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Capacity-prediction models for organic
anode-active materials of lithium-ion batteries:
advances in predictors using small data†

Haruka Tobita,a Yuki Namiuchi,b Takumi Komura,a Hiroaki Imai, a Koki Obinata,c

Masato Okada, c Yasuhiko Igarashi *b and Yuya Oaki *a

Organic energy storage has attracted a lot of interest in enhancing performance and reducing the

consumption of resources. If performance predictors are prepared, the exploration of new compounds

can be accelerated without consumption of time, energy, and effort. In the present work, a new

straightforward capacity predictor is constructed for the exploration of organic anode-active materials.

Sparse modeling for small data (SpM-S) combining machine learning (ML) and our chemical insights was

used to construct linear regression models of specific capacity. In our previous work, two predictors

(models G1 and G2) were prepared using small datasets. However, the descriptors and prediction

accuracy of these models were not validated. In the present work, a new improved model (model G3)

has been constructed with the addition of new data. These three models were studied in terms of data

science: namely, prediction accuracy, validity of the descriptors, amount of training data used, and effect

of ML algorithms. The straightforward, generalizable, and interpretable model G3 can be applied to

explore new organic anode-active materials. Moreover, these data-scientific approaches to model

construction and validation can be used to explore new energy-related materials even with small data.

1. Introduction

Organic electrode-active materials are needed to achieve next-
generation high-performance and resource-saving energy
storage.1–9 One significant process is the exploration and dis-
covery of new compounds for electrode-active materials. If a
potential compound, e.g. a lead compound in the field of drug
discovery, is found, we can design molecules, nanostructures,
and electrodes to enhance performance. However, it is not easy
to discover new compounds in a wide search space of organic
compounds. Exploration based only on experience and intui-
tion with trial and error encounters limitations. If predictors
of electrochemical performance, such as reaction potential,
capacity, and cyclability, are prepared, the efficient exploration
of new compounds can be achieved. In the present work, a new

capacity prediction model (model G3) was constructed to
explore organic anode-active materials for lithium-ion batteries
using SpM-S (Fig. 1), a data-driven method based on small
data.10–14 The validity of model G3 was studied in a data-
scientific manner and compared with that of the previous
models G1 and G2.

Organic anode-active materials exhibit high specific capacity
compared with conventional graphite.1–9 In previous work,
conductive polymers with redox reactions in the range of 2.0–
0.5 V vs. Li/Li+ were studied as a classical organic anode-active
material.15–18 Tarascon et al. reported a new scheme for the
lithium alkoxylation of carbonyl groups in p-conjugated
molecules.19 Sun et al. found the uptake of multiple lithium ions
(Li+) in a p-conjugated framework,20 i.e. superlithiation, drastically
enhancing specific capacity.21–29 Although p-conjugated mole-
cules have potential for superlithiation, not all such compounds
show high specific capacity. In recent years, known compounds
with high specific capacity were introduced into polymers and
covalent organic frameworks to enhance performance.30–32 The
exploration and discovery of new compounds depending only on
professional experience encounter limitations. A more specific
design strategy is required to discover new anode-active materials
efficiently. If the correlations between molecular structure and
capacity are elucidated, a predictor can be constructed to accel-
erate the exploration of new compounds. Redox potentials were
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calculated to design organic electrode-active materials by computa-
tional chemistry.33,34 The reactivity of organic anode-active materi-
als with multiple lithium ions was studied by calculation.20,28

However, specific capacity is not easily predicted by computational
chemistry alone because various factors, such as conductivity, size,
and shape of the particles, are related to capacity. Therefore, we
have focused on machine learning (ML) to extract the significant
factors and construct the capacity predictors.

Data-driven approaches have been rapidly developed in
recent materials science.35–40 ML has been used to predict
the structures and functions of molecules and materials. In
general, bigger training data is preferred to construct more
accurate predictors. Big data sufficient for conventional ML
algorithms is not easily prepared based on experimental studies
in the laboratory. New ML schemes applicable to small data have
been studied in recent years.10,41–43 In addition, automated,
robotic, and combinatorial methods are used to obtain big
training data efficiently.44–47 However, not all experiments
including synthesis and characterization are integrated in an
automated system. Although training data can be collected from
the literature, the reported values include differences and errors
depending on the experimental conditions of an individual
research group. Experimental scientists need a new methodology

to use ML for small data. Our group has developed SpM-S, a new
scheme of ML for small data.10–14 Sparse modeling (SpM) is a
general concept to describe whole high-dimensional data using a
limited number of significant descriptors extracted by ML. In
SpM-S, the extraction of the descriptors using ML is followed by
further selection based on our chemical insight. Combination
with our chemical insight contributes to avoiding overtraining
caused by the small data and improving generalizability.10,14

Therefore, SpM-S provides straightforward, interpretable, and
generalizable linear regression models using a limited number of
descriptors. Our group constructed performance predictors for
organic cathode-active and anode-active materials using SpM-S.48–50

Although two predictors (G1 and G2) for the specific capacity of
an anode were prepared in our previous work (Fig. 1a–d),48,49

their prediction accuracy was not sufficient. Moreover, the
validity of the predictors and extracted descriptors were not
studied in terms of data science. In the present work, a new
improved model G3 was prepared with the addition of new
experimental data (Fig. 1c and d). The validity of the prediction
models G1–G3 was studied in terms of prediction accuracy,
extracted descriptors, amount of training data, and ML algo-
rithm (Fig. 1e).

2. Results and discussion

The capacity predictors of organic anode-active materials were
constructed using small data based on our own charge–
discharge measurements (Fig. S1 in ESI†).48,49 Predictors G1
and G2 were prepared in our previous work (Fig. 2).48,49 In the
present work, predictor G3 was constructed to improve the
prediction accuracy with the addition of new data (Fig. 3). The
objective variable (y) was the measured specific capacity of
commercially available compounds 1–54, such as conjugated
molecules and heteroaromatic compounds, at a current density
of 10 mA g�1 for model G1 and 100 mA g�1 for models G2 and
G3 (Table 1 and Scheme S1 in the ESI†).48,49 New data was
added in the training data for the construction of model G3
(note # in Table 1 and Fig. S1 in the ESI†).

The explanatory variables (xn) were the potential descriptors
related to capacity prepared based on our chemical insight
(Table 2). The following parameters were used as xn

(Table 2):48,49 the energy levels (E) of LUMO (x1: ELUMO0), four
energy levels higher than the LUMO (x2–x5: ELUMOj, j = 1–4),
the absolute values of the differences in the energy levels

Fig. 1 Construction of prediction models G1–G3 from small data and
their data-scientific validation. (a) Measured specific capacity (y: objective
variables) for an organic anode-active material from charge–discharge
curves. (b) Examples of the explanatory variables (xn) as potential descrip-
tors. (c) Successive small training datasets G1–G3 including y and xn. (d)
SpM-S with a combination of ML and chemical insight for the extraction of
descriptors and construction of models G1–G3. (e) Data-scientific valida-
tion of the successive prediction models.

Fig. 2 Relationship between the estimated and measured capacity in the
training (black) and test (red) data for models G1 (a) and G2 (b).
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(x6–x15: DELUMOj–k: j, k = 0–4), molecular weight (x16), expected
maximum (theoretical) capacity (x17), theoretical specific capa-
city for reaction with one Li+ (x18), the number of carboxy
groups (x19), the number of carbonyl groups (x20), the number
of conjugated carbons (x21), the number of occupied orbitals
(Norb) lower than the work function of lithium and energy level
(E) E = 0 (x22: Norb, ELUMO0 r E o FLi, x23: Norb, ELUMO0 r E o 0),
the sum of absolute values of E for the orbitals in the range from
ELUMO0 to E = 0 (S|E|, ELUMO0 r E o 0, x24), Hansen solubility-
(similarity-)parameter (HSP) distance between the target com-
pound and electrolyte solution (x25), melting point (x26), the
number of sulfur (S) atoms in the heteroaromatic rings (x27),
dipole moment (x28), the minimum and maximum values of the
partial charge density (x29, x30), HSP dispersion (dD), polarity
(dP), and hydrogen-bonding (dH) terms (x31–33, respectively), the
number of nitrogens and oxygens in the heteroaromatic rings
(x34 and x35, respectively), the ratio of the number of hetero-
atoms (N, S, O) to the total number of carbon, N, S, and O (x36).
In SpM-S, the significant descriptors were extracted by ML and
then selected in combination with our experience and chemical
insight. Linear regression models were constructed using the
selected descriptors. After predictors G1 and G2 were introduced,
the validity of predictor G3 and the advances in the processes of
these predictors were studied in terms of data science.

2.1. Prediction model G1

Model G1 was constructed using the training data (training
dataset G1) containing 24 xn (n = 1–17, 19, 21–26, Table 2) and

16 y (compounds 1–16 in Table 1 and Scheme S1 in the ESI†) by
SpM-S (Tables S1 and S2 in the ESI†).48 The descriptors were
initially extracted using a minimax concave penalty and pena-
lized linear unbiased selection algorithm (MCP) and then
selected according to our chemical insight.48 The predicted y
(y0) was described by (eqn (1)) using three xn with root mean
square error (RMSE) of 162 mA h g�1 for the training data
(black circles in Fig. 2a). Here the coefficients are converted to a
normalized frequency distribution such that the mean is 0 and
the standard deviation is 1. The coefficients of xn quantitatively
represent the contribution to y0.48

y0 = 64.6x23 + 67.3x25 – 98.2x26 + 109.5 (1)

The test data including compounds A–M was prepared using
literature values (Table 3 and Scheme S2 and Table S2 in the
ESI†).21–29 As predictor G1 needs the melting point (x26) to
calculate y0, only nine compounds (A, B, C, E, F, G, H, L, M) with
melting point data were used for the test (test dataset G1, Table
S2 in the ESI†). Predictor G1 had an RMSE of 629 mA h g�1 for
the test data (red circles in Fig. 2a). The black and red plots are
not in the diagonal line of the y–y0 plots representing the
relationship between the predicted and measured values. A
couple of new potential compounds, such as benzodithiophene,

Fig. 3 Construction of model G3. (a) Weight diagram representing the
coefficients of xn (vertical axis) in 100 regression models with the smallest
CVE values (the colored xn on the left-hand axis: extractable descriptors).
(b) Relationship between the estimated and measured capacity in the
training (black) and test (red) data for model G3. (c) Average coefficients of
each xn in 100 regression models with the smallest CVE values (the colored
xn on the left-hand axis: extractable descriptors in the chart, the colored xn

on the right-hand axis: selected descriptors in the model G3). (d) Prob-
ability values of each xn as a descriptor estimated from ES-BMA (the
colored xn on the left-hand axis: extractable descriptors in the chart, the
colored xn on the right-hand axis: selected descriptors in model G3).

Table 1 List of the objective variables (y)

aNo.

Specific
capacity/
mA h g�1 bG1 bG2 bG3 Ref. aNo.

Specific
capacity/
mA h g�1 bG1 bG2 bG3 Ref.

1 0 G1 48 28 490 G2 G3 49
2 0 G1 48 29 6 G2 49
3 0 G1 48 30 178 G2 G3 49
4 0 G1 48 31 30 G2 G3 49
5 0 G1 48 32 798 G2 G3 49
6 19 G1 48 33 55 G2 49
d7 732/0 G1 G2 48, 49 34 513 G2 G3 49
d8 126/221 G1 G2 G3 48, 49 35 109 G2 G3 49
9 0 G1 48 36 56 G3 c#
d10 478/28 G1 G2 G3 48, 49 37 105 G3 c#
11 0 G1 48 38 0 G2 49
12 0 G1 48 39 277 G2 G3 49
13 84 G1 48 40 0 G2 49
d14 135/64 G1 G2 G3 48, 49 41 201 G3 c#
d15 178/1147 G1 G2 G3 48, 49 42 277 G2 G3 49
16 0 G1 48 43 141 G2 G3 49
17 355 G2 G3 49 44 134 G3 49
18 175 G3 49 45 15 G3 49
19 24 G3 c# 46 267 G3 c#
20 105 G2 G3 49 47 73 G3 49
21 0 G2 49 48 318 G3 49
22 142 G2 G3 49 49 63 G3 c#
23 405 G3 49 50 229 G3 c#
24 227 G2 G3 49 51 133 G3 49
25 91 G3 c# 52 279 G3 49
26 310 G2 G3 49 53 23 G3 c#
27 0 G2 49 54 273 G3 c#

a The molecular structures of 1–54 are displayed in Scheme S1 in the
ESI. b The specific capacity refers to the training and test datasets in
our previous work.48,49 c The specific capacity was measured in the
present work (Fig. S1 in the ESI). d The differences in the specific
capacity are caused by the differences in the current density. The
former and latter values are the measured capacity in the datasets G1
and G2, respectively.48,49
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were successfully found using predictor G1 in a limited number
of experiments.48 However, the predictor needs improvement for
the following reasons. The measured capacity is higher than the
estimated value, as indicated by the red arrow (Fig. 2a). This fact
means that the capacity is underestimated by model G1. The
underestimation is caused by the unbalanced small training
data because nine of the 16 compounds had a specific capacity
of 0 (Table 1). In addition, the melting point (x26) is not always
available for unknown new compounds. Therefore, model G1 is

not easily applied to the practical exploration of new
compounds.

2.2. Prediction model G2

Model G2 was constructed using the training data (training
dataset G2) containing 23 xn (n = 1–5, 16, 18, 19, 21–29, 31–36
in Table 2) and 25 y (compounds 7, 8, 10, 14, 15, 17, 20–22, 24, 26–
35, 38–40, 42, 43 in Table 1, Scheme S1 in the ESI†) by SpM-S
(Tables S3 and S4 in the ESI†).49 As the specific capacity was
measured at a current density of 100 mA g�1 to accelerate the
collecting of y for the construction of models G2 and G3 (Table 1),
the capacity (y) of some compounds was different from that used
for model G1. In addition, compounds with specific capacity 0
(1–5, 9, 11, 12, 16) were removed to adjust the balance of the
training data. The descriptors were extracted using an exhaustive
search with linear regression (ES-LiR) and then selected according
to our chemical insight, as explained later (Section 2.3). Predictor
G2 was described by (eqn (2)) using six xn with an RMSE of
217 mA h g�1 for the training data (black circles in Fig. 2b).49

y0 = 20.4x4 – 307.6x16 + 303.2 x22 – 9.13x23 + 12.4 x25

+ 40.3x35 +218.9 (2)

The RMSE for the test data including 13 compounds
A–M was 338 mA h g�1 (red circles in Fig. 2b and Table 3 and
Scheme S2 and Table S4 (test dataset G2) in ESI†).21–29 The
black and red plots approach the diagonal line of the y–y0 plots
compared with those in model G1. A new potential active
material with high specific capacity and cycle stability, namely
5-formylsarytilic acid, was found using predictor G2.49 How-
ever, predictor G2 still needs an improvement in accuracy.

2.3. Prediction model G3 and its data scientific validity

Model G3 was constructed using the training data (training
dataset G3) containing 17 xn (n = 1–5, 16, 20, 21, 23, 25, 28–33,
36 in Table 2) and 36 y (compounds 8, 10, 14, 15, 17–20, 22–26,
28, 30–32, 34–37, 39, 41–54 in Table 1) by SpM-S (Tables S5 and
S6 in the ESI†). The measured specific capacity of new com-
pounds was added to dataset G3 (# in Table 1 and Fig. S1 in the
ESI†). The descriptor was extracted from the weight diagram of
ES-LiR and then considered based on our chemical insights
(Fig. 3a). In ES-LiR, linear regression models are exhaustively
prepared with all the possible combinations of xn (n = 1, 2, 3, . . .,
n). Here a total of 217�1 (E 1.3 � 105) patterns of the
regression models are available whether or not each xn (n = 1–17)
is used as a descriptor. The coefficients of each model are
visualized by the color in the weight diagram in ascending order
of cross validation error (CVE) (Fig. 3a). In the weight diagram, xn

with more densely colored bands are used as descriptors more
frequently. A deeper color indicates a larger coefficient of the
descriptor, implying a larger contribution. The warm and cool
colors correspond to positive and negative correlations, respec-
tively. The coefficients of 100 models with the smallest CVE (top
0.08% of a total of 1.3 � 105 models) are summarized in the
weight diagram (Fig. 3a). In general, a full state search (2n–1
patterns) of the regression models is not performed to find a

Table 2 List of explanatory variables (xn: n = 1–36)

No. Explanatory variable xn Unit G1c G2c G3c

1a ELUMO0 eV G1 G2 G3
2a ELUMO1 eV G1 G2 G3
3a ELUMO2 eV G1 G2 G3
4a ELUMO3 eV G1 G2 G3
5a ELUMO4 eV G1 G2 G3
6a ELUMO1-0 eV G1
7a ELUMO2-0 eV G1
8a ELUMO3-0 eV G1
9a ELUMO4-0 eV G1
10a ELUMO2-1 eV G1
11a ELUMO3-2 eV G1
12a ELUMO3-1 eV G1
13a ELUMO4-3 eV G1
14a ELUMO4-2 eV G1
15a ELUMO4-1 eV G1
16 Molecular weight g mol�1 G1 G2 G3
17 Expected maximum capacity mA h g�1 G1
18 Capacity reacted with 1 Li+ mA h g�1 G2
19 Number of carboxy groups — G1 G2
20 Number of carbonyl groups — G3
21 Number of conjugated carbons — G1 G2 G3
22a Norb, ELUMO0 r E o FLi — G1 G2
23a Norb, ELUMO0 r E o0 — G1 G2 G3
24a S|E|, ELUMO0 r E o0 eV G1 G2
25b HSP distance — G1 G2 G3
26 Melting point 1C G1 G2
27 Number of S — G2
28a Dipole moment Debye G2 G3
29a Minimum of charge density — G2 G3
30a Maximum of charge density — G3
31b HSP-dD — G2 G3
32b HSP-dP — G2 G3
33b HSP-dH — G2 G3
34 Number of N — G2
35 Number of O — G2
36 Ratio of heteroatoms — G2 G3

a DFT calculation values. b HSP calculation values. c xn values shown in
bold and italics were used as descriptors in models G1–G3 with positive
and negative correlations, respectively.

Table 3 Specific capacity of compounds A–M in the test data

No.
Specific capacity/
mA h g�1 Ref. No.

Specific capacity/
mA h g�1 Ref.

A 549 21 H 176 26
B 851 21 I 306 27
C 1143 21 J 253 28
D 125 22 K 344 28
E 254 23 L 242 29
F 178 24 M 230 29
G 222 25

The molecular structures of A–M are displayed in Scheme S2 in the ESI.
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sparse regression model, because evaluating each model results
in a computational explosion. Computational explosion is pre-
vented by replacing the task with a relaxation scheme, such as L1
regularization, and its optimization.51,52 The methodology can
end up with an exponential amount of computation with a
realistic computation time of polynomial order. However, only a
limited number of models are obtained by the optimization. In
addition, the solution has no guarantee that it will be the optimal
one for real data analysis. In recent years, all models with dozens
of descriptors can be searched in a realistic amount of time
through improved computing power, although ES-LiR needs an
exponential amount of computation. Therefore, the search is
exhaustively achieved for all possible models unlike optimization
depending on relaxation problems.53 This method visualizes the
contribution of each xn in the weight diagram, as shown in Fig. 3a.

We visually extracted seven xn (n = 2, 16, 21, 25, 33, 36) from
the weight diagram (the left-hand axis in Fig. 3a) and then
studied their validity as descriptors. The positive correlation of
x25 (HSP distance) and negative correlation of x33 (HSP-dH)
imply that rigid molecular frameworks with low solubility to the
electrolyte enable a stable redox reaction leading to high
specific capacity. The positive correlation of x36 (ratio of the
heteroatoms) implies that charge localization in the molecules
promotes the introduction of Li+. These xn (n = 2, 25, 33, 36) are
consistent with our chemical insight. Although the positive
correlation of x2 (ELUMO1) is not directly explained, the positive
correlation of the LUMO levels was used as the results of ML in
model G2.49 In the present work, x2 is also adopted as a descriptor
in model G3. Further studies including a calculation study are
needed to elucidate the correlation between the LUMO level and
capacity. The positive correlation of x16 (molecular weight) and the
negative correlation of x21 (number of conjugated carbons) are not
simply consistent with our chemical insight. In principle, the
correlation of these descriptors is inverse. A higher specific
capacity (mA h g�1) is achieved by compounds with a lower
molecular weight. More conjugated carbons enhance superlithia-
tion, leading to an increase in specific capacity. Therefore, these
xn (n = 16, 21) are not selected for model G3. On the other hand,
two xn (n = 20, 28) are added as descriptors according to our
chemical insight. The positive correlation of x20 (the number of
carbonyl groups) means an increase in the reactivity of Li+. In
addition, carbonyl groups were reported to be reaction sites in
previous work.3–6 The positive correlation of x28 (dipole moment)
means charge localization of the molecule enhances the introduc-
tion of Li+. In this manner, six xn (n = 2, 20, 25, 28, 33, 36) were
selected as descriptors in combination with ES-LiR and our
chemical insights. Predictor G3 was described by (eqn (3)) using
six xn with RMSE 144 mA h g�1 for the training data (black circles
in Fig. 3b).

y0 = 164.6x2 + 58.0x20 + 116.8x25 + 98.5x28 – 280.1x33

+ 296.9x36 + 229.9 (3)

When five-fold cross validation was performed using
(eqn (3)) in training dataset G3, the average RMSE values were
194 � 12.6 mA h g�1 for the training and 218 � 113 mA h g�1

for the test data. Model G3 showed an RMSE of 366 mA h g�1

for the test data, including compounds A–M (red circles in
Fig. 3b, Table 3 and Scheme S2 in the ESI†). Although the RMSE
value of model G3 is smaller than that of model G2 for the
training dataset (the black circles in Fig. 2b and 3c), model G3
shows a larger RMSE value than model G2 for the test dataset
(the red circles in Fig. 2b and 3c). The relationship between the
estimated and measured capacity of model G3 more accurately
represents the trend of high and low capacity compared with
that of models G1 and G2 (Fig. 2b and 3b), because more plots
are on the diagonal line in the true-error plots. The overall
accuracy and generalizability of the prediction model are
evaluated not only by the RMSE values but also by the true-
error plots. These results imply that model G3 can be used for
an exploration of new unknown compounds.

The validity of the extracted descriptors was studied in terms
of data science. The averaged absolute values of the coefficients
were calculated for each xn in 100 models with the smallest CVE
values (Fig. 3c). The averages were larger than 35 for the visually
extracted xn (n = 2, 16, 21, 25, 33, 36) from the weight diagram.
The chart quantitatively supports the validity of the visually
extracted xn from the weight diagram (Fig. 3a). However, the
selected xn (n = 20, 28) based on our chemical insight were not
supported by the chart (Fig. 3c). In addition, the chart indicates
that xn (n = 16, 21) are potential descriptors. The validity of the
six selected descriptors is not fully supported by ES-LiR alone.
In general, ES-LiR has the following two problems which need
to be solved. CVE is used to evaluate the prediction accuracy of
the models. As this CVE-based model selection causes over-
fitting the training data, a true model is not always obtained.53

The other problem is the visual and qualitative extraction
process of the descriptors from the weight diagram displaying
the coefficients of the models in order of lowest CVE. The
weight diagram represents not only a model with a specific
CVE, such as the lowest one, but also multiple models with low
CVE in the ranking. The visual effect of the weight diagram
depends on the threshold of the CVE ranking defined by
researcher. A more quantitative scheme including reliability is
needed to extract the descriptors more appropriately.

Here reliability assessment and subsequent extraction of
descriptors based on Bayesian model averaging (BMA) were
carried out in the data.54 Bayesian inference was applied to a
linear regression model in our previous work.55 In Bayesian
inference,56 the likelihood of each linear regression model
using various descriptors is expressed by a probability value,
assuming that noise is added to each of the experimental data.
This evaluation method based on probability value approaches
a true model, avoiding overtraining in training data compared
with that based on the CVE value.57 The model with the highest
probability value can be selected to explain the experimental
data. BMA is introduced in the selection process because the
influence of the training data is significant. All possible models for
each descriptor are integrated with weighting by the probability
values explaining the experimental data. Then, the probability that
each xn is a descriptor is calculated (Fig. 3d). This ES-BMA method
provides more quantitative information in the extraction processes
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of the descriptors, whereas the descriptors are visually extracted
from the weight diagram of ES-LiR (Fig. 2 and 3a–c). ES-BMA
analysis indicates that the selected descriptors xn (n = 2, 20, 25, 28,
33, 36) have a probability higher than 0.8. Therefore, ES-BMA
supports the validity of the descriptors in model G3.

In this manner, the appropriate descriptors were extracted
and selected in model G3 by ES-LiR in combination with our
chemical insight. The validity of the model and its descriptors
is supported by ES-BMA. These results imply that a straightfor-
ward and interpretable linear predictor can be constructed in
small data using ES-LiR and ES-BMA in combination with our
chemical insight.

2.4. Dataset independence of model G3

Cross-validation by merging the training and test datasets was
carried out to study whether the selected descriptors are not
extracted only from the specific training data.14 The original
training dataset G3 and test dataset G3 contained 36 y and 13 y,
respectively. These datasets were mixed and then divided into
ten segments. One segment and the remaining nine segments
were assigned to test and training data, respectively. Validation
was performed by changing the assignments of the test data in
the total ten patterns. The average RMSE was 194� 12.6 mA h g�1

for the training dataset and 219 � 114 mA h g�1 for the test
datasets (Table S7 and Fig. S2 in the ESI†). The same ten-fold
cross validation with merging of training and test data was
performed for models G1 and G2. In model G1, the average RMSE
was 280 � 18.2 mA h g�1 for the training dataset and 303 �
150 mA h g�1 for the test datasets (Table S7 and Fig. S3 in the
ESI†). In model G2, the average RMSE was 240 � 12.1 mA h g�1

for the training dataset and 261 � 105 mA h g�1 for the test
datasets (Table S7 and Fig. S4 in the ESI†). The smallest RMSE
values for model G3 indicate that model G3 is constructed without
dependence on the datasets compared with models G1 and G2.

2.5. Effect of the data quantity on the extractability of the
descriptors

The effect of data size on the validity and extractability of the
descriptors in model G3 was studied with a reduction in the
size of the datasets (Fig. 4). The reduced training datasets G10

and G20 including the same compounds (y) in training dataset
G1 (16 y) and training dataset G2 (25 y) were prepared from
training dataset G3, respectively (Tables S8 and S9 in the ESI†).
ES-LiR and ES-BMA were performed on the reduced training
datasets G10 and G20 to study whether the same six descriptors
in model G3 (xn: n = 2, 20, 25, 28, 33, 36) are extractable or not
(Fig. 4). The same xn in model G3 were not fully extracted from
datasets G10 and G20 (Fig. 4).

In training dataset G10, six xn (n = 1, 21, 23, 25, 28, 36) were
visualized and extractable based on the weight diagram of
ES-LiR and a chart displaying the averaged absolute values of
the coefficients in the 100 models with the smallest CVE (the
left-hand axes in Fig. 4a and c). The probability from ES-BMA
indicates the potential descriptors xn (n = 1, 23, 25, 28) (the left-
hand axis in Fig. 4e). However, xn (n = 2, 20, 23) were not
extractable by ES-LiR and/or ES-BMA in dataset G10. In training

dataset G20, xn (n = 1, 2, 4, 16, 21, 28, 36) were extractable based
on the weight diagram of ES-LiR and the averaged coefficients
(the left-hand axis in Fig. 4b and d). The ES-BMA analysis
indicates potential descriptors xn (n = 1, 2, 20, 28, 29) with a
probability higher than 0.8 (Fig. 4f). However, xn (n = 25, 23)
were not extractable by ES-LiR and/or ES-BMA in dataset G20.
These analyses imply that the data sizes in datasets G1 and G2
were insufficient to extract the descriptors.

The effect of the data was studied by another method
(Table 4). Dataset G3 containing 36 y was reduced in six
random patterns (Fig. S5–S9 in the ESI†). The weight diagrams
were prepared by ES-LiR using the reduced datasets containing
35, 34, 33, 30, and 27 y to study the extractability of the
descriptors. The number of extractable xn (Nx) in the six xn

(n = 2, 20, 25, 28, 33, 36) of model G3 was counted in each
weight diagram (Figs. S5–S9 in the ESI†). The average Nx (Nx,ave)
of the six weight diagrams was calculated in the reduced
datasets (Table 4). In addition, the numbers in the weight
diagram (Nwd) satisfied with Nx = 6 and Nx Z 5 are summarized
in Table 4. The extractability of xn distinctly decreases for y

Fig. 4 Extractability of the descriptors in the reduced datasets G10

(a, c and e) and G20 (b, d and f) (left-hand axis: extractable descriptors in
the corresponding chart, right-hand axis: selected descriptors in model
G3). (a and b) Weight diagram of ES-LIR. (c and d) Averaged absolute values
of the coefficients in 100 models with the smallest CVE. (e and f) Prob-
ability values based on ES-BMA.

Table 4 Extraction behavior of xn in the reduced datasets

y in the reduced dataset 35 34 33 30 27

Nave 1 2 0 0 0
Nwd|Nx = 6 3 4 3 2 0
Nwd|Nx Z 5 4.17 4.83 4.17 3.50 3.00
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lower than 33 (Table 4). When the data size is y = 30 or 27, the
extractable xn from the weight diagram depend on the datasets.
The results support model G3 being constructed on a sufficient
amount of training data y = 36.

2.6. Construction of predictors using other ML algorithms

Other prediction models were constructed using training data-
set G3 by different ML algorithms, namely least absolute
shrinkage and selection operate (LASSO) and multiple linear
regression without variable selection (ML-R). The constructed
predictors were validated using the test dataset including
compounds A–M (Table 3 and Scheme S2 in the ESI†). The
accuracy was evaluated by the RMSE values for the training data
(dataset G3) and test data. The reference models comprised 13
xn for LASSO and 17 xn for ML-R. The RMSE values of these
reference models for the training data were smaller than that of
model G3 (gray bars in Fig. 5). The lower RMSE values imply
that the reference models have higher prediction accuracy than
model G3. Although the number of descriptors used is limited
to six, model G3 has sufficient prediction accuracy. The RMSE
value of model G3 for the test data was the smallest compared
with that of the reference models (red bars in Fig. 5). The large
differences in the RMSE values between the training and test
datasets imply overtraining. As the difference is smallest for
model G3, overtraining is avoided compared with the other
models. These results indicate that SpM-S provides a straight-
forward, generalizable, and interpretable model G3 even in a
small dataset.

3. Conclusions

Capacity prediction models for organic anode-active materials
(models G1–G3) were constructed by SpM-S combining ML and
our chemical insight for small experimental data. Models
G1–G3 have been developed with the addition of training data.
In the present work, the validity of these models was studied in
terms of data science. Whereas the previous models G1 and G2
needed improvements in prediction accuracy, model G3 had
sufficient prediction accuracy. The extracted and selected
descriptors in model G3 were supported by a combination of

ES-LiR and ES-BMA. On the other hand, the same descriptors
were not extracted from the datasets for models G1 and G2 even
in combination with ES-LiR and ES-BMA. In other words,
generalizable and appropriate descriptors were not extractable
in the training datasets of models G1 and G2 for the exploration
of new compounds because of the lack of training data.
The required amount of data was studied using the weight
diagrams of ES-LiR with a reduction in the size of the training
data. Model G3 was constructed on a sufficient amount of
training data compared with that of models G1 and G2. In
addition, SpM-S provided generalizable model G3 compared
with other ML algorithms. The straightforward, interpretable,
and generalizable predictor G3 can be applied to the explora-
tion of new organic anode-active materials in a wide search
space. Our methods for model construction and validation,
SpM-S combined with ES-LiR, ES-BMA, and our chemical
insight, can be applied to other small-data-driven material
exploration.
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