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Structure-based drug design protocols may encounter difficulties to investigate poses when the
biomolecular targets do not exhibit typical binding pockets. In this study, by providing two concrete
examples from our labs, we suggest that the combination of metadynamics free energy methods
(validated against affinity measurements), along with experimental structural information (by X-ray
crystallography and NMR), can help to identify the poses of ligands on protein surfaces. The simulation
workflow proposed here was implemented in a widely used code, namely GROMACS, and it could
straightforwardly be applied to various drug-design campaigns targeting ligands’ binding to protein
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1. Introduction

Ligands targeting protein surfaces (LTPS) may exert their
beneficial pharmacological action in several ways. For instance,
they may act by directly affecting protein/protein interactions'
and/or as allosteric ligands, i.e. by altering the structures of
receptors’ binding sites, these ligands may increase drug or
substrate affinity.®® Also, they may affect protein reactivity,
preventing, for instance, the release of prosthetic groups.'
Unfortunately, LTPS often bind in the micromolar range, which
is considered too low for classical pharmaceutical applications.
This is calling for the medicinal chemists to adapt other experi-
mental and/or computational approaches to the identification
of high-affinity LTPS. This issue is however far from trivial.
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On the one hand, the power of drug-screening approaches
based on machine learning (ML) to improve the potency of
ligands with micromolar affinity might be limited due to the
rather small datasets. An analysis of the Protein Data Bank
(PDB) (https://www.rcsb.org/) showed that only ~0.3% of the
190000 protein hits featured complexes with LTPS whose
binding affinity data have been measured. On the other hand,
rational drug design is also not void of problems. The over-
whelming majority of these LTPS/protein structures are deter-
mined by X-ray crystallography. In the solid state, the poses
from LTPS might differ significantly from those in solution as
high-energy intermolecular contacts between LTPS and the
protein can be artificially stabilized by a protein’s crystal
packing." ™ This situation differs significantly from ligands’
poses in receptors’ and enzymes’ cavities, which are often very
similar to those in solution.'**°

The NMR structures of LTPS/protein complexes in the PDB
are only a fraction of those solved by X-ray (less than 0.01% of
the PDB). However, NMR may also provide useful information
at the qualitative level in case it is not able to determine the
structure; furthermore, the data coming from NMR experiments
intrinsically contain the fluctuations of the relevant movements of
the system. This information can be rationalized, for instance,
by monitoring the changes in chemical shifts of a protein upon
ligand binding in aqueous solution."” " Finally, computer-aided
drug design also presents difficulties when addressing LTPS/
protein complexes: the lack of deep binding pockets makes it
difficult to efficiently use molecular docking protocols and high-
throughput screening - the first steps of the “in silico” design of
new potential therapeutic ligands.*
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Here we underline a general way to address the unique
binding mode of LTPS. We propose a combination of advanced
molecular simulation methods, such as metadynamics,* > as
a possible route to accurately identify LTPS poses on the target
proteins in an aqueous solution, if the X-ray structures or NMR
information is available. Metadynamics is an excellent method
to be used here as it allows efficiently predicting the complex
free energy landscape associated with ligand binding as a
function of several collective variables (CVs) (for instance,
Section 2 uses three CVs). There are several other excellent
methods able to calculate free energy profiles (such as umbrella
sampling), but metadynamics is more cost-effective than
umbrella sampling, and as a purely explorative approach
(especially in ligand binding), it is one of the few viable
techniques.

In our proposed protocol, the simulation predicts a ligand’s
pose and potency, while the experiment validates the model.
To illustrate how this works in practice, we consider two
examples from our research. First, we compare our predictions
with accurate X-ray crystallography data, to provide an insight
into the drug binding modes on passing from the solid state to
solution. We focus here on the human nutrient deprivation
autophagy factor-1 (NAF-1) protein target for a variety of dis-
eases, including cancer (work performed here). The second
exploits the qualitative NMR information to predict the poses
of a ligand on the prion protein, as described in ref. 24. The
results are validated by comparing the calculated free energy of
binding with the corresponding experimental values. In both
cases, our prediction suggested multiple poses for the associa-
tion of the ligands with the proteins in an aqueous solution.
The latter resulted in a quite complex free energy landscape of
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ligand binding, with multiple minima separated by small
barriers. The protocol can be straightforwardly extended to other
ligand/proteins complexes having similar characteristics of ligand
binding and available experimental structural information.

2. NAF-1 case study

The NAF-1 NEET protein contains two [2Fe-2S] clusters, which
are ligated by a unique 3Cys:1His coordination through the two
iron atoms (Fig. 1a)."® The clusters exist in an oxidized state,
with two ferric iron ions (Fe(m)), and in a reduced state, in
which the His-bound iron is reduced (Fe(m)).>>*® The His
residue confers the cluster lability, and the clusters can be
transferred to a variety of acceptor proteins.'® An abnormal
expression of NAF-1 was found to be involved in various
neurological disorders, e.g. Alzheimer’s disease,”” and to be
the cause of Wolfram Syndrome type 2.°*?° Thus, ligands
binding NAF-1 may disrupt cluster release; hence, their devel-
opment can be a powerful therapy against various diseases.
The NAF-1 protein is anchored by two o-helices to the outer
membrane of mitochondria (OMM), the endoplasmic reticu-
lum (ER) membrane, and the ER-mitochondria-associated
membrane (MAM).*°” The protein is a homodimer, with each
monomer composed of a f-cap and a [2Fe-2S] cluster binding
domain. The topology of the second structural domain is in the
order of L1-B1-L2-Pf2-L3-0-L4-B3 (L: loop, P: P sheet). Each
monomer also contains a [2Fe-2S] cluster, of which one Fe is
coordinated by two cysteines (Cys99 and Cys101) buried inside
the protein and the other one is coordinated by one cysteine
(Cys110) and one histidine (His114) on the surface of each

Ky = 7.20 uM (NAF-1)

(c)

lle129 NAF-1_A

1-NAF-1 complex

Fig. 1 X-Ray structure of NAF-1, and its complex with ligand 1. (a) The protein (PDB ID: 4007%?) is a homodimer. Each monomer (shown in deep blue
and magenta, respectively) contains a [2Fe—-2S] cluster with a 3Cys:1His coordination (Cys99, Cys101, Cys110, and His114) and a beta cap. (b) Chemical
structure of ligand 1. (c) 1.-NAF-1 complex X-ray structure (PDB ID: 7POP**). The ligand, shown as a wheat stick model, is sandwiched between two

adjacent proteins in the crystal unit cell, coloured as in (a).
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Table 1 Ligand 1's binding free energies across the states |-V at 310 K.
The experimental value at 283 K for state I is —6.6 kcal mol™**

State of Redox state of Protonation Lowest binding free
NAF-1  [2Fe-2S] of N.@His114 energy (kcal mol ")
. Cysog.,, Féus\Fem.oCYSno b d 744 0.8

Crso” o sy eprotonate 7. .
- Cysog.,, Féus\Fem.oCYSno p d 614 0.8

Oy o sy rotonate —6. .
m Ot N otonated 6.7 & 0.8

Oy g Hisie eprotonate —6. .
v Cysog.,, Féus\Fe“,nCYSno Protonated 5.8 4 0.8

Oy g Hisie rotonate —5. .

monomer (Fig. 1a).>> The two monomers also form hydro-
phobic interactions with each other.*> The iron-bound histi-
dine His114 can exist in a protonated or deprotonated form
according to the protonation state of the N, of the imidazole
ring. Thus, NAF-1 can exist in four different states at physio-
logical pH (states I-IV described in Table 1). For state I, the
experimental ligand binding free energy has been measured by
isothermal titration calorimetry at pH 8.0.%*

Ligand 1 (2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-
yl)-thiophene-3-carboxylate), binds to the NAF-1 surface with a
relatively low binding affinity (K4 = 7.20 uM, Fig. 1b)i. The X-ray
structure of the 1-NAF-1 complex®® shows that (i) the ligand’s
tetralin ring forms hydrophobic interactions with Ala97, Ile129
of one protein, and with Val83’ of another, adjacent protein -
its residues are indicated with a prime (') symbol; (ii) the
ligand’s phenyl forms hydrophobic interactions with Pro80,
Ala97’, and Ile129; (iii) the carboxylate group forms salt bridges
with Lys81 and Lys81’ (Fig. 1c).

We used volume-based well-tempered metadynamics,** an
exact method to reconstruct the free energy landscape asso-
ciated with 1 bound to human NAF-1 in an aqueous solution at
physiological temperature (310 K). The free energy was calcu-
lated as a function of three collective variables, using the same
computational protocol as in ref. 11 (see ESIf for computa-
tional details). Our calculations were based on an educated
guess of the 1-NAF-1 complex structure and then compared
with the experimental structure of the complex.*

The calculated lowest free energy of binding in the state I,
where the Fe ions are in their oxidized states (Table 1), was in
good agreement with the experimental value (—6.6 kcal mol **%),
considering that the latter was obtained at a lower temperature.
In the global minimum 1 (Fig. 2), ligand 1’s phenyl moiety
forms hydrophobic interactions with Ile86 and Leu91, and
polar van der Waals (vdW) interactions with Asp90, Asn87,
and Glu85. The carbonyl oxygen forms an H-bond with Tyr98,
whereas the thiophene ring and tetralin ring form hydrophobic
interactions with Ala109, Pro108, and Phe107, Thr106, respec-
tively. In minimum 2 (—4.7 + 0.8 kcal mol ', Fig. 2), higher by
2.7 keal mol ™" from the minimum 1, the tetralin group forms a

i 1 accelerates the cluster release relative to the protein without ligands in vitro.>
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n-cation interaction with Lys116, the thiophene ring forms
hydrophobic interactions with Leu120, and the carboxylate
oxygens interacts with Glu119 through a water molecule.
In minimum 3 (—3.5 + 0.8 kcal mol™?, Fig. 2), higher than
minimum 1 by 3.9 kecal mol™?, ligand 1 binds to the L2 loop. Its
phenyl group forms metastable interactions with Ser92, the
thiophene ring with Leu93, Thr94, and the tetralin ring forms
metastable interactions with Lys95 (see Fig. 2). The binding of the
other three states is reported in the ESL. Multiple binding poses
could be identified in all cases, with a free energy of binding
slightly lower (in absolute values) than that of state I (see ESIY).

In summary, our simulations could fairly reproduce the
binding affinity of ligand 1 to human NAF-1 in aqueous solu-
tions. Ligand 1 turns out to bind to the [2Fe-2S] cluster region
differently from the X-ray structure. It also binds to the L1/L3
and L2 loops. We attribute this difference, at least in part, to
the different binding properties of the drug on passing from
the solid state to the solution, where roughly half of the drug’s
contacts are replaced by the solvent.§ Finally, the redox state of
the [2Fe-2S] clusters and the protonation states of the Fe-bound
histidine residues have a significant impact on the ligand
binding free energies and poses (See ESIt).

3. Prion protein case study

The prion protein is present ubiquitously in the animal kingdom.>*
In prion diseases (Creutzfeldt-Jakob disease, bovine spongiform
encephalopathy, chronic wasting disease, and scrapie),®"® it trans-
forms from its native state PrP° (the alpha-helix protein shown in
Fig. 3a) to a beta-rich pathogenic form PrP* (scrapie prion protein).
The latter oligomerizes, leading to large fibrillar aggregates, leading
to pathological changes of the brain.

Ligands binding to the protein may interfere with the
interconversion to the scrapie form. Changes in "H-'>N HSQC
(heteronuclear single quantum coherence) NMR spectra of
the protein have established that ligands such as ligand 2 (2-pyrro-
lidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl}-phenyl]-acet-
amide, Fig. 3c)q bind to the surface of the mouse prion protein
(mPrP®, which has 98% sequence similarity and 86% sequence
identity with the human protein).”” Ligand 2 can exist in three
protomers under the conditions of the NMR experiments:
uncharged 2, and positive 2* and 2>* (Fig. 3c). Although one could
suggest that the ligand binds to different PrP regions, based on the
NMR data, only one binding site could be identified.*”

Bias-exchange metadynamics simulations based on the
AMBERY9 force field*®° provided a ligand binding/unbinding
free energy (7.8 £ 0.9 kcal mol ') that agreed well with the
experimental value®” (7.5 kcal mol™"). The calculations identi-
fied different poses for the three protomers (Fig. 3b)|**,

§ Some of the residues at the protein surface might also change their conforma-
tions in solution as they may form contacts with protein images in the solid state.
9 2 features three different protomers at pH 4.5, the pH at which the experiments
were carried out37 (Fig. 3).

| This contrast with standard molecular docking protocol, which was not
consistent with all the ligand/protein contacts identified by NMR.

Phys. Chem. Chem. Phys., 2023, 25, 13819-13824 | 13821
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Fig. 2 Free energy landscape associated with ligand 1 binding to NAF-1(). The crystal binding pose is shown in the violet sticks as a reference, while the
calculated/simulated representative binding poses of the three deepest free energy local minima (panels 1-3) are shown in orange. The ligand/protein

contacts are also shown.

(a) <Thr199

0G|U19&
°Thr192

Ly
*Val189

22+

Fig. 3 Structure of human prion protein and ligand 2. (a) The structured part of the human PrPC protein (Leu125-Arg228) is composed of three a-helices
and a B-sheet (PDB ID: 1HIM*). Residues, shown by NMR experiments as being involved in binding are depicted in orange sticks. Coloured spots next to
the residues show which representative 2 protomer (shown in (b)) interacts with them after the metadynamics simulations. (b) The representative binding
poses of the three 2 protomers with human PrPC protein resulting from metadynamics. Uncharged protomer 2 is shown as yellow sticks; 2" and 22* are
shown in red and blue colours, respectively. (c) Chemical structure of ligand 2. At acidic pH, at which the NMR experiments were performed,*” except
uncharged 2, the ligand can also be present in two other ionic forms, 2* and 22*. Fig. 3a and b were adapted and reprinted, respectively, from ref. 24.

Copyright 2009, American Chemical Society (ACS).

including the one suggested in ref. 37. Taken together, the
poses were consistent with all the ligand/protein contacts
deduced by the NMR data (Fig. 3a and b). Approaches combin-
ing NMR and enhanced sampling, such as that presented here,

13822 | Phys. Chem. Chem. Phys., 2023, 25, 13819-13824

could be applied to other proteins undergoing fibril formation
in neurodegenerative diseases, e.g. amyloid-beta in Alzheimer’s
disease, a-synuclein in Parkinson’s disease, and huntingtin in
Huntington’s disease.*® All of them feature no binding cavities.
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4. Conclusions

Our two case studies reported in Sections 2 and 3 suggest that
an enhanced sampling method, such as metadynamics, may be
used as a practical tool for the rational design of LTPS,**
complementing experimental structural information from
X-ray or NMR. In our examples, the calculations, validated
against experimental affinity measurements, (i) pointed to
differences in ligand poses on passing from X-ray to solution,
possibly because of the increased hydration of the ligands and/
or change in conformations of the residues at the surface
(1-NAF-1 complex); (ii) matched, at the qualitative levels, the
poses found by NMR data in solution. One can anticipate that
massively parallel enhanced sampling approaches, such as that
developed by Mandelli et al.,*® which may meet the challenges
of using current exascale machines, may further enlarge the
scope of these computer-aided approaches to unique LTPS.

Our proposed combined experimental/simulation protocol
is by no means the only way to foresee how to overcome the
current limitations. During the last decade, a plethora of
methods devoted to the study of protein-ligand binding have
been developed, such as funnel metadynamics,” lambda-
dependent umbrella sampling,*® and ligand Gaussian acceler-
ated molecular dynamics (LiGaMD).’" One of them has been
presented in this perspective (Section 2). Here we presented two
possible flavours of metadynamics to tackle this problem,
while, as already said, a large number of techniques (also not
metadynamics-related) can be effectively applied. In addition,
and most importantly, ML-based techniques are expected to
significantly increase the predictive power with the expansion/
growth of experimental structural information (along with
affinity data). Finally, the increasing number of Cryo-EM pro-
tein/LTPS complex structures’ (currently ~0.08% of the PDB) is
expected to boost a variety of rational LTPS design campaigns,*”
possibly assisted by molecular simulation and/or ML.
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