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To mitigate excessively accumulated carbon dioxide (CO,) in the atmosphere and tackle the associated
environmental concerns, green and effective approaches are necessary. The electrocatalytic CO,
reduction reaction (CO,RR) using sustainable electricity under benign reaction conditions represents a
viable way to produce value-added and profitable chemicals. In this minireview, recent studies regarding
unary Bi electrocatalysts and binary BiSn electrocatalysts are symmetrically categorized and reviewed, as
they disclose high faradaic efficiencies toward the production of formate/formic acid, which has a rela-
tively higher value of up to 0.50 $-per kg and has been widely used in the chemical and pharmaceutical
industry. In particular, the preparation methodologies, electrocatalyst morphologies, catalytic perform-
ances and the corresponding mechanisms are comprehensively presented. The use of solid-state electro-
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lytes showing high economic prospects for directly obtaining high-purity formic acid is highlighted.
Finally, the remaining questions and challenges for CO,RR exploitations using Bi-related electrocatalysts
are proposed, while perspectives and the corresponding strategies aiming to enhance their entire catalytic
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Introduction

The development of human society to where we are today is
linked to the utilization of fossil fuels, which consequently are
responsible of the excessive release of carbon dioxide (CO,) into
the atmosphere causing severe environmental concerns.*® As
such, reducing and utilizing the released CO, in a circular
fashion have been recognized internationally as a way
forward,”> to move towards carbon neutrality by 2060."
Adopting green and environmentally benign approaches to
close the carbon cycle is of paramount importance. Among
these, the electrochemical carbon dioxide reduction reaction
(CO,RR) approach is highly promising, as it operates under
mild conditions (e.g. ambient temperature and pressure) using
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functionalities and boost their performance are provided.

renewable energy and generates different products by simply
alternating the catalytic conditions (e.g. electrolytes, electrocata-
lysts, configurations of electrolytic cells, and reduction
potentials).’® " Additionally, CO, as an electrochemical precur-
sor can generate various high-value products and chemicals,
such as carbon monoxide (CO),>*** methane (CH,),>*® formic
acid (HCOOH) or formate (HCOO7),**® methanol
(CH30H),**?° ethylene (C,H,),*"** ethanol (CH;CH,OH),***"
and n-propanol (n-C;H,OH).*”*® Among these carbon-contain-
ing products, HCOOH/HCOO™ exhibits a high net present value
by techno-economic assessments'>** and is useful and widely
needed in the areas of producing chemicals and pharmaceuti-
cals, supplying protons in proton-exchange membrane fuel
cells, and functioning as an important hydrogen carrier.***®
Numerous types of electrocatalysts display promising
CO,RR performances towards the production of HCOOH/
HCOO™ with high faradaic efficiency (FE). Typical examples
include bismuth (Bi),"® tin (Sn)," indium (In),>* cadmium
(Cd),” lead (Pb),* mercury (Hg),”® etc.’®>” Among these, Bi-
based electrocatalysts have attracted great attention, owing to
their low costs, non-toxicity and high abundance in nature. Bi
possesses a relatively high positive standard reduction poten-
tial (Bi*'/Bi, 0.308 V) and thus a high overpotential is required
to activate the competitive hydrogen evolution reaction (HER)
in CO,RR experiments.’®>® Although Sn-based electrocatalysts
share similar characteristics to Bi (e.g. inexpensiveness, high
reserves and environmental benignness),®® unary Sn electro-
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catalysts generally exhibit a low FE towards HCOOH/HCOO™
and tend to yield large proportions of mixed H, and CO gases
during the CO,RR practices, because their different valence
states.>® Their catalytic activity can been modulated either via
different methodologies or by hybridization with new func-
tional components to acquire a broad spectrum of CO,RR-
associated performances.®®> Density functional theory (DFT)
calculations elucidate that the crystalline surfaces of Bi and Sn
metals present favorable binding energy towards the *OOCH
intermediate, resulting in the final generation of HCOOH or
HCOO™ depending on the electrolytes.®>

Several insightful reviews have been published on the state-
of-the-art progress and advancements of various metal-based
electrocatalysts for CO,RR studies, which cover broad metallic
categories and multiple electrocatalytic products.®>** Recently,
Sn-based electrocatalysts have been comprehensively summar-
ized by Zhao et al.®*> and An et al.,*® encompassing catalyst syn-
thesis, compositions, morphologies and performances. Bi-
Based electrocatalysts for electrochemical CO,RR applications
were summarized by Guan et al.,”® but with no discussions in
utilizing solid-state electrolytes for the production of high-
purity and concentrated HCOOH from Bi electrocatalysts.
Utilizing solid-state electrolytes in the CO,RR is an emerging
research area, which enables attaining concentrated ready-to-
collect liquid compounds, thereby waiving the subsequent
complex and expensive downstream separation procedures
that are required for aqueous electrolytes.”” On the other
hand, reviews of the electrocatalytic CO,RR with a special
focus on the HCOOH/HCOO™ products have rarely been
reported.®® To fill the gaps, this minireview concentrates on
recent studies about unary Bi-based electrocatalysts and binary
BiSn-related electrocatalysts in the CO,RR areas.

In this minireview, methodologies for the fabrication of
unary Bi-based electrocatalysts and factors influencing their
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CO,RR functionalities are presented and special attention has
been paid to solid-state electrolytes in four-chamber electro-
Iytic cells. Then, less-frequently reported, structure-varied
binary BiSn-based electrocatalysts are summarized and com-
mented on in the following section. Perspectives for further
enhancing Bi-based electrocatalyst performances and chal-
lenges to reach techno-economic prospects in the future have
been proposed, aiming to address their current challenges,
advance the developments, and expedite their commercializa-
tion. The general information of this minireview is provided in
Fig. 1. This minireview is expected to offer guidance and new
insights into constructing multitudinous performance-
reinforced CO,RR electrocatalysts for the effective conversion
of CO, to high-quality fuels and, in turn, to help reduce the
carbon footprint.

Unary Bi-based electrocatalysts

Bi-Based electrocatalysts belong to a large category and are a
fast-changing subject in the field of the CO,RR. Detailed
reviews with respect to tailoring their surface morphologies,
creating defects, dislocations and grain boundaries and tuning
compositions and fabricating composites have been reported
elsewhere. The latest publications continue to outperform the
state-of-the-art findings, which deserve a systematic review and
summary for clear understanding and updating on the latest
advancements for the academic community, especially newco-
mers to the field of CO, electroreduction. Recent studies on
morphology, methodology and technology towards the pro-
duction of unary Bi-relevant electrocatalysts for formate pro-
duction in addition to sophisticated configurations of electro-
Iytic cells for direct high-purity formic acid synthesis are
reviewed in the section below. Table 1 lists the performances
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Fig. 1 Schematic illustration of the electrocatalytic CO,RR to formic acid over various unary Bi electrocatalysts and binary BiSn electrocatalysts.
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of the representative literature of unary Bi electrocatalysts for
CO,RR studies.

Bi nanoparticle-based electrocatalysts

Bi-Relevant electrocatalysts have been designed with various
facets to enhance the faradaic efficiency (FE) towards the pro-
duction of formate. Xie et al.'' synthesized Bi rhombic dodeca-
hedra with exposed (104) and (110) facets, as demonstrated by
scanning electron microscopy (SEM, Fig. 2a and b) and trans-
mission electron microscopy (TEM, Fig. 2c and d) obser-
vations. Measured in an H-type cell for the CO,RR, the Bi
rhombic dodecahedra displayed excellent selectivity for
formate in a wide overpotential window (from —0.7 to —1.2 V
vs. RHE), reaching a maximum FE up to 96.5% at —1.1 V vs.
RHE (Fig. 2g). The favorable electrocatalytic capability
(FEforamee >86%), high operation current density (maintained
at around 200 mA cm™?) and structural stability (continuous
working of up to 20 h) of the Bi rhombic dodecahedra were
further confirmed by experiments in a gas-diffusion flow cell,
as shown in Fig. 2h. Density functional theory (DFT) calcu-
lations indicated that the well-exposed (104)/(110) facets
reflected both lower adsorption free energies of *OCHO and
*H intermediates than that of the typical most stable (012)
facet (Fig. 2e, Fig. 2f). Interestingly, the adsorption free energy
of *OCHO in the CO,RR was even lower than the corres-
ponding *H in the competitive HER, suggesting that the (104)/
(110) surfaces were thermodynamically favorable to adsorb the
*OCHO intermediate instead of *H, in line with the excellent
electrocatalytic performance of Bi rhombic dodecahedra.
However, Lu et al.>*® fabricated Bi nanostructure electrocata-
lysts yielding 92% of formate at —0.9 V vs. RHE, which led to
an opposite DFT conclusion compared with the Bi rhombic
dodecahedra, namely that the adsorption energy of *XOCHO on
the Bi (012) surface was lower than that of the (104) surface
and the (110) surface. A later report regarding exposing the
(012) facet of a Bi nanoparticulate electrocatalyst was
attempted by Wei et al®' In the study, the Bi nanoparticles
were derived from the electrochemical reduction of carbon
cloth supported Bi dendrite precursors, and the Bi dendrites
dominated the (003) surface. The prepared Bi nanoparticles
were capable of producing 97.4% of formate at —0.78 V vs.
RHE, while Bi dendrites were only 62% under the same con-
ditions. The DFT calculations demonstrated that the (012)
surface showed a lower adsorption free energy of *OCHO than
the (003) surface, supporting the above experimental results,
i.e. Bi nanoparticles were (012) surface abundant and Bi den-
drites were (003) surface dominated. These cases clearly dis-
close the critical importance of manipulating nanoparticles
crystalline orientations in affecting electrocatalytic perform-
ance, and also signify that the facet plays predominant roles in
determining the CO,RR performance in format-varied, Bi-
based electrocatalysts.

Bismuthene-related electrocatalysts

Apart from the facet-varied nanoparticles of Bi-based electro-
catalysts, Bi nanosheets also show great prospects in effectively

This journal is © The Royal Society of Chemistry 2022
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measured with a gas-diffusion flow cell with a three-electrode system using 1.0 M KOH.' This figure has been adapted from ref. 11 with permission

from the John Wiley and Sons, copyright 2021.

converting CO, to formate. Amid Bi nanosheets, the two-
dimensional monolayer Bi nanosheet, denoted as bismuthene,
is considered the most representative, and a couple of method-
ologies have been successfully adopted to produce it. The first
example of bismuthene synthesis was demonstrated by Yang
et al.,’ in which a simple wet chemical reduction method was
introduced. In detail, bismuthene with the unique exposure of
the (111) facet was obtained by adding sodium borohydride
solution to reduce bismuth chloride in the presence of 2-ethoxy-
ethanol, followed by ultrasonication to exfoliate the aggre-
gated Bi nanosheets. Several characterization techniques con-
firmed the successful formation of bismuthene, including the
monolayer feature as observed by the TEM image (Fig. 3a), an
average height of 0.65 nm as shown by the atomic force
microscopy (AFM) image (Fig. 3b and 3c), and a single-atom
layer thickness of 0.6 nm with a zig-zag structure as profiled by
high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM, Fig. 3d). The bismuthene exhibited
higher catalytic activity (Fig. 3e) than Bi nanosheets, a superior
FEformate Of Up to 98% (Fig. 3f) and also high electrocatalytic
stability at a low overpotential of —0.58 V vs. RHE (Fig. 3g). The

This journal is © The Royal Society of Chemistry 2022

excellent FE¢omate Of bismuthene originated from the lower
energy required for OCHO* adsorption than COOH* adsorp-
tion and H* adsorption on the (111) surface, as predicted by
DFT calculations in Fig. 3h and i. Based on experimental and
theoretical calculations, this study highlights the importance
of fabricating CO,RR electrocatalysts with thinner layers to
increase the density of active sites and unfold more electroac-
tive facets. Considering the spin-orbit coupling effects,
however, the bismuthene displayed lower catalytic activity than
the bilayer Bi nanosheet, which was investigated by Wang et al.
using only DFT calculations.”” Hence, the bilayer Bi
nanosheets working as CO,RR electrocatalysts can be pro-
duced to experimentally verify this theoretical finding, while
also filling the gap that no bilayer Bi nanosheet has been
implemented for the CO,RR.

As the distinct CO,RR capability of bismuthene towards
formate production is shown in the above example, more
studies concerning the fabrication of bismuthene and investi-
gations of their electrocatalytic performances have been widely
exploited. For example, Ma et al. employed the in situ electro-
chemical transformation approach to reduce monoclinic

Nanoscale, 2022, 14, 7957-7973 | 7961
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Fig. 3

(a) TEM image of bismuthene. (b) AFM image of bismuthene. (c) The corresponding height profiles of marked bismuthene nanosheets in (b). (d) The

lateral HAADF-STEM image of a bismuthene with a zig-zag structure. (e) LSV curves and faradaic efficiencies for formate of thickness-differed Bi nanosheets
(bismuthene with a thickness of 0.65 nm) in CO, saturated 0.5 M KHCOs3 solution. (f) Electrocatalytic performances of Bi nanosheets with different thick-
nesses. (g) Electrocatalytic stability tests of bismuthene and the corresponding FEs of CO and H,. (h) Free energy diagrams for the CO,RR and the HER on
(111) single-atom-thick bismuthene. (i) Structural descriptions of OCHO* and H* adsorption onto the Bi (111) surface. Violet, gray, red and white spheres
represent respective Bi, C, O and H atoms.® This figure has been adapted from ref. 9 with permission from the Springer Nature, copyright 2020.

scheelite bismuth vanadate to ultrathin bismuthene
nanosheets at —1.0 V in 1 M KHCO; solution, in which the
ultrathin bismuthene nanosheet had a thickness of ~1.55 nm
(Fig. 4a).” Owing to the topological transformation, the ultra-
thin bismuthene nanosheets exhibited a distinct FE¢oramte
selectivity of above 90% at a broad range of overpotential
window (—0.65 to —1.4 V vs. RHE), with the largest formate
selectivity of 97.4% emerged at —1.0 V (vs. RHE) accompanied
by a current density of —102.7 mA em . Not just limited to flat
bismuthene nanosheets, a new form of vertically aligned bis-
muthene arrays was successfully synthesized using the galva-
nic replacement reaction, as shown in Fig. 4b.>® In particular,
copper foil as a growth substrate was immersed in bismuth
chloride solution containing dimethyl sulfoxide, followed by a
galvanic replacement process to deposit Bi clusters on surfaces

7962 | Nanoscale, 2022,14, 7957-7973

of the substrate to generate the initial Bi layer. With the
advancement of galvanic replacement reduction, the vertical
bismuthene arrays were eventually formed with pronounced
advantages, including high surface areas for fast charge trans-
fer, affluent porosities for considerably reducing CO, molecule
diffusion as well as lowering formate migration resistance, and
ultrafast electron transportability derived from intimate
contact with the conductive copper substrate. The vertical bis-
muthene arrays demonstrated FEymae @above 90% between
—0.75 and —0.95 V vs. RHE in 0.5 M KHCO; solution. In
addition, various solvents were selected to observe the growth
of the bismuthene arrays, such as ethanol, ethylene glycol,
N-methyl-2-pyrrolidone and N,N-dimethylmethanamide, but
only N,N-dimethylmethanamide as the solvent shows expected
morphologies analogous to dimethyl sulfoxide. This study

This journal is © The Royal Society of Chemistry 2022


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2nr01900k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 12 2022. Downloaded on 12-09-2024 12:40:04.

(cc)

Nanoscale

¥ Electrochemical
% uansformationW
Blue : Bi M

Red: 0
Gray : V
500 nm
_Monoclinic scheelite bismuth vanadate _ _ _______ Bismuthene nanosheets | —
______________________________________________________ ;
L]
Bi3*, Cu?t Bi3* e
.. .. Se
L]
\ / » \ s LX)
Cu?+ L4

o
Galvanic replacement

(i) Hydrothermal reaction (ii) Topotactic conversion

Copper mesh BiOCOOH-A/CM 3D Bi-ene-A/CM

Electrostatic
adsorption

™\ Bi(NO,), @GO paper

\

\
\
\
|
i
i
i
i

[eAOWwRI OO

PIMOIS JUIWIUGUOD)

Topotactic transformation

Bi-ene-NW Bi,0, -NS-NW

View Article Online

Minireview

Fig. 4 Literature reported methods for the fabrication of bismuthene-related electrocatalysts for the CO,RR. (a) Schematic descriptions of the syn-
thesis of bismuthene nanosheets from monoclinic scheelite bismuth vanadate via the electrochemical transformation method, and AFM image of
the bismuthene nanosheets.” This figure has been adapted from ref. 7 with permission from the John Wiley and Sons, copyright 2020. (b) Schematic
illustration of growth of bismuthene nanosheets on Cu substrate via the galvanic replacement method.*® This figure has been adapted from ref. 36
with permission from the John Wiley and Sons, copyright 2021. (c) Schematics of general process for the preparation of interconnected bismuthene
arrays integrated with the 3D open network (Bi-ene-A/CM) via the topotactic conversion method.*” This figure has been adapted from ref. 47 with
permission from the John Wiley and Sons, copyright 2021. (d) Schematic demonstration of the fabrication of bismuthene (Bi-ene-NW) via the topo-
tactic conversion method.>? This figure has been adapted from ref. 52 with permission from the Royal Society of Chemistry.

This journal is © The Royal Society of Chemistry 2022

Nanoscale, 2022, 14, 7957-7973 | 7963


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2nr01900k

Open Access Article. Published on 12 2022. Downloaded on 12-09-2024 12:40:04.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Minireview

offers an effective synthetic method to alter bismuthene elec-
trocatalysts with novel morphologies, and can be expanded to
other types of CO,RR electrocatalysts.

To fabricate bismuthene electrocatalysts with an array mor-
phology and industrial-level CO,RR prospects (e.g FEgormate
>90%, current density >200 mA cm™?), He et al. employed a
hydrothermal method to yield layered BIOCOOH arrays on the
surface of copper mesh (CM), followed by an electrochemical
topotactic conversion approach to prepare 3D interconnected
bismuthene arrays with an open network (Bi-ene-A/CM, here
Bi-ene and A stand for bismuthene and arrays, respectively).*”
The detailed preparation procedures are illustrated in Fig. 4c.
As the superior advantages of array microstructures, the Bi-
ene-A/CM delivered distinguished FEg,maee selectivity and
current density in an H-type cell using 0.5 M KHCO; electro-
lyte, with the largest FE¢omate Of 96.02% and a current density
of 21.21 mA cm™? at —0.88 V vs. RHE. At a current density of
~200 mA cm?, the exceptional and long-term stable CO,RR
performances of Bi-ene-A/CM were further embodied in both
KCI and KHCO; electrolytes in a gas-diffusion flow cell, reach-
ing a commercial FE¢mate Selectivity of 92.57% and 93.65%,
respectively. This methodology can be applied to construct
ultrathin metallic electrocatalysts on different substrates that
possess the potential for industrialization and commercializa-
tion. Another 3D-structured bismuthene electrocatalyst
showing techno-economic interests was prepared by Zhang
et al. via the innovative nanocarbon-mediated electrochemical
topotactic conversion method (Fig. 4d).>* In the study, a gra-
phene oxide (GO) paper, with internal nanospaces formed by
interlayer sheets, was utilized as a soft template for the
uniform decoration of the Bi(NO;); species. Subsequent
drying resulted in the shrinkage of the GO interlayer distance
and also the even distribution of the bismuth salts on the GO
surface. Thermal annealing in air led to the removal of GO
paper by burning and in turn resulted in the formation of
interconnected Bi,O; network precursors. Finally, the bis-
muthene (Bi-ene-NW) electrocatalyst was acquired by the
electrochemical topotactic conversion of the Bi,O; precursors.
This well-designed methodology therefore imparted the Bi-
ene-NW with unique characteristics, such as ultrathin layers,
large quantities of defects and rough plane edges, and open
pores in the in-plane edges. Experimental CO,RR results con-
firmed the ultrahigh catalytic activity of Bi-ene-NW in both the
H-type cell and gas-diffusion flow cell scenarios. For the
H-type cell, a peak FEgymace Selectivity of ~95% emerged at
—0.9 Vvs. RHE and also showed continuous operational ability
for 500 h at a high current density of ~100 mA cm™> without
current decaying signs. Assays in a gas-diffusion flow cell
revealed that the Bi-ene-NW electrocatalyst was able to work
stably up to 100 h in 1 M KHCO; solution with a current
density of ~200 mA cm™>, meanwhile preserving undecayed
FEformate (>90%), disclosing high commercial feasibility.

Despite numerous studies focusing on modulating the
specified lattice planes, electrolytes, structures and mor-
phologies of pure Bi electrocatalysts, reported methods for
directly building 3D structures and efficiently introducing
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pores on the catalyst surface are scarce. Fortunately, the latest
advanced methodologies pave the way for designing structu-
rally sophisticated but innovative electrocatalysts for future
studies. Examples encompass: (i) the electrochemical trans-
formation of structure-dependent inorganic precursors; (ii) gal-
vanic replacement reaction with attempts on multiple sub-
strates or solvents; (iii) the integration of multiple synthetic
steps; (IV) assistance by easily removable templates. Such 3D
metallic electrocatalysts have the physicochemical advantages
of exposing more accessible sites for enhancing catalytic per-
formance, hierarchical microchannels for reducing mass trans-
port resistances, and highly interconnected contacts for fast
electron transfer, which lend them high electrocatalytic activi-
ties and stabilities. Consequently, 3D metallic electrocatalysts
with a multitude of morphologies, thinner layers and defects
(pores, lattice mismatch and strains, oxygen vacancies, etc.)
are urgently needed to be developed, and an understanding of
their structure-property correlation is required.

Bi nanosheet-related electrocatalysts

Beyond Bi nanoparticles and bismuthene electrocatalysts, Bi
nanosheets also draw tremendous attention for the electrore-
duction of CO, to formate. One of the representative studies
was reported by Han et al.,*® where the ultrathin Bi nanosheets
with exceptional formate selectivity (FEforamte Of ~100% with a
current density of 24 mA cm™? at —1.7 V vs. RHE) were gained
by the in situ topotactic transformation of bismuth oxyiodide
(BiOI) nanosheets. Later, Liu et al. adopted a similar way to
produce Bi nanosheets from BiOI, which showed a high
FEforamte (95%) at a lower overpotential of —0.9 V vs. RHE, but
the current density was only 13.3 mA cm™2.%” By using BiOBr
nanosheets with an exposed (001) surface as precursors, Fu
et al. successfully fabricated porous Bi nanosheets possessing
the (001) surface with rich grain boundaries via topotactic
transformation.®® The porous Bi nanosheets showed a
FEforamte Of 95.2% at —1.4 V vs. RHE. DFT calculations
explained that the excellent CO,RR performance originated
from the grain boundary-containing (001) surface endowing
lower adsorption energy to the intermediate *OCHO. Most
recently, Peng et al. initially made bismuth oxide with hydran-
gea-like shapes as a Bi nanosheet precursor, followed by con-
verting it into ultrathin Bi nanosheets using topotactic trans-
formation.”! As expected, the ultrathin Bi nanosheets exhibited
an outstanding FE¢yam¢e Selectivity (~96%) in a broad range of
overpotentials (from —0.78 V to —1.18 V vs. RHE). The above
examples suggest that the precursor determines the finial mor-
phology, fashion, geometry and physicochemical properties of
Bi electrocatalysts, therefore attention should be paid to pre-
cursor synthesis, design, composition and selection in future
studies.

Facile deposition of Bi nanosheets on a gas diffusion layer
was developed by Wang et al., which resulted in an excellent
formate production ability of 91.5%.® Later, the catalyst leach-
ing behaviors of Bi particle-deposited gas-diffusion electrodes
in the CO,RR were studied by Bienen et al.”* Other Bi-relevant
formats, such as Bi nanoflowers (FEfymate Of 99.2% at —1.5 V
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vs. saturated calomel electrode),””> microflowers (FEormate Of
~96.2% at —0.80 to —1.50 V vs. RHE),”® core-shell structures
(FEformate Of 99% at —1.0 V vs. RHE),”” ultrathin Bi nanosheets
(92.5% at —0.97 V vs. RHE),> Bi nanostructures (FEfyrmate Of
92% at —1.5 V vs. RHE),”® Bi nanosheets with different sizes
and thicknesses (FEgormate Of 92% at —0.9 V vs. RHE),"? etc.
have also been reported with promising electrocatalytic CO,RR
activities and capabilities. The remarkably high FEgmaee Of
100% at an optimal overpotential of —0.86 V vs. RHE was
achieved by using Bi nanoparticles/Bi,O; nanosheets, which
were accredited to the grain boundaries exposing considerably
favorable active sites and stabilizing reaction intermediates."®
Similarly, Bi/Bi,O; junction nanosheets with defect-rich hier-
archical mesopores were demonstrated by Wu et al., which
exhibited a FE¢o;mate Of 90.4% at —0.87 V vs. RHE.*’

All currently reported preeminent Bi electrocatalysts were
only reported for formate production using liquid-state electro-
lytes, which require additional, energy-intensive and complex
downstream separations to obtain the ready-to-collect formic
acid products. To directly yield formic acid (HCOOH) products
instead of formate, Xia et al. applied a CO,RR reduction cell
with a three-chamber configuration that utilized a solid-state
electrolyte (SSE), anion exchange membrane (AEM) and cation
exchange membrane (CEM) to achieve the objective.”> The
working principles of the three-chamber cell comprise four
parts: the negatively charged species generated by the CO,RR
(e.ge HCOO™, CH3COO0™, etc.) will pass through the AEM driven
by the electrical field; positively charged species (i.e. H") pro-
duced by either hydrogen oxidation reaction (HOR) or oxygen
evolution reaction will traverse the CEM; the oppositely
charged species will recombine in the middle SSE to compen-
sate charges then forming high-quality pure liquid fuel solu-
tions (e.g. HCOOH, CH3;COOH, etc.). This study further
upgraded the already distinct three-chamber reduction cell to
a four-chamber configuration for concurrently generating
three valuable products of HCOOH, KOH and Cl,. The Bi
nanosheets in the typical H-type cell reached a FE¢y;mate Of Up
to 99% at —0.79 V vs. RHE, and peaked at a FE of 93.1% for
HCOOH at a cell voltage of 3.08 V in the three-chamber
reduction cell. The capabilities of continuous working up to
100 h at 30 mA em ™2 and constant production of ~0.11 M pure
HCOOH solution were also proved in this study. The broad
applicability of this three-chamber configuration was further
examined to produce pure C,, carbonaceous products using
Cu catalysts, including ethanol, n-propanol and acetic acid. A
later example using the same strategy for the production of
high-concentration pure formic acid (up to ~100 wt%) with
significantly improved properties (e.g. current density, faradaic
efficiency and operational stability) was reported by Fan
et al.,> by using grain boundary-abundant Bi nanoparticles.
These studies demonstrate the advantages of solid-state elec-
trolytes in synthesizing high-quality and pure liquid fuels, with
high potential to realize techno-economic prospects and
commercialization.

The direct synthesis of ready-to-collect liquid products
shows high practical significances and commercial values,
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hence, future efforts and trials shall also place on inventing
sophisticated CO,RR reduction cells to meet the requirements
of property-differing and structurally complex reduction pro-
ducts, such as electrocatalytic CO, reduction to organonitro-
gen compounds.””®" On the other hand, the current density
for the continuous production of HCOOH with long-time
running showing no signs of decays was generally maintained
at 30 mA cm™2 in the three-chamber reduction cell, indicative
of more development spaces to enlarge it to a profitable level.
As a result, the previously mentioned unary Bi-relevant electro-
catalysts with prominent current density and long-term
amperometric stability are worth examining for their 