene and thus obtain high spectral and spatial dimen-
sionality, feature extraction can be performed in either of
these dimensions. However, this review focuses on spectral
feature extraction methods, which are mainly done via multi-
variate approaches.82

Upon selecting the discriminative features, one can either
use the specific spectral bands as such or combine these spec-
tral bands to create a new combined feature parameter in a
sub-space independent from the original feature space.83

When selecting certain features from the entire data set,
different approaches are available depending on the given data
set and the intended analysis (features dependency, quantity
of available features, and general data quality). Torrione
et al.80 summarized the main approaches for feature extraction
relevant to spectroscopic techniques. They classified
approaches ranging from feature extraction based on expert
knowledge and visible inspection of spectral peculiarities in
each data set84 to automatic and independent feature search,
using, among others, discriminant analysis approaches or
sequential search techniques, to multivariate statistical dimen-
sion reduction, such as principal component analysis (PCA)83

or partial-least-square (PLS).80 In addition to these approaches,
with the forthcoming of machine learning approaches over the
past decade more and more approaches are presented using
machine learning models for automated (but sometimes indir-
ect) feature extraction. Two examples that should be men-
tioned here are the random forest algorithm for feature selec-
tion85 and the autoencoder.86 While the first algorithm is a
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machine learning approach combining an ensemble of inde-
pendent decision trees, the latter one is an approach that aims
to reconstruct its input data while performing dimensionality
reduction and extracting relevant features.86,87 However, since
the field is constantly expanding and this is beyond the scope
of this review, the interested reader is referred to respective
reviews.88

Multivariate calibration. Classical univariate analytical cali-
bration means that a sensor response is solely correlated exclu-
sively with one target compound. While there are several
examples in the literature where this is true for calibration of
all possible different parameters,75,76,89–91 reality shows that
every fluorescent-based chemical sensor is at least cross-sensi-
tive to temperature15 or ionic strength in the case of ion-selec-
tive optical sensors92 if not other cross-interfering parameters.
In particular, in the field of environmental chemistry and real-
world applications, there is a whole series of problems for
which univariate calibration is not sufficient. This is obvious,
as natural systems consist of complex and intertwined pro-
cesses that require some kind of complex algorithm to corre-
late in complex multi-component mixtures.12 A first attempt to
deal with a complex situation could be to extend linear univari-
ate calibrations to multilinear regressions (MLR).12 A multi-
linear regression approach will therefore work in most cases in
primarily analytical or physical chemistry, where most tech-
niques aim to attain conditions of linearity constraints.
However, there are some prerequisites to this approach, such
as that the number of variables should not exceed the number
of samples in the data, which makes the application of MLR to
real-world applications and environmental chemistry
challenging.93,94 While there are some approaches to adjusting
the analytical method to maintain linearity, it may be advisa-

ble to use more complex algorithms such as multivariate
calibration.

In this context, multivariate calibration means that rather
than focusing on and calibrating for a single target analyte, or
more broadly parameter, multivariate models aim to calibrate
multiple parameters that affect the response of the sensor.12

Thereby, more information can be obtained about the sample
than if each variable were considered separately. This is what
Paul Gemperline calls the multivariate advantage.95 However,
this multivariate approach requires more information by collect-
ing more sample parameters, as well as more process steps,
including signal separation and classification.96 Historically,
multivariate calibration has been used only for spectroscopic
data such as absorbance and fluorescence emission, but it is
not limited to this, and one could include other sample para-
meters if relevant to the problem at hand.97 In addition, while
multivariate calibration was previously omitted by chemometri-
cians, it has become a very popular field in recent years.93 Early
algorithms in multivariate calibration still assume linear contri-
butions of different compounds in complex mixtures, and most
approaches use principal component regression (PCR), partial
least squares (PLS), or so-called multiway or multimode algor-
ithms, with PLS being the most popular.95,98,99

However, with the continuous improvement of mathemat-
ical algorithms and signal processing opportunities, chemo-
metricians are striving to incorporate novel algorithms that
allow them to analyze increasingly complex situations and to
account for non-linear contributions of different compounds
in complex mixtures.79 Sometimes it might already be
sufficient to extend the aforementioned approaches into a
higher dimension, thus enabling a multi-way analysis for
example in parallel factor analysis (so-called PARAFAC).100

Fig. 11 Different feature extraction strategies.81 (A) Flow chart with 3 steps using NIR hyperspectral images of tobacco. Step 1: rough selection,
wavelength interval selection method is used to select several intervals with low prediction errors. Step 2: fine selection, make further selection by
the methods that can produce a sort of variable based on a criterion and eliminate the variables not satisfying a defined threshold value (red dashed
line). Step 3: optimal selection, optimization algorithms are used to search for an optimal variable combination from the variables remained by the
steps of rough selection and fine selection. (B) The trend of the percent of data used (number of variables) and root mean square error of prediction
(RMSEP) from full spectrum to optimal selection.

Analyst Critical Review

This journal is © The Royal Society of Chemistry 2024 Analyst, 2024, 149, 29–45 | 41

Pu
bl

is
he

d 
on

 1
3 

 2
02

3.
 D

ow
nl

oa
de

d 
on

 0
3-

11
-2

02
5 

 2
:0

9:
11

. 
View Article Online

https://doi.org/10.1039/d3an01661g


PARAFAC is a generalization of PCR that requires lightly more
complex methodological procedural steps to extract com-
ponent information from mixed 3D fluorescence data.101

However, for PARAFAC to be useful, certain requirements must
be met, such as variability of analyte contributions (no identi-
cal spectra), trilinearity of sample parameters, e.g., emission
spectra are invariant across emission wavelengths, and

increase linearly with the concentration and intensity, and
that the overall signal is due to the linear superposition of a
fixed number of components.100 Other common expansions to
deal with trilinearity besides PARAFAC include the Tucker
model and multi-way partial least squares regression.102

Although these algorithms provide great potential, some
complex non-linear systems can only be solved by inherently

Table 2 Comparison of existing approaches to multiparameter imaging based on optodes

Approach Advantages Disadvantages

Sensor arrays • Cost-efficient technique • Not true multiparameter imaging
• Simple production • Need of N sensors for analyzing N

parameters
• Unlimited number of analyzed
parameters

Dual/multiple
recognition

Multisensitive receptors • Possibility of measuring in the same
spot and time using only one indicator

• Lack of existing probes

• Complex organic synthesis problem

“Sandwich” sensors • Possibility of transferring knowledge of
single sensing with optodes to
multiparameter analyzing

• Limited number of layers (max three,
typically)

• Well-established technique for dual and
triple sensing

• Spectral overlap

• Feasibility of using distinctly different
chemicals and sensing principles in one
sensor

• FRET and PET processes

• Increasing response time for several layers
• Cross-leaching of chemicals
• Increasing photodecomposition and signal
drift

Polymer binder with
(nano)particles
suspension

• Possible imaging for more than 2
parameters

• Spectral overlap

• Possibility of measuring in almost the
same spot

• FRET and PET processes

• Unlimited number of single sensitive
sensors

• Possible influence of polymer binder
(chemical reactions, sorption, memory effect)

• Feasibility of using distinctly different
chemicals and sensing principles in one
sensor

• Relatively slow response time

• Simple production

External stimulus • Increasing chance of discriminating of
analyzed parameters

• Complex instrumentation

• Possibility of using a combination of
different stimuli

• Possible influence on the sample (sample
decomposition, changing sample
composition)

• External control of the system being
examined

• Need for thorough calibration design

• Increasing amount of output data
• Requirement of sophisticated data analysis
including pattern determination

Multiple transduction
in intensity-based
imaging

RGB cameras • Cost-efficient technique • Limited number of probes used for analysis
as they have to fit spectral windows

• Commercially availability • Typical use for dual- and triple-parameter
imaging

Hyperspectral cameras • Involvement of spectral techniques in
optode-based imaging

• Expensive instrumentation

• Increasing spectral resolution of used
probes

• Vast amount of data

• Requirement of sophisticated data analysis
Chemometric techniques • Revealing hidden patterns • Need for thorough calibration design

• Feature extraction • Complex and nested dataset
• Possibility of multivariate calibration • Requirement of knowledge in

interdisciplinary subjects (mathematics,
statistics, programming, etc.)
• High dependency on researchers’
interpretation of output results
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non-linear machine learning algorithms, including naïve
Bayes regression, k-nearest neighbor (KNN), support vector
machine (SVM), or artificial neural network (ANN) algor-
ithms.103 In particular with the increased interest in machine
learning, the latter approach became the most popular, and
Venturini et al.104 demonstrated how a non-linear statistical
model can be used for multivariate calibration for simul-
taneous sensing of O2 and T. Due to the great success of
machine learning approaches in analytical chemistry, chemists
strive to push boundaries in their field and extend the capa-
bilities of joint acquisition even further. The combination of
more advanced recording systems, such as multi-sensory
systems or hyperspectral cameras, with advanced analytical
techniques, allows the assessment of the non-linear effects of
multiple components in complex mixtures. Data sets are
becoming more extensive, and a wealth of information is avail-
able. Machine learning approaches offer thereby a great oppor-
tunity to process these data sets and translate them into valu-
able, multiparametric information.74,105–107 Moreover, in
recent years, more and more deep learning algorithms have
been reported not only for image classification but also for
multiparameter regression purposes.108 For more details on
recent advances in chemometric calibration methods in
modern spectroscopy, the interested reader is referred to the
respective review by Wang et al.79

Concluding remarks

Since the first optode-based imaging, optical sensors have
been constantly developing. Continuous and parallel develop-
ments in terms of instrumentation, indicators, as well as data
analysis, have shaped the field. Multiparameter imaging with
optodes is nowadays possible and finds applications in
biology, medicine as well as engineering. The field is neverthe-
less still in development. Table 2 shows the main trends in
multiparameter imaging based on optodes.

At the current state, machine learning and artificial intelli-
gence (AI) are entering all fields of science and are redefining
what is possible. While those are for sure promising develop-
ments within chemical imaging, it is important to maintain
focus on the basics and not to forget that chemical sensors are
based on receptors and chemical interactions. AI might be
able to squeeze more out of the tools we have now but will
reach chemical and physical limits. Focusing on the “clever”
indicator and sensor design is still key. In recent years single
indicators with dual sensing capabilities have gained attention
and certainly are very promising for the field.

Furthermore, multiparameter sensing extends beyond
chemical species. Physical or biological parameters are equally
interesting and needed to increase our understanding of
complex biological systems.

As creatures of the eye, we humans have always been fasci-
nated by images. Looking deeper into this, one would even say
that images are pivotal to sharpening our worldview, so we con-
stantly create some of them in our heads. Chemical images are

no exception here. Using the information, we gain from these
images to solve complex biological or technological problems is
essential. Therefore, it is advised to combine chemical imaging
with other methods. For instance, chemical images can be used
as “maps” to find hotspots or points of interest in complex bio-
logical samples like soils109,110 or sediments.111

Unlike many other analytical methods, chemical imaging
can generate data both spatially and temporally. As humans,
we often rely on temporal and spatial optical information to
understand our surroundings. In this context, chemical
images are our window into the chemical environment, reveal-
ing the otherwise invisible complex mosaics of chemical pro-
cesses and interactions. This makes chemical imaging a “brid-
ging technology”, connecting not only various disciplines but
also reaching a broader audience. While chemical formulas
and reactions may appear complex and difficult to non-
experts, the ability to visualize chemistry is perceived as intri-
guing and fascinating.

Chemical imaging has a bright future ahead. Not only will
the coming years witness continuous advancements in this
field, but it will also become increasingly integrated into efforts
aimed at understanding complex biological systems. Finally,
chemical imaging has the potential to spark interest in chem-
istry itself. As the adage goes, “seeing is believing”, and chemi-
cal imaging can make the invisible visible for all to behold.
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