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Explored was the competitive ring-closing metathesis vs. ring-
rearrangement metathesis of bicyclo[3.2.1]loctenes prepared by a
simple and convergent synthesis from bicyclic alkylidenemalono-nitriles
and allylic electrophiles. It was uncovered that ring-closing metathesis
occurs exclusively on the tetraene-variant, yielding unique, stereo-
chemically and functionally rich polycyclic bridged frameworks, whereas
the reduced version (a triene) undergoes ring-rearrangement metathesis
to 5-6-5 fused ring systems resembling the isoryanodane core.

3,3-Dicyano-1,5-dienes are attractive substrates due to their
ease of construction from ketones, malononitrile, and allylic
electrophiles, and their ability to undergo Cope rearrangement.”
In fact, 3,3-dicyano-1,5-dienes are the classic Cope rearrangement
substrates.” We have been studying this class of 1,5-dienes as
substrates for complex polycycloalkane synthesis.>”

We became interested in iterating the deconjugative alky-
lation®° and the diastereoselective[3,3]sigmatropic rearrange-
ment steps of alkylidenemalononitrile functionalization. If
performed on alkylidenemalononitriles 1 with allylic electro-
philes 2/2, unique tetraenes 6 could be rapidly established via
intermediates 3-5 (Scheme 1). Further piquing our interest
was how these substrates would react under olefin metathesis
conditions: would they undergo ring-closing metathesis (RCM"")
(to 7) or ring-rearrangement metathesis (RRM'?) (to 8)
(Scheme 2A)? ring-rearrangement metathesis would occur by
the ring-opening of the central, strained cycloheptene olefin
followed by double ring-closing metathesis, whereas ring-
closing metathesis would result simply from the “allylic arms”
reacting with each other directly. Notably, the ring-closing
route would require the “allyl arms” to be cis-oriented*®
as well as a conformationally biased'” for the axial isomer.
In addition to the growing body of work on the synthesis of
bridged bicyclic systems via RCM,”'® we have previously
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Scheme 1 Iterative deconjugative allylation/Cope rearrangement to
synthesize bicyclic tetraenes (6).

shown one example of an RCM reaction on a scaffold related
to those of interest to this work,® though there are no possibi-
lities for RRM with this particular substrate (Scheme 2B).
Conversely, bridged bicyclo[3.2.1]octenes can react by ring-
opening cross-metathesis (ROCM) or polymerization (ROMP)
(Scheme 2C)."®*! For example, ketone (Y = O), alcohol (Y = H/
OH), and alkylidenemalononitrile-containing scaffolds react
via ROCM (Scheme 2C). Thus, we hypothesize that either
pathway (RCM or RRM) is plausible and potentially in competi-
tion for the proposed scaffolds 6. As such, we began a campaign
to explore the reactivity and selectivity of these types of
substrates in RCM vs. RRM reactivity. Herein we report that
such tetraenes 6 undergo exclusive ring-closing metathesis to 7.
We also provide a hypothesis for the observed chemoselectivity,
which ultimately yields a method to achieve exclusive ring-
rearrangement metathesis to 5-6-5 tricyclic ring systems.

To begin our studies, we prepared tetraenes 6a-6l by iterative
deconjugative allylic alkylation/Cope rearrangement (Scheme 3).
Depending on the substitution pattern, products 6 are available
in 1-3 steps as single diastereomers via diastereoselective Cope
rearrangements (see the ESIT). We next turned to the examination
of the ring-closing metathesis (RCM) vs. ring-rearrangement
metathesis (RRM) question posed for these substrates (Scheme 4).
In these studies, standard Ru-based metathesis catalysts
(Grubbs-II** (G-II) or Hoveyda-Grubbs-II*> (HG-II)) were utilized.
Substrates 6a-61 underwent clean ring closing metathesis to 7a-71
exclusively under conventional conditions (e.g. nonpolar solvent,
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Scheme 3 Synthesis of bicyclic tetraenes.

r.t. —80 °C, with or without ethylene). Generally speaking, both
catalysts examined performed reasonably well. However, in a few
side-by-side comparisons, the HG-II catalyst did outperform the
G-II catalyst. The first three products in the table (7a-7c) were
either cyclopentadiene-(7a), N-Boc-pyrrole-(7b), or furan-(7c) derived.
For these substrates, the methylene or heteroatom ‘X-group”
had little to no effect on the efficiency of the transformation.
The remaining substrates 6d-61 showcase a variety of substitu-
tion patterns and functional groups that were tolerated in the
ring-closing metathesis reaction yielding 7d-71. We also found
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Scheme 4 Scope of ring-closing metathesis reaction.

that the 1,3-diphenylallyl moiety on 6ém performed well in the
metathesis reaction to yield 7g (Scheme 4). As a final note,
preliminary data supports that the sequence can be telescoped:
from 51, the Cope rearrangement and the ring-closing metathesis
steps can be performed in one-pot fashion to yield 7e.

G-I, HG-1l or
SG-Il catalysts
low conversion to

—— > RCM products

various
conditions

(1)
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For the substrates in Scheme 4 only one of the ‘“allylic arms”
is decorated with an additional substituent. That is because it is
generally challenging to perform ring-closing metathesis on
densely substituted alkenes. For example, substrates 6n and 60
underwent sluggish and low yielding ring-closing metathesis,
even with the Stewart-Grubbs (SG-II; CAS#:[927429-61-6]>%)
catalyst, which is commonly more accepting to steric challenges
(eqn (1)

One way in which we envisaged finding potential application
of these molecules is described in Scheme 5. In two steps, a
unique piperidine carboxamide 11a was prepared by NaBH,
conjugate reduction and oxidative amidation.** The N-Boc-
piperidine can be deprotected to the amine-HCl 11b under
standard conditions resulting in an interesting scaffold for
drug discovery, considering that they are rigid piperidine
carboxylate scaffolds.>®

Next, we wished to understand and overturn the observed
chemoselectivity for ring-closing metathesis over ring-
rearrangement metathesis (Scheme 5). To compare and summarize,
non-allylated (1) and bis-allylated (6) scaffolds have unique reactivity
to metathesis catalysts: scaffolds 1 undergo ring-opening cross
metathesis (ROCM) whereas the bis-allylated variants undergo
ring-closing metathesis (RCM). A thought-provoking observa-
tion was that 6p was wholly unreactive to metathesis catalysts.
Regarding 6p, we presumed that ring-closing metathesis to
yield a tetrasubstituted olefin would be unfavourable and there-
fore ring-rearrangement metathesis would be the dominant
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Scheme 5 (A) Summary of RCM vs. RRM selectivity. (B and C) Rationale
for RCM regloselect|V|ty. conformational bias (B) and an anchimeric effect
(C). (D) Alkylidene reduction results in a scaffold that undergoes ring-
rearrangement metathesis.
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pathway. However, no metathesis processes were observed;
the starting material was recovered in high yield. Furthermore,
even the mono 2-methylallylated scaffold 4f was completely
unreactive (starting material recovered). These observations
allow us to draw conclusions on the ring-closing vs. ring-
rearrangement metathesis chemoselectivity (Scheme 5B and
C). First, ring-closing metathesis is favoured when either
di- or tri-substituted cyclic olefins are expected. The structures
are also conformationally biased, where the ““allylic arms” are
in an axial-position and thus in close proximity to one another
(Scheme 5B). This was confirmed by NMR studies (see the
ESIT). And second, as shown in Scheme 5C, we have found an
anchimeric effect between the cyclic alkene and the alkylide-
nemalononitrile (a m-n* interaction). This was achieved com-
putationally where structures were optimized using the DFT
level of theory M062x/cc-pvdz.>® Notably, the qualitative trends
do not change when using a different functional or basis set
combination. We found the localized bond orbitals for the =
and n* orbitals of interest, and used the second order energy
between them as computed in NBO 3.1 to quantify the extent of
the interaction. Specifically, a 1.9 kecal mol™" interaction energy
was found. To remove this through space interaction (anchimeric
effect), the alkylidenemalononitrile was reduced yielding 13a,
which exclusively underwent ring-rearrangement metathesis to
14a (Scheme 5D).

Having found that ring-rearrangement metathesis can be
favoured by alkylidenemalononitrile reduction, we next examined
the scope of the RRM transformation (Scheme 6). It was found
that a variety of scaffolds with 2-alkylation on the “allylic
arms” were competent substrates for ring-rearrangement (14a-c).
We expected these substrates to be successful because ring-closing

A: || NC__CN
R H H R 5 mol% HG-II
@ 10l (001 M), 80°C R
13a-13f H

14a - 14f
NC.__CN NC.__CN NC.__CN
HIH HlH HIH
Me Me Me
H B : B SSX7:
BXR a9 a2l A
14a X = O; 69% yield 4c ]jg ))é: ,\Oléglz’/zé’f;i'g ol
14b X = CH,; 67% yield 62% yield 14f X = CHy; 61% yield
B ON " N
3 mol% 3 mol%
NCTAH HG-1I HG-I H
S tol (0.01 M) tol (0. 01 M)
Eoc_ 445/0 'C|d H R H 4:(/) Id
10 o yie 14e (R = Boc) oyie
C NC__CN 0
o N
H]H o K,COj NI
QNH 0,, MeCN
No7E -
H™H 444 47% yield 15 H

Scheme 6 (A and B) Ring rearrangement metathesis to 5-6-5 scaffolds.
(C) Oxidative amidation.
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metathesis is prohibited by the substitution patterns on the
alkenes. We were pleased to also find that substrates with unsub-
stituted “allylic arms” also yielded the desired ring-rearrangement
metathesis products 14d-14f over the ring-closing metathesis
products. It was also observed that 14e could be prepared either
from a linear precursor 13e or a cyclic one 10, prepared indepen-
dently via the chemistry described in Scheme 6. Thus, there are
two potential entry routes into the ring-rearranged 5-6-5 scaffolds.
As a final result, the malononitrile functional group can be inter-
converted to amides by Hayashi’s oxidative amidation protocol as
shown in the conversion of 14d to 15.

We have developed a protocol to assemble bicyclic[3.2.1]-
tetraenes and explored their reactivity as metathesis substrates.
It was uncovered that the tetraenes are kinetically predisposed
to undergo ring closing metathesis yielding doubly bridged
cyclodeca-1,6-dienes. It was also hypothesized that a m-n*
interaction between the strained endocyclic olefin and the
alkylidenemalononitrile precluded ring-opening metathesis.
In support of this hypothesis, alkylidenemalononitrile reduction
can result in chemoselectivity favouring ring-rearrangement
metathesis. For both of the scaffolds, the malononitrile func-
tional group can be converted to amides by oxidative amidation.
Future studies will involve the exploration of transformations
favouring ring-rearrangement metathesis, as this yields frameworks
common to natural products such as pepluanone,”® retigeranic
acid,” perseanol,*® and leucosceptroids,®'>* among others.
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