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In spring 2020, numerous buildings were closed or operated at reduced occupancies to slow the spread of

COVID-19. An unintended consequence of these social distancing measures was a reduction in water demand

in many buildings. Concerns arose that contaminants associated with water stagnation, such as Legionella

pneumophila, could become prevalent. To investigate the potential public health risk associated with L.

pneumophila, samples from 26 reduced-occupancy buildings in 11 cities in the United States, Canada, and

Switzerland were analyzed for L. pneumophila using liquid culture (Legiolert, n = 258) and DNA-based methods

(qPCR/ddPCR, n = 138). L. pneumophila culture-positivity was largely associated with five buildings, each of

which had specific design or operational deficiencies commonly associated with L. pneumophila occurrence.

Samples from buildings with free chlorine residual disinfection had higher culture-positivity (37%) than samples

from buildings with chloramine (1%). Additionally, 78% of culture-positive samples occurred when the disinfectant

residual was ≤0.1 mg L−1 Cl2 and only three free chlorine samples were culture-positive when the disinfectant

residual was >0.2 mg L−1 as Cl2. Although overall sample positivity using culture- and DNA-based methods was

equivalent (34% vs. 35%), there was disagreement between the methods in 13% of samples (n = 18 of 138). Few

buildings reported any water management activities, and L. pneumophila concentrations in flushed samples were
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Water impact

Low building water usage can lead to water quality deterioration, but it was unclear how the widespread, extended occupancy reductions during the
COVID-19 pandemic would influence Legionella pneumophila occurrence. In this study, L. pneumophila was measured in 26 buildings across three countries,
concluding that building water system design issues and free chlorine systems were linked to higher L. pneumophila positivity.
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occasionally greater than in first-draw samples. This study provides insight into how building plumbing

characteristics and water management practices contribute to L. pneumophila occurrence during low water use

periods and can inform targeted prevention and mitigation efforts.

1. Introduction

Closures of non-residential buildings to limit the spread of
COVID-19 resulted in water demand reductions in many
public, industrial, educational, and commercial buildings.1–5

While short periods of reduced water use (e.g., nights,
weekends, school breaks) are common in certain buildings,6

many buildings were closed or at reduced occupancy for
several months during the COVID-19 pandemic.7–10 Reduced
water use is associated with decreased disinfectant residual
levels, equilibration of hot and cold water temperatures with
building temperature, and potential for increased
concentrations of contaminants such as disinfection
byproducts, metals, and opportunistic pathogens.11–21 The
bacterium Legionella pneumophila, the primary causative
agent of Legionnaires' disease and Pontiac fever, was of
particular concern because its occurrence has been
associated with low water use,22–26 and disease incidence is
rising around the world.27–30 While there are other species of
Legionella that cause human infections, L. pneumophila is
responsible for the majority of legionellosis illnesses with an
identified causative agent.31 Though previous studies have
linked low water use to L. pneumophila occurrence, few
studies have investigated its occurrence during extended
periods of widespread reduced water use, such as during the
onset of the COVID-19 pandemic.22,26,32–34

The quantification of L. pneumophila in potable water
systems has traditionally been performed using plate culture
methods. However, alternative methods such as the IDEXX
Legiolert® kit, a liquid culture method that yields results in
most probable number (MPN) per volume, has become more
widely used due to its ease of use and reported specificity for
L. pneumophila.35–41 DNA-based methods (e.g., quantitative
polymerase chain reaction [qPCR] and droplet digital
polymerase chain reaction [ddPCR]) have also become more
common due to the fast turnaround time, the possibility to
detect cells in the viable but non-culturable state, and the
potential for increased specificity, as compared to culture-
based methods.42–44 However, comparisons of results
obtained with different methods are generally lacking in the
current scientific literature.30,43 L. pneumophila monitoring is
typically not conducted outside healthcare settings unless the
location is associated with disease incidence. This lack of
broad surveillance and method comparability has limited our
understanding of typical L. pneumophila concentrations in
commercial and public building plumbing, the impacts of
water demand patterns on L. pneumophila occurrence, and
the effectiveness of various interventions for L. pneumophila
mitigation.34

Investigations into the impact of COVID-19 pandemic-
related building closures have reported that building water
quality overall was negatively impacted.45–53 However, studies

have reported mixed results with respect to L. pneumophila,
including no or low detection of L. pneumophila,45,50,52 no
change in the occurrence of L. pneumophila as water use
returned to normal levels,46 a small increase (2×) in Legionella
spp. relative abundance after two months of reduced water
use,48 and widespread detection of L. pneumophila that
increased during closure.47 Each of these studies focused on
individual cities, buildings, or regions, with none conducting
sampling across distribution systems in different regions.
Regional differences such as climate, source water, and
system operation (e.g., water age, pH, residual disinfectant
type) may also influence L. pneumophila occurrence in
drinking water distribution systems.36,54 For example, a
residual disinfectant in drinking water distribution systems
is required in most public water systems in the United States
and Canada, but not in other countries, such as
Switzerland.55

The objective of this study was to characterize the
occurrence of L. pneumophila in drinking water collected
from large, non-residential buildings at reduced occupancy
due to the COVID-19 pandemic across 11 cities and three
countries (United States, Canada, and Switzerland) using
both culture-based (Legiolert) and DNA-based (qPCR or
ddPCR) methods. Physicochemical water quality parameters,
building characteristics, and details of water management
practices were collected to identify factors that contributed to
L. pneumophila occurrence. Sampling was initiated as a rapid
response to assess a potential public health concern,
conducted across multiple academic institutions. Site-specific
investigations were conducted at several of the sampling
locations, the results of which are reported
elsewhere.51–53,56,57 This study presents a cross-sectional
analysis of potential L. pneumophila exposure risks in
buildings with diverse uses, plumbing configurations,
operation, and climate regions.

2. Methods
2.1 Sampling locations

Samples were collected (n = 258) from 26 buildings that were
either closed or operating at reduced capacity in 11 cities
(“sites”) in the United States, Canada, and Switzerland
between April and December 2020 (ESI† Fig. S1). All
buildings were connected to underground municipal
drinking water distribution systems and received water with
free chlorine (free chlorine buildings) or monochloramine
(chloramine buildings) as the secondary disinfectant, except
the building in Switzerland (CH-1), which received water
without a secondary disinfectant (“no residual” building). All
buildings from the same site were supplied by the same
distribution system. Source waters for municipal systems were
either surface water (five sites), groundwater (two sites), or
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mixed groundwater and surface water (four sites). Buildings
were large, multi-story, recreational, educational, office,
commercial, or mixed-use (e.g., research labs and offices)
facilities (Table 1). Samples were collected from showers (n =
101), manual faucets (n = 139), electronic (automatic) faucets
(n = 13), and bottle-filling stations and drinking fountains (n =
5). Samples included hot water (n = 114), cold water (n = 43),
or “mixed” water (n = 101; hot and cold water mixed prior to
the fixture). Samples included 203 first-draw and 55 flushed
samples. The results for these samples are presented together
except where noted.

Relevant building information was collected from owners
and maintenance staff, including estimated building
occupancy levels, building plumbing characteristics, and
details of water management plans and practices prior to,
during, and after building water shutdowns (Tables 1 and
S1†). Building-level monthly water usage data were obtained
for nine buildings (Fig. S2†). Building occupancy levels were
used as a proxy for water consumption because metered flow
data were not available for every building. At Site PA, samples
were collected from laboratory-scale shower rigs supplied by
building water. The building plumbing at Site CH was known
to contain L. pneumophila prior to 2020. Permission was
obtained prior to sample collection and results of testing
were communicated to building owners. While the
investigations at each site followed the same overall study
design, there were variations in fixture flushing and analysis
methods due to the collaborative nature of the sampling
campaign.

2.2 Sample collection

First-draw samples (n = 203) were collected from every fixture
sampled. Afterwards, flushed samples (n = 55) were collected
at a subset of locations, with flush times ranging from one to
30 minutes. Samples were collected without removing or
sanitizing aerators/showerheads (except at Site MA),
representing what users would experience upon opening
fixtures. For both first-draw and flushed samples, 1 to 1.5 L
of water was collected in a sterile container. Samples were
immediately split onsite for physicochemical (100 mL),
culture-based (100 mL; IDEXX Laboratories Inc., catalog
number WV120SBST-20), and DNA-based (0.8 L to 1.1 L)
analyses and processed the same day. Residual disinfectant
was quenched using sodium thiosulfate in subsamples used
for culture-based and DNA-based analyses. Sample totals by
analysis method and site are provided in Table S2.† Sampling
controls are described in Table S3.†

2.3 Physicochemical analyses

Chlorine species were measured using the N,N-diethyl-p-
phenylenediamine (DPD) colorimetric method and portable
spectrophotometers (Hach, Loveland, CO, USA) with limits of
detection (LOD) ranging from 0.02 to 0.05 mg L−1 as Cl2.
Chlorine residuals are presented as total chlorine for all sites
except for Site WV, where only free chlorine was measured

(Table S4†). Site-specific details of additional
physicochemical methods (including pH and temperature)
are included in Table S4.† Physicochemical parameters were
not recorded for samples collected at Sites CH and OH, and
most samples from Site IN.

2.4 Culture-based methods

Culturable L. pneumophila was quantified using Legiolert
according to manufacturer instructions for 100 mL potable
water samples (IDEXX Laboratories, Inc., Westbrook, ME,
USA, catalog number WLGT-20). The LOD was 10 MPN L−1,
and the upper limit of quantification (ULOQ) was 22 726
MPN L−1. Positive and negative controls were included per
manufacturer guidelines (Table S3†). Additional confirmation
of positive wells was not performed.

2.5 DNA concentration and extraction

DNA was filter-concentrated onto membrane filters with pore
sizes of either 0.2 or 0.4 μm on the day of sampling (Table
S5†). Filters were frozen at either −80 °C or −20 °C until
extraction. Samples were extracted using the methods
described in Table S5.† Filtration and extraction controls are
described in Table S3.†

2.6 qPCR and ddPCR

Of the 258 samples analyzed for culturable L. pneumophila, L.
pneumophila was quantified using PCR-based methods in 138
samples (n = 120 by qPCR and n = 18 by ddPCR) using
previously optimized assays that were validated by the
individual laboratories (referred to as Laboratories A to E;
Tables S6 and S7†). DNA extracts from Sites CA, WV, IN, and
OH were shipped overnight on dry ice to Laboratory A for
qPCR analysis (Table S7†). Laboratories A, B, and E analyzed
samples using qPCR with an assay targeting a single-copy
macrophage infectivity potentiator (mip) gene.58 Laboratory
D, which analyzed samples from Site QC, used the
proprietary iQ-Check® Quanti L. pneumophila real-time PCR
quantification kit (Bio-Rad, Hercules, CA, USA, catalog
number 3578103). Laboratory C analyzed samples from Site
PA using ddPCR and a different mip gene assay, which was
modified for use without a probe (Table S6†).59 Additional
qPCR and ddPCR details are included in Tables S6 and S7.†
Samples from Sites CH and MA were not analyzed for L.
pneumophila gene targets.

All laboratories followed the Minimum Information for
Publication of Quantitative Real-Time PCR Experiments
(MIQE) and Environmental Microbiology Minimum
Information (EMMI) guidelines.60,61 For qPCR, all samples,
standards, and controls were analyzed using triplicate
reactions on each plate, except for Laboratory D, which used
duplicate reactions (Table S7†). Serial dilutions of synthetic
DNA consisting of the 79 base pair (bp) amplicon with 30 bp
neutral adaptors on each end (gBlock, Integrated DNA
Technologies [IDT], Coralville, IA, USA; Table S6†),58 ranging
from 108 to 100 gene copies per reaction (gc per reaction)
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served as the standards for qPCR in all laboratories except
Laboratory D, which used the proprietary standards included
in the Bio-Rad kit. Efficiencies between 80% and 115% and
R2 values of at least 0.98 were required for all qPCR plates
containing positive samples (Table S8†). Any plate that did
not meet these criteria was re-run. For ddPCR, serial
dilutions of synthetic DNA (gBlock, IDT)59 were included on
each plate, as were no-template controls (Table S7†). No-
template controls were either negative or amplified at Cq
values less than the LOD for each group.

The qPCR/ddPCR LOD and lower limit of quantification
(LLOQ) were determined in each laboratory independently
using serial dilutions of standards with at least 21 replicates
across at least three plates, at concentrations ranging from
102 to 100 gc per reaction (Table S9†), except for Laboratory D
which followed kit instructions. The qPCR/ddPCR LOD was
defined as the lowest concentration at which at least 95% of
the standard replicates were detected,60 resulting in LODs
ranging from 21 to 1 × 105 gene copies per liter (gc L−1; 1 to
100 gc per reaction) across laboratories. The LLOQ was
defined as the lowest concentration where the coefficient of
variation was less than 25%,62 resulting in LLOQs ranging
from 3.5 × 102 to 2 × 105 gc L−1 (6.1 to 100 gc per reaction)
across laboratories. Details of the conversion of LOD and
LLOQ to gc L−1 are provided in eqn (S1).† Details of
inhibition testing at each laboratory are provided in Text S1.†

Cross-laboratory validation of quantitative standards was
performed using a single gBlock that was sent to all
laboratories using the Nazarian et al. assay (Fig. S3†).58

2.7 Data analysis

Data analyses were performed using R (version 4.1.1) and
RStudio (version 1.4.1717) using a custom R pipeline that
included the packages tidyverse, lubridate, and readxl.63,64

Because data were left-censored, imputation was performed,
replacing results (physicochemical, qPCR/ddPCR, and
Legiolert) less than the LOD with one half the LOD for
plotting, calculating summary statistics, and non-parametric
hypothesis testing. Legiolert results that were above the
ULOQ were set at 30 000 MPN L−1 for non-parametric analysis
and visualization. For qPCR/ddPCR data, values between the
LOD and LLOQ were replaced with the average of the LOD
and LLOQ to assign identical rank for non-parametric
analyses. Samples were considered positive by qPCR/ddPCR
if gene copy concentrations were above the LOD and
quantifiable if concentrations were above the LLOQ. As data
were non-normal (Shapiro–Wilk's, R function shapiro.test, p
< 0.01), hypothesis testing was conducted using the non-
parametric two-sample Wilcoxon rank sum test (“Mann–
Whitney”, R function wilcox.test) with a significance
threshold of 0.05. The R package stats was used to calculate
medians. Rank correlations were calculated using Kendall's
tau-b using cor.test, which is well-suited for nonparametric,
left-censored data.65 Correlation analysis and principal
component analysis (PCA) were performed using the R

packages vegan, Hmisc, GGally, forcats, corrplot, devtools, and
ggbiplot. The binomial generalized linear mixed-effects model
used to investigate the relationship between L. pneumophila
culture positivity, physicochemical parameters, and building
characteristics was performed using glmer, with the input
consisting of 112 samples from ten buildings. The equation
used for model generation is provided in eqn (S2).† Figures
were generated in R using the additional packages ggPlot2,
cowplot, scales, lubridate, repr, sf, rnaturalearth, maps, viridis,
ggrepel, and ggnewscale. The full R pipeline and associated
data are available on GitHub (https://github.com/kathdowd/
Dowdell_and_Healy_2023).

3. Results and discussion
3.1 L. pneumophila occurrence

3.1.1 L. pneumophila detection was building-specific. The
overall L. pneumophila sample positivity was 34% (n = 88 of
258) by Legiolert and 35% (n = 48 of 138) by qPCR/ddPCR.
However, L. pneumophila detection was limited to a few
specific buildings and was heterogeneous among buildings
within the same distribution system. Only seven of the 26
buildings yielded Legiolert-positive samples (IN-1, AZ-1, PA-1,
QC-1, QC-3, MI-3, and CH-1; Fig. 1A), and the vast majority of
positive samples (98%, n = 86 of 88) occurred in five
buildings: four free chlorine buildings (IN-1, AZ-1, PA-1, QC-
3) and the no residual building (CH-1). In these five
buildings, the percentages of Legiolert-positive samples
ranged from 65% to 100% (4–62 samples collected), and
median L. pneumophila concentrations in Legiolert-positive
samples ranged from 20 to >22 726 MPN L−1. The highest
concentrations of culturable L. pneumophila were observed in
Buildings AZ-1 (median: >22 726 MPN L−1) and QC-3
(median: 1198 MPN L−1), both of which yielded at least one
sample above the ULOQ (>22 726 MPN L−1). Similar results
were observed using qPCR/ddPCR: seven buildings had at
least one positive sample (AZ-1, PA-1, QC-3, WV-1, WV-2, MI-
1, CA-2), three of which (AZ-1, PA-1, QC-3) were also positive
by Legiolert. The median positive sample concentrations in
qPCR/ddPCR-positive buildings ranged from 158 to 3.1 × 106

gc L−1, with the highest concentrations (>106 gc L−1)
occurring in Buildings WV-1, WV-2, and QC-3 (Fig. S4†).

There was heterogeneity in L. pneumophila occurrence
among different buildings within the same distribution
system. For instance, at Sites IN and QC, only one building
yielded multiple Legiolert-positive samples while other
buildings yielded either one or zero positive samples.
Buildings that were positive for L. pneumophila tended to
have multiple positive fixtures, which has also been
commonly reported in the literature.66–68 For example,
though growth trends for L. pneumophila and Legionella spp.
cannot be directly compared, a 2019 survey reported that
buildings with Legionella spp. detection in the centralized hot
water systems had an average distal positivity of 83% and
had significantly higher average concentrations of Legionella
spp. compared to buildings without Legionella spp. in the
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centralized hot water system.69 In that same study, the
majority of systems with at least one positive sample showed
Legionella spp. positivity rates of at least 30% at distal sites.
It should be noted that distal site positivity does not
necessarily predict incidence of Legionnaires' disease, which
also depends on factors such as exposure route and
population susceptibility.70,71

3.1.2 Building-specific features may have shaped L.
pneumophila positivity. The buildings with multiple
Legiolert-positive samples had identifiable building
plumbing operational and/or design deficiencies that did not
align with industry recommended practices. Building IN-1
(Legiolert positivity: 75% [n = 3 of 4]; qPCR positivity not
measured) is a large, single-family home converted to a
multi-family residence with an oversized water heater (100-
gal heater with 115-gal insulated holding tank). Building AZ-1
(Legiolert positivity: 100% [n = 7 of 7]; qPCR positivity: 100%
[n = 7 of 7]) uses a whole-building water softening system that
treats water upon entry into the building. Samples collected
from the water entry point revealed that the inlet water was
Legiolert-negative and contained a chlorine residual of 0.59
mg L−1 as Cl2,

53 whereas the sample from the water storage
tank immediately after the softener was positive for L.
pneumophila by both Legiolert (10 616 MPN L−1) and qPCR
(650 gc L−1) and had a low chlorine residual (0.05 mg L−1 as
Cl2). These results indicate that residual disinfectant loss was
occurring in the water softener and storage tank. Previous
investigations in this building found that the softener was
oversized for building water demand, leading to high water
residence times in the softener.72,73 Additionally, AZ-1 is a
green building (LEED platinum-certified) equipped with low-
flow fixtures. Buildings with low-flow water fixtures have
previously been linked to high water residence times and, in
certain cases, L. pneumophila occurrence.12,72,73 Building PA-1
(Legiolert positivity: 94% [n = 17 of 18]; ddPCR positivity:
67% [n = 12 of 18]) is a laboratory-scale experimental shower
rig consisting of three water heaters, each of which supplies
three showers. The water heaters were operated at 49 °C and
thermostatic mixing valves limited water temperature to 40
°C at the fixtures. After four months of no water use (while
still maintaining the 49 °C heater set point), the median L.
pneumophila concentration in first-draw samples was 66 MPN
L−1. Building QC-3 (Legiolert positivity: 83% [n = 19 of 23];
qPCR positivity: 91% [n = 21 of 23]) is a large sports building
with a complex hot water system, which includes four water
heaters in series. Issues identified included that a portion of
the returned hot water was mixed with the hot water exiting
the water heaters, resulting in a decrease of the distributed
hot water temperature to below 60 °C; a single thermostatic
mixing valve for many showerheads (>20) created large
volumes of tepid water; and the third water heater was found
to be off but still connected to the system, resulting in
cooling of hot water to 30 °C.51 Building CH-1 (Legiolert
positivity: 65% [n = 40 of 62]; qPCR positivity: not measured)
is a mixed-use building that was historically culture-positive
for L. pneumophila and fluctuates the water heater set point

between 45 °C (5 days per week) to 60 °C (2 days per week) to
save energy.56 Building CH-1 also reported significant heat
losses in the primary recirculating line and passive
recirculation on individual floor loops, leading to suboptimal
temperatures for control of L. pneumophila.

3.1.3 L. pneumophila occurrence varied by secondary
disinfectant type. Five free chlorine buildings yielded
multiple Legiolert-positive samples, whereas only a single
sample was Legiolert-positive from the chloramine buildings.
Thus, the positive buildings strongly influenced the overall
sample positivity by secondary disinfectant residual, resulting
in free chlorine samples having a substantially higher
Legiolert-positivity (37%, n = 47 of 127) than samples
collected from chloramine buildings (1.4%, n = 1 of 69,
Fig. 1B). Culturable L. pneumophila results were also
significantly higher in free chlorine samples compared to
chloramine samples (p < 0.01). The median L. pneumophila
concentration in the Legiolert-positive samples from the free
chlorine buildings was 126 MPN L−1. The concentration
measured in the single Legiolert-positive sample from the
chloramine buildings was 133 MPN L−1. Similar trends were
observed in qPCR/ddPCR-positive samples, where positivity
was 52% in free chlorine building samples (n = 45 of 86) and
6% in chloramine building samples (n = 3 of 52, Fig. S5†).
Median concentrations in qPCR/ddPCR-positive samples were
5.3 × 103 gc L−1 (n = 45) in the free chlorine buildings and 1.1
× 105 gc L−1 (n = 3) in the chloramine buildings.

Drinking water systems using chloramine for secondary
disinfection have previously been reported to have lower L.
pneumophila occurrence and concentrations compared to free
chlorine,15,68,74–76 even in buildings with reduced
occupancy.45 This study supports these findings, as only one
sample collected from chloramine systems was culture-
positive for L. pneumophila. The low rate of L. pneumophila
occurrence in chloramine systems was maintained despite
41% of the samples containing little to no chlorine residual
(≤0.1 mg L−1 as Cl2; n = 28 of 69). One reason for lower L.
pneumophila occurrence in chloramine systems may be that
monochloramine has been reported to better penetrate
biofilms,77–80 which could result in enhanced inactivation of
L. pneumophila within drinking water system biofilms. Other
possible explanations for lower L. pneumophila occurrence in
chloramine systems include that chloramine can be more
stable in building water systems compared to free chlorine,
though the presence of nitrification can reduce chloramine
stability.77 Chloramine may also more efficiently inactivate L.
pneumophila and its amoebal hosts compared to free
chlorine, and one study proposed that chloramine may
trigger encystment of amoebae, preventing L. pneumophila
infection.81–83 Regardless of the mechanism, these results
suggest that drinking water systems that use chloramine for
secondary disinfection may better control L. pneumophila.
However, most buildings cannot choose which residual
disinfectant is supplied in the water, and there are other
concerns with monochloramine that should be considered
when evaluating secondary disinfectants, such as the
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potential for nitrification, formation of unregulated disinfection
byproducts, and growth of other opportunistic pathogens.84–86

While samples obtained from the no residual building
(CH-1) exhibited the highest Legiolert-positivity (65%, n = 40
of 62), this building was previously reported to contain L.
pneumophila (i.e., when water demand was typical).87 The few
previous studies that have examined L. pneumophila in
distribution systems without a disinfectant residual generally
report low prevalence of L. pneumophila,59,88–91 though there
have been reports of L. pneumophila occurrence in some
building hot water systems.92,93 A study conducted prior to the
pandemic reported low occurrence of L. pneumophila in Dutch
buildings, which were required to flush weekly.89 Additional
studies are needed to evaluate the impact of low water use
resulting from the COVID-19 pandemic on buildings in
distribution systems without residual disinfection.

3.2 Impacts of physicochemical parameters and flushing

3.2.1 Secondary disinfectant concentration influenced
presence and concentrations of L. pneumophila in systems
with residual disinfection. Despite reduced occupancies in
the buildings and the limited use of water quality mitigation
measures (Tables 1 and S1†), 69% (n = 101 of 146) of the
first-draw samples analyzed for chlorine (from systems with
residual disinfection) contained a detectable chlorine
residual (≥0.02 or ≥0.05 mg L−1 as Cl2) but the median
concentrations were low (free chlorine buildings: <0.05 mg
L−1 as Cl2; chloramine buildings: 0.13 mg L−1 as Cl2; Fig.
S6A†). First-draw samples with detectable chlorine residuals

were observed in buildings regardless of reported occupancy
or preventative maintenance practices. Detectable chlorine in
first-draw samples may be a result of water age being lower
than expected due to water demand from leaks, maintenance
activities, air conditioning systems or cooling towers, and/or
operation of treatment systems (e.g., water softeners that
automatically regenerate). Though occupancy was low, recent
use of fixtures may also have contributed to the presence of
residuals, since access to study fixtures was not restricted at
all sites prior to sampling. Flushed samples tended to have
higher median residuals (free chlorine: 0.05 mg L−1 as Cl2;
chloramine: 0.88 mg L−1 as Cl2; Fig. S6A†). The finding that
many samples contained measurable disinfectant residuals
differs from other investigations of COVID-19-related
building closures, which have reported that measurable
disinfectant residuals were lacking in most samples.45,49 This
difference in findings is likely linked to tap use prior to
sampling.

L. pneumophila positivity in disinfected samples generally
decreased with increasing disinfectant residual (Fig. 2A, S7
and S8†). In free chlorine buildings, approximately 80%
(78%, n = 35 of 45 by Legiolert; 82%, n = 37 of 45 by qPCR/
ddPCR) of L. pneumophila positive samples occurred when
the chlorine residual was ≤0.1 mg L−1 as Cl2 (Fig. S7C and
D†). Only three free chlorine samples were Legiolert-positive
with chlorine residuals above 0.2 mg L−1 as Cl2, and the
highest chlorine residual in the Legiolert-positive samples
was 0.4 mg L−1 as Cl2. The single Legiolert-positive sample
from a chloramine building had a chlorine residual below
the detection limit (<0.05 mg L−1 as Cl2). However, the other

Fig. 1 Culturable Legionella pneumophila concentrations (MPN L−1) by (A) building and (B) secondary disinfectant type. Marker color represents
flush condition, where blue circles are first-draw samples and green circles are flushed samples. The dashed horizontal line indicates the LOD (10
MPN L−1) and the dotted horizontal line indicates the ULOQ (22 726 MPN L−1). Results below the LOD are plotted at one-half the LOD (5 MPN L−1).
Results above the ULOQ are plotted as 30000 MPN L−1.
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27 chloramine samples that contained little to no chlorine
residual (≤0.1 mg L−1 as Cl2) were Legiolert-negative.

The question of what concentrations of residual
disinfectant are required to control L. pneumophila in
building water systems is one of pressing importance for
public health. In this study, only 7% (n = 3 of 45) of samples
collected from free chlorine systems that contained free
chlorine concentrations above 0.2 mg L−1 as Cl2 were culture-
positive for L. pneumophila. This finding is similar to the
results from other studies, which have suggested that free
chlorine concentrations ranging from 0.1 to 0.4 mg L−1 as Cl2
may control Legionella spp. or L. pneumophila in distribution
systems and building plumbing.30,94–96 However, at least one
study has reported no relationship between building water
system free chlorine concentration and Legionella spp.
occurrence.69 While higher concentrations of chloramine have
been found to decrease the occurrence of L. pneumophila, the
concentration required for prevention of L. pneumophila varies
in the literature.30,75,94,97,98 The relationship between L.
pneumophila occurrence and chloramine concentrations could
not be characterized in this study due to the low overall
positivity in chloramine systems. Additional studies are needed
to elucidate the factors that influence the relationships
between residual disinfectants and L. pneumophila to identify
concentrations that may prevent occurrence.

3.2.2 Sample temperature and pH were not associated
with L. pneumophila culture-positivity. Of the samples where
temperature was measured (n = 182), first-draw sample (n =
146) water temperatures were similar to ambient building
temperatures regardless of their source (hot, cold, or mixed),
with an overall median of 25 °C (Fig. S6C†). Only 19% (n = 4

of 21) of cold water first-draw samples were below 20 °C
(median: 23 °C), and only 5% (n = 2 of 39) of hot water first-
draw samples were above 50 °C (median: 22 °C, Fig. 2C). In
paired first-draw and flushed samples where temperature
was recorded (n = 28 pairs), flushing significantly changed
the water temperature, reducing the cold water temperatures
and increasing hot and mixed water temperatures (p < 0.05,
Fig. S9†).

Overall, 46 samples with corresponding temperature
measurements were Legiolert-positive, including one cold
water sample, five hot water samples, and 40 mixed water
samples. Among these samples, temperatures ranged from 22
°C to 43 °C (median: 29 °C), which is within the suitable
growth range for L. pneumophila (20 °C to 45 °C).67,99,100 Within
these samples there was no apparent trend between
temperature and L. pneumophila occurrence or concentration
(Fig. 2C). Culture-negative samples occurred at all temperatures
measured (n = 136, 14 °C to 54 °C) and sample temperature
types (hot, cold, and mixed). The majority of Legiolert-negative
samples (82%, n = 111 of 136) were also at temperatures within
the L. pneumophila suitable growth range. In samples analyzed
using qPCR/ddPCR for which temperature was recorded (n =
130), the temperature in the positive samples (n = 48) ranged
from 20 °C to 43 °C and included only hot (n = 10) and mixed
(n = 38) water samples. In qPCR/ddPCR-negative samples (n =
82), temperatures ranged from 17 °C to 52 °C (Fig. S10†).
Concentrations of L. pneumophila above 1 × 106 gc L−1 occurred
in three samples, which were all at approximately room
temperature (20 °C to 26 °C). These samples included two hot
water samples from Buildings WV-1 and WV-2 and one mixed
water sample from Building QC-3.

Fig. 2 Physicochemical parameters and culturable L. pneumophila (MPN L−1) for samples by building. A) Chlorine residual (mg L−1 as Cl2), B) pH,
and C) temperature. For A and B, marker shape represents secondary disinfectant type, with circles being free chlorine and squares being
monochloramine. For C, marker shape shows the water temperature type, with upside down triangles being cold water samples, diamonds being
hot water samples, and triangles being hot and cold water mixed. The dashed line shows the LOD. The dotted line shows the ULOQ. Buildings
CH-1, IN-2, IN-3, IN-4, and OH-1 are excluded because physicochemical parameters were not recorded.
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It is recommended that hot water temperatures be at least
60 °C in water heaters and 55 °C at distal points to control L.
pneumophila.30,101 In this study, only four of the 52 hot water
samples were at temperatures of at least 50 °C, and none
were at or above the recommended temperature of 55 °C.
Additionally, the median first-draw hot water temperature
was 22 °C. L. pneumophila was not detected in samples with
temperatures above 43 °C. The temperature range of L.
pneumophila positive samples (20 °C to 43 °C) is in alignment
with previous studies, which reported that temperatures
between 20 °C and 40 °C were associated with increased L.
pneumophila occurrence.96,102,103 However, observed water
temperature at distal fixtures may not always be helpful in
predicting L. pneumophila concentrations because distal
sampling locations acclimate to ambient temperature.69,95,104

Therefore, approaches that incorporate whole-building
temperature profiling may be more effective for assessing the
influence of hot water temperature on L. pneumophila.99

Intermittent heating, and other energy-saving methods have
previously been linked to lower water qualities due to
decreased hot water temperatures in building
plumbing.105,106 Consistent with this, two buildings with
multiple culture-positive samples (CH-1 and AZ-1) practiced
hot water temperature fluctuation for energy savings.

Additional physicochemical parameters, including pH
(Fig. 2B and S11†), dissolved oxygen (Fig. S12†), and electrical
conductivity (Fig. S13†) were measured in a subset of samples
(Tables S4 and S10†). Sample pH in chloramine buildings
(median: 9.1, n = 69) was higher than the pH of samples from
free chlorine buildings (median: 8.2, n = 112; Fig. 2B and
S6B†), most likely because higher pH is a strategy to reduce
nitrification, which can lead to diminished chloramine
residual, nitrate/nitrite formation, and reductions in pH and
dissolved oxygen.107 pH values in Legiolert-positive samples
ranged from 8.0 to 10.0. Though the median pH was higher
in Legiolert-positive samples (8.6, n = 46) than in Legiolert-
negative samples (8.3, n = 135), pH tended to co-vary by
building. In paired samples where pH was measured (n = 27),
pH was significantly different between first-draw and flushed
samples (p < 0.05). pH may influence the occurrence of L.
pneumophila in distribution systems and building water,108

though one laboratory study reported that L. pneumophila can
grow in water with pH values ranging from 5.5 to 9.2.103 A
2021 cooling tower study suggested that high pH (9.6) may be
a technique for L. pneumophila control, though the authors
noted this may be related to a reduction in protozoan hosts
at high pH.109 Ultimately, additional research is needed to
investigate the pH sensitivity of L. pneumophila alone and
within amoebae.

3.2.3 Fixture flushing did not consistently reduce L.
pneumophila occurrence. The impact of flushing during
sampling on L. pneumophila was investigated using paired
samples from 48 fixtures (n = 96 samples from 12 buildings).
While flushing (for two to 30 minutes, median: five minutes)
tended to increase disinfectant residual (Fig. S14†) and shift
water temperatures toward cold influent and hot water set

points (Fig. S9†), the impact of flushing on Legiolert-
positivity varied by fixture: 24 pairs were Legiolert-negative in
both first-draw and flushed sample, 18 were positive in both,
three fixtures went from negative to positive (PA-1 and CH-1),
and three fixtures went from positive to negative with
flushing (CH-1; Fig. S15†). With qPCR/ddPCR, nine fixtures
were negative in first-draw and flushed samples, three
fixtures were positive in both samples (PA-1), four fixtures
went from negative to positive (PA-1 and WV-1), and four
went from positive to negative (in PA-1 and WV-2; Fig. S16†).
When only considering Legiolert-positive pairs (n = 18 pairs
from three buildings [PA-1, CH-1, and IN-1]) flushing did not
significantly change the concentration of culturable L.
pneumophila (median decrease of 27 MPN L−1 with flushing,
p = 0.24). However, at individual sampling locations, flushing
was also observed to increase L. pneumophila concentrations
as much as 549 MPN L−1 (IN-1) and decrease concentrations
by as much as 1.6 × 104 MPN L−1 (CH-1). In the three qPCR/
ddPCR-positive sample pairs (PA-1), the impact of flushing
on L. pneumophila gene copies was similarly mixed (L.
pneumophila concentrations increased in one fixture and
decreased in two).

Most guidance on L. pneumophila prevention and building
recommissioning recommends flushing to introduce fresh
water from the distribution system into building
plumbing.110–115 Recommendations typically include volume-
or water-quality-based flushing, usually of outlets at specific
locations (e.g., dead-ends) or the full building water
system.110,111,116 Previous studies have reported that flushing
that is not performed systematically or that does not consider
building plumbing characteristics may be ineffective for
improving building water quality.117,118 In practice, a variety
of flushing strategies may be employed, which was observed
in the reported water management practices of the study
buildings. Only two buildings (MI-1 and MI-2) of the 17
buildings for which additional information was provided
reported regularly flushing building plumbing while
occupancy was restricted (Table S1†). Of these buildings, MI-
1 tended to have higher first-draw disinfectant residuals
(median: 0.8 mg L−1 as Cl2, n = 6) than the disinfectant
residuals in first-draw samples from other chloramine
buildings (median: 0.09 mg L−1 as Cl2, n = 48). Interestingly,
samples from MI-1 were among the only samples from
chloramine buildings where L. pneumophila was detected by
qPCR, though the results were below the LLOQ (Fig. S4†).
None of the samples from MI-2 (n = 7) contained measurable
concentrations of disinfectant. While water management
practices varied by building, only one (OH-1, of n = 21
respondents) reported having a formal building water
management plan that predated the pandemic and one (CH-
1) reported a pre-existing informal management plan.
Though the effectiveness of flushing for reducing L.
pneumophila concentrations was mixed, this study was not
designed to specifically investigate flushing strategies and
additional work is needed to determine optimal flushing
methods after extended stagnation.
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3.2.4 Fixture type was not associated with differences in L.
pneumophila occurrence. Showers and other fixtures that
generate droplets and aerosols are of particular concern
for opportunistic pathogen respiratory infections because
inhalation is the primary route of exposure.119–121 Among
showers and manual faucets, the primary fixture types in
this study, overall culture-positivity was similar (showers:
38%, n = 38 of 101; manual faucets: 34%, n = 47 of 139).
By qPCR/ddPCR, showers were 45% positive (n = 38 of 84)
and manual faucets were 11% positive (n = 4 of 36).
However, the distribution of fixture types sampled was not
uniform across buildings. Positivity in electronic faucets (n
= 13 samples across four buildings) was 23% by Legiolert
(n = 3, AZ-1) and 46% by qPCR (n = 6, AZ-1 and WV-1).
Electronic faucets and other water-saving fixtures have
been previously linked to Legionella spp.
occurrence.12,14,105,122,123

3.2.5 Source water type was not associated with
differences in L. pneumophila occurrence. Source water type is
another factor that might relate to L. pneumophila occurrence.124

This study included 16 samples from buildings receiving treated
groundwater (n = 5 buildings, Sites IN and OH), 136 samples
from buildings receiving treated surface water (n = 15 buildings,
Sites WV, QC, VA, MA, and CA), and 106 samples from buildings
receiving mixed groundwater and surface water (n = 6 buildings,
Sites AZ, PA, MI, and CH). The sites using groundwater received
water with free chlorine as the secondary disinfectant. The
surface water and mixed source water sites included systems
using free chlorine and chloramine. Median concentrations of
culturable L. pneumophila by source water type were below the
method LOD (<5 MPN L−1) for groundwater and surface water
and 23 MPN L−1 for mixed source water (Fig. S17†). Nineteen
percent (n = 3 of 16) of samples from groundwater systems and
15% of surface water samples (n = 20 of 136) were culture-
positive for L. pneumophila, while culture positivity was 61% (n =
65 of 106) in mixed source water samples. Among surface water
samples from free chlorine systems (n = 86), which included
samples from Sites QC and WV, the median concentration was
below the LOD (<10 MPN L−1). For mixed water samples from
free chlorine systems (n = 25), which included samples from Sites
AZ and PA, the median was 58 MPN L−1. Municipal drinking
water systems using groundwater have previously been reported
to have lower concentrations of Legionella spp.59 and to be less
associated with legionellosis outbreaks compared to those using
surface water sources.124 In contrast to previous studies, samples
from groundwater and surface water systems in this study
contained similar concentrations of L. pneumophila, with mixed
source water having the highest L. pneumophila positivity.
However, as this study was not designed to specifically test the
influence of source water, differences between the groups, such
as sample size, disinfectant type, and building-specific
characteristics, prevented a more thorough evaluation of the role
of source water type in L. pneumophila occurrence. Findings from
this study and others support the need for additional
investigation of the potential influence of source water type on L.
pneumophila in drinking water systems.

3.2.6 Combined effects of quantitative physicochemical
and building parameters in L. pneumophila occurrence. To
investigate the impact of building characteristics and
physicochemical parameters on L. pneumophila culture-
positivity in free chlorine buildings, a binomial generalized
linear mixed model (glmm) was developed. The model was
developed using free chlorine samples from 10 buildings
where associated physicochemical measurements and
building characteristics were available (n = 112) because
disinfectant type has been previously shown to influence L.
pneumophila occurrence.68,74,125 The model included the
physicochemical parameters pH, temperature, and free
chlorine concentration and the building-specific parameter
building age as fixed effects; these parameters were chosen
based on measured factors previously reported to influence
Legionella spp. occurrence.66,89,126–128 To account for
clustering by building, building identity was included in the
model as a random effect. This analysis showed that none of
the parameters were significantly associated with L.
pneumophila positivity (p > 0.05, Table S11†). While it was
observed that culture positivity was significantly associated
with lower disinfectant residuals overall, when looking at the
relationship between culture positivity and disinfectant
residual within specific buildings, this trend was not
observed, likely due to building-specific factors, as discussed
in section 3.1.2. Though no parameters met the significance
threshold, pH was the model input with the greatest effect
on the probability of L. pneumophila-positivity (p = 0.14, odds
ratio: 10.9; see eqn (S2)† for equation). A principal
component analysis (PCA) was also used to investigate the
impact of multiple parameters on L. pneumophila occurrence.
L. pneumophila positivity again could not be fully explained
by the quantitative variables included, but most Legiolert-
positive samples clustered in a region representing lower
chlorine concentrations (Fig. S18†).

3.3 L. pneumophila quantification with Legiolert versus
qPCR/ddPCR

L. pneumophila was quantified in samples from 17 buildings
using qPCR (n = 120) and one building using ddPCR (PA-1; n
= 18). Of these samples, 35% (n = 48 of 138) were positive by
qPCR/ddPCR and 34% (n = 88 of 258) were positive using
Legiolert, with an 87% (n = 120 of 138) agreement between
qPCR/ddPCR and Legiolert (positive by both methods: n = 37;
negative by both methods: n = 83). The 13% (n = 18 of 138) of
samples where there was disagreement between the two
methods included 11 samples (8%) that were positive only by
qPCR/ddPCR (PA-1, QC-3, WV-1, WV-2, MI-1, CA-2) and seven
samples (5%) that were positive only by Legiolert (PA-1 and
MI-3). The samples that were only positive by Legiolert
exhibited low concentrations (median: 32 MPN L−1), and all
but one (n = 6 of 7) were collected from PA-1 and analyzed
using ddPCR, indicating that the ddPCR LOD and/or DNA
extraction recovery efficiency may have impeded detection.
Samples positive only by Legiolert (5% of samples) could
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have been false positives, which have been observed with
rates ranging from 3–4% in previous studies.129–131 However,
because confirmation testing of positive wells was not
performed, the extent to which these samples were false
positives is unclear. The majority of samples that were
positive only by qPCR/ddPCR (n = 9 of 11) were quantifiable
(above the LLOQ), spanning the full range of L. pneumophila
concentrations (102 to 106 gc L−1, Fig. 3A), indicating the
presence of dead or non-culturable L. pneumophila.

Samples positive and quantifiable by both methods had a
median 0.72 log more L. pneumophila measured by qPCR/
ddPCR compared to Legiolert (n = 31, Fig. 3B). However,
seven samples that were positive by both methods yielded
higher results with Legiolert than qPCR/ddPCR (median
difference: 0.32 log). Linear regression analysis of the
quantifiable samples resulted in a line with a slope of 0.74
and y-intercept of 0.07 (R2 = 0.47, Fig. 3B). This analysis was
used to estimate the relationship between qPCR/ddPCR and
Legiolert, but, as shown in Fig. 3B, this relationship may be
influenced by location-specific characteristics. Among all
samples analyzed by qPCR and Legiolert, there was a negative
correlation (Kendall's tau = −0.277, p < 0.001, n = 138), likely
due to the way non-quantifiable values were substituted.
When only the quantifiable data are considered, the
correlation is stronger and positive (Kendall's tau = 0.493, p
< 0.001, n = 31).

Previous studies have reported higher Legionella spp.
percent positivity by qPCR than culture-based methods,
attributing this difference to higher sensitivity of DNA-based

methods and the inclusion of cells that are non-viable and/or
non-culturable.132–134 However, the relatively high LODs of
some of the laboratories (100 gc per reaction, translating to
up to 105 gc L−1; Table S9†), as well as losses during
concentration and extraction, may have prevented the
detection of low concentrations of L. pneumophila DNA in
some samples. The higher concentrations observed with
qPCR/ddPCR compared to Legiolert agree with previous
studies, which have reported that qPCR results were 0.5 to 3
log higher than the corresponding culture-based
results.43,94,133 The correlations between quantifiable samples
(Kendall's tau = 0.493; linear regression slope = 0.74; Fig. 3B)
were similar to those reported in previous studies comparing
qPCR to culture-based methods.134,135

Action levels for L. pneumophila are primarily based on
plate culture methods, such as the International Organization
for Standardization (ISO) method 11 731, which yield results
in colony forming units (CFU) per volume.30 However, liquid
culture and DNA-based methods like those used in this study
are increasingly being used for environmental monitoring
due to their ease of use and reduced time to results.42–44 L.
pneumophila action levels that have been proposed by various
publications and organizations vary widely: risk-based limits
vary from 14.4 CFU L−1 (disability adjusted life year, 10−6

DALY target) to 1410 CFU L−1 (10−4 annual probability of
infection target) in non-healthcare showers and from 12.3
CFU L−1 to 4670 CFU L−1 for total building water fixture
exposures;136 1000 CFU L−1 is recommended by the European
Working Group for Legionella Infections (EWGLI);137 and

Fig. 3 Culturable L. pneumophila results (log(MPN L−1)) versus qPCR/ddPCR results (log(gc L−1)). A) Results for all samples analyzed by both
Legiolert and qPCR/ddPCR (n = 138). The solid black diagonal line has a slope of 1 for reference. Samples that were below the LOD were plotted
at one half the LOD (open squares). qPCR/ddPCR samples between the LOD and LLOQ were plotted as the average of the LOD and LLOQ (open
diamonds). Samples above the LLOQ were plotted as filled circles. Results above the Legiolert ULOQ were plotted at 30000 MPN L−1. B) Results
for the subset of samples that were quantifiable by both methods (n = 31). The blue line is the linear regression. The dashed horizontal line
indicates the Legiolert LOD (10 MPN L−1) and the dotted horizontal line indicates the Legiolert ULOQ (22 726 MPN L−1).
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health outcome-based levels are as high as 50 000 CFU L−1.30

To place MPN and gene copy results in a health context given
existing standards, they must be converted to approximate
CFU. Previous studies have found MPN to be equivalent to
approximately 1.2 times CFU concentrations.129,138 Using this
approximation, the number of samples in the current study
that would exceed action thresholds ranged from 33 samples
from five buildings using the adjusted Hamilton et al. 14.4
CFU L−1 threshold,136 25 samples from four buildings if
using the adjusted EWGLI 1000 CFU L−1 threshold,137 and up
to three samples (samples above the Legiolert ULOQ) when
using the adjusted 50 000 CFU L−1 threshold.30 It should be
noted, however, that none of the buildings included in the
study were associated with any legionellosis infections. As
suggested by others, a combination of routine monitoring
using DNA-based methods to monitor trends and focused
investigations with culture-based methods when issues arise
may be ideal for balancing cost and public health goals.30

Additional studies that compare the performance of these
methods in environmental matrices and realistic building
management scenarios and relate the results to health
outcomes and risk assessment are needed to bridge the gap
between results and action limits.

3.4 Limitations and future work

Although this study represents the most expansive drinking
water sampling campaign conducted during the COVID-19
pandemic, the study sample size is limited and, therefore,
cannot represent conditions in all non-residential buildings.
Additional limitations of this study include that most sites
were not monitored for L. pneumophila prior to COVID-19
pandemic building closures, which prevented investigation of
how L. pneumophila concentrations changed over time with
reduced water use in buildings. Differences in sample
analysis methods between laboratories may also influence
results, particularly the use of different DNA extraction
methods, which have been shown to influence recovery of
total DNA.139–141 Detailed water use data were also only
available for nine of the buildings. Also, other water quality
issues that can result from low water use, such as occurrence
of other opportunistic pathogens, metals, and disinfection
byproducts, were not assessed in this study.45,46,49,142

Additional work is needed to fully characterize the impact of
reduced water use periods on building water quality and
inform how buildings can prevent or react to reduced water
use.

4. Conclusions

Significant attention was paid by researchers to the potential
public health threat posed by exposure to L. pneumophila in
building water systems during COVID-19 pandemic-related
building closures.24,26 This study found that in 20% of the
large, low occupancy buildings sampled, building water
contained significant concentrations of culturable L.
pneumophila (>102 MPN L−1). However, building water

samples from the majority of sites did not contain
substantial concentrations of L. pneumophila. This study is
unique in that it included data from geographically and
structurally diverse buildings in three countries. Results from
smaller studies that have investigated the impact of the
COVID-19 pandemic on L. pneumophila in building water
have ranged from widespread contamination47 to little to no
occurrence.45 This study reflects the range of results reported
in the literature, as studies focused on only one or a few of
the selected sites would yield vastly different results. Similar
to previous reports, the choice of secondary disinfectant was
the factor most strongly associated with sample positivity,
with the overwhelming majority of L. pneumophila positive
samples collected from buildings receiving drinking water
disinfected with free chlorine compared to monochloramine.
Heterogeneity was also observed between buildings within
the same free chlorine distribution systems, indicating that
building-specific factors, in addition to secondary
disinfectant selection, impacted which buildings contained
substantial concentrations of L. pneumophila. While the
impact of COVID-19 pandemic building closures on
legionellosis rates remains unclear, this study highlights that
large buildings that receive chlorinated water and have
building plumbing characteristics or management practices
that are not in-line with best practices may be particularly
vulnerable to L. pneumophila occurrence during low flow
periods.143–145
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