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Predicting the performance of oxidation catalysts
using descriptor models

Neetika Madaan, N. Raveendran Shiju and Gadi Rothenberg*

Practical solutions in catalysis require catalysts that are active and stable. Mixed metal oxides are robust

materials, and as such are often used as industrial catalysts. The problem is that predicting their

performance a priori is difficult. Following our work on simple descriptors for supported metals based on

Slater-type orbitals, we show here that a similar paradigm holds also for metal oxides. Using the oxidative

dehydrogenation of butane to 1,3-butadiene as a model reaction, we synthesised and tested 15 bimetallic

mixed oxides supported on alumina. We then built a descriptor model for these oxides, and projected the

model's results on a set of 1711 mixed oxide catalysts in silico. Based on the model's predictions, six new

bimetallic oxides were then synthesised and tested. Experimental validation showed impressive results, with

Q2 > 0.9, demonstrating the power of these low-cost predictive models. Importantly, no interaction terms

were included in the model, showing that even if we think that bimetallic oxide catalysts are highly complex

materials, their performance can be predicted using simplistic models. The implications of these findings to

catalyst optimisation practices in academia and industry are discussed.

Introduction

Catalysis is a key enabling technology that affects nearly all
aspects of our industrialised society. Catalysts and catalytic
processes are essential for the making of fuels and bulk
chemicals, fine-chemicals and intermediates, as well as
advanced materials, medicines and foodstuffs.1 The applica-
tions range far and wide, and so does research into new cata-
lysts. Scientific papers describe amazing and wonderous struc-
tures, intricate dendrimers,2 molecular “cages”,3 and hybrid
inorganic/organic compounds,4,5 that are limited only by
human imagination.

However, the bulk of the industrial applications in real life
require robust and hardy materials, and the most common
are metal oxides.6 These are already “burned” and have a
high chemical and mechanical resistance, which is a must
for large-scale processing. But appearances can be deceiving:
the molecular formula of a mixed oxide may look simple, but
the actual structure is highly complex. What's more, unlike
the uniformity of homogneous complexes,7,8 the catalytic
activity of solids often stems from breaks and kinks on the
surface, that in turn depend on minute changes in the syn-
thesis and pre-treatment conditions.9 Predicting the perfor-
mance of such catalysts successfully is thus a mammoth task.

There are two approaches for making such predictions.
The first uses high-power computing and intricate algo-
rithms, that combine quantum and classical mechanics.
Great advances were made in this field in the past decade,10

and catalyst performance can actually be predicted, but at a
high cost.11,12 The second approach is data-driven, based on
modelling catalyst performance using a few simple descrip-
tors. Such models may be less intuitive, but they are highly
practical.13–15 Ultimately, both approaches are needed for
finding new catalysts and optimising existing ones.

Recently, we demonstrated the feasibility and effectiveness
of using simplified radial distribution functions (RDFs) as
descriptors for supported metal(0) catalysts.16 These models
can predict the performance of heterogeneous catalysts under
a reducing environment (e.g. for catalytic hydrogenation).
Here, we take these descriptor models an important step fur-
ther, into the realm of oxidation reactions. The interactions
of the active site with the support are different for an oxide
and a metal.17,18 Oxides bind differently and react differently,
so the catalytic performance of a metallic element is usually
very different from that of its oxo or peroxo species. Neverthe-
less, we show here that by tuning the RDF descriptors to the
corresponding metal ions, one can predict well the perfor-
mance of supported catalysts under oxidative conditions. The
theoretical principles are first demonstrated using an experi-
mental set of 15 catalysts in the oxidative dehydrogenation of
butane to 1,3-butadiene. Subsequently, we generate a large set
of 1711 bimetallic oxides in silico, and use descriptor models
to project the experimental results onto this dataset. Six
promising catalysts from the virtual set are then synthesised
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and tested, validating the model and demonstrating the power
of data-driven predictive modelling in oxidation catalysis.

Experimental
Materials and instrumentation

Unless stated otherwise, chemicals were purchased from
commercial sources (>99% pure) and used as received.
γ-alumina (surface area 200 m2 g−1, total pore volume 0.6
cm3 g−1) was provided by LANXESS Deutchland GmbH. Sur-
face area measurements were performed using N2 at 77 K on
a Thermo Scientific Surfer instrument and calculated using
the BET method. Catalytic oxidative dehydrogenation reac-
tions were tested in a built-for-purpose computer-controlled
sixflow reactor setup. This setup enables the testing of six dif-
ferent catalysts simultaneously, using six fixed-bed quartz
tube reactors in parallel. The reactors are kept at one temper-
ature but have separately controlled flow rates, allowing for
tuning the gas hour space velocity (GHSV). The gas composi-
tion is controlled via four mass flow controllers that dose
hydrocarbon, oxygen, nitrogen and argon. The temperature is
controlled using a carbolite furnace and can be set between
50–1100 °C. Reactor output is analysed on-line by both gas
chromatography (Interscience compact-GC) and mass
spectrometry (Granville Phillips, Brooks Automation).19,20

Note that while strict calculations should allow for variations
in concentration due to the expansion (or compression) of
the gas for reactions occurring in gas flow, we assumed for
simplicity that the volume remains constant. This enables the
use of absolute concentrations and is approximately correct
for a flow reaction at low conversions in a reactor with a con-
stant cross-section.

Procedure for catalyst synthesis

All catalysts were prepared by wet impregnation of γ-alumina
support ĲM:N/Al2O3; the composition details are given in Table 1).
Where possible, we used nitrate precursors, as these are
easily removed by calcination. The exceptions were Nb, Mo, W, V
and In, where C4H4NNbO9, ĲNH4)6Mo7O24·4H2O, ĲNH4)2WO4

·H2O, NH4VO3 and H2InN3O10 were used, respectively.
Example 1. AgOx:SrOx/Al2O3 (catalyst 1). First, stock aque-

ous solutions were prepared from the Ag and Sr precursors:
0.0386 g (0.23 mmol) of AgNO3 and 0.0568 g (0.27 mmol) of
SrĲNO3)2 were each dissolved in 10 ml deionized water while
stirring. The two solutions were then combined, stirred and
then added to a suspension of 2.90 g γ-alumina in 50 ml
deionized water. The mixture was then heated at 95 °C over-
night in an open round-bottomed flask under continuous
stirring till all the water has evaporated. The remaining cake
(2.86 g) was ground to a fine powder, which was further dried
in an oven at 120 °C for 24 h and then calcined in static air
at 550 °C for 4 h (heating rate 2 °C min−1). The resulting cata-
lyst was pressed into pellets, and then ground and sieved,
retaining the 250–350 μm fraction for testing.

Example 2. WOx:MnOx/Al2O3 (catalyst 12). Stock solutions
of W and Mn precursors were prepared as follows: 0.0367 g

(0.13 mmol) of ĲNH4)2WO4 and 0.0756 g (0.42 mmol) of
MnĲNO3)2 were dissolved separately in 10 ml deionized water
with continuous stirring. The two solutions were combined
and added to a suspension of 2.89 g γ-alumina in 50 ml
deionized water. The mixture was then heated at 95 °C over-
night to evaporate excess water. The remaining solid was
dried at 120 °C for 24 h, calcined at 550 °C for 4 h and finally
pressed into pellets, ground and sieved, retaining the 250–
350 μm fraction for testing.

Procedure for catalyst testing

Each catalyst was tested for 100 mg and 20 mg, catalysts were
placed in the reactor tube over a plug of quartz wool, forming
a cylindrical catalyst bed roughly 4 cm in height and 4 mm in
diameter. In each run using the sixflow reactor, one reactor
was kept empty as a blank (this blank was changed between
runs to minimise systemic error). The catalysts were activated
in situ before reaction in a flow of 45 ml min−1 Ar and 5 ml
min−1 O2 at 500 °C. After activation, total reaction feed of
50 ml min−1 was passed in each reactor, with the volumetric
ratio ranging O2 : C4H10 : Ar = Ĳ0.25–1) : 1 : Ĳ8.25–8). Reactions
were run for 24 h on stream at both 550 °C and 650 °C, giving
a total of eight different conditions for each catalysts
(reaction conditions A–H, see Table 2). Reactant conversion

Table 1 Composition of the catalysts prepared and tested in the first
iteration

Catalyst Compositiona

1 AgOx:SrOx/Al2O3

2 CrOx:ZrOx/Al2O3

3 PbOx:InOx/Al2O3

4 NbOx:NiOx/Al2O3

5 MgOx:CrOx/Al2O3

6 GaOx:MoOx/Al2O3

7 LaOx:BiOx/Al2O3

8 LiOx:WOx/Al2O3

9 YOx:KOx/Al2O3

10 CuOx:TeOx/Al2O3

11 VOx:MgOx/Al2O3

12 WOx:MnOx/Al2O3

13 CoOx:MnOx/Al2O3

14 VOx:MoOx/Al2O3

15 PtOx:InOx/Al2O3

a In all cases, the loading of each metal is 1 wt%.

Table 2 The eight sets A–H of experimental conditions used for catalyst
screening

Conditions set Catalyst amount (mg) O2 :nBu ratio Reaction T (°C)

A 100 0.25 550
B 100 0.25 650
C 100 1 550
D 100 1 650
E 20 0.25 550
F 20 0.25 650
G 20 1 550
H 20 1 650
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and product selectivity were monitored on-line using gas
chromatography and mass spectrometry. The conversion of
butane was calculated as χbutane = (MFin − MFout)/MFin, where
MFin and MFout are the molar flows of butane at the reactor
inlet and outlet, respectively. Similarly, the selectivity of each
product was calculated as Sproduct = MFproduct/ĲMFin − MFout),
where MFproduct is the molar flow of the product at the reac-
tor outlet.

Computational methods

Descriptor calculation, analysis and data mining were
performed on a Sony Vaio laptop with Intel® Core™ i7-
4500U processor. A variable importance (VIP) analysis was
done following the method of Hageman et al.21 Principal
components analysis (PCA) and partial least squares (PLS)
regression models were run using the JMP pro software. The
principal components were calculated by using the NIPALS
algorithm, which calculates the components in their order of
explaining the variance in the data. All models were validated
using leave-one-out cross-validation. A discussion on the
merits of validation methods is published elsewhere.22

Results and discussion
Generating the initial dataset

Aiming at both high conversion of n-butane (herein: χbutane)
and a high selectivity to 1,3-butadiene (herein: Sbutadiene) we
synthesised and tested a varied set of 15 bimetallic oxide cat-
alysts. We chose Fe, Cu, Ag, Sr, Cr, Zr, Pb, In, Nb, Ni, Mg, Ga,
Mo, La, Bi, Li, W, Y, K, V, Te, Co, Mn, Pt, and Zn (see Table 1
above). The rationale for choosing these metals is threefold:
first, they are commercially available and most of them are
relatively cheap, so they could be also applied in an industrial
environment; second, some are known to be good dehydroge-
nation catalysts while others are known as good catalyst pro-
moters. Finally, we also added some metals at random,

reducing the bias in the set (a discussion on selecting metals
for oxidation catalysis is published elsewhere23).

The bimetallic mixed oxide catalysts 1–15 were prepared
using wet impregnation (for details see the Experimental sec-
tion). X-ray diffraction and BET surface area analysis of sev-
eral samples ĲCoOx:MnOx/Al2O3, MgOx:CrOx/Al2O3, LaOx:BiOx/
Al2O3, and VOx:MoOx/Al2O3) confirmed that the crystal struc-
ture of the alumina remained unchanged. The BET surface
area values of these catalysts were all in the range of 200–240
m2 g−1. This is what we would expect considering the low
metal loadings and high surface area of alumina support.
The 15 bimetallic oxide catalysts were then tested in the oxi-
dative dehydrogenation of n-butane (eqn (1)). This reaction

Table 3 Catalyst performance data in ODH of n-butane under condition sets A–D

Conditions

550 °C 650 °C

A B C D

0.25 : 1 : 8.75 (nBu :O2 : Ar) 1 : 1 : 8 (nBu :O2 : Ar) 0.25 : 1 : 8.75 (nBu :O2 : Ar) 1 : 1 : 8 (nBu :O2 : Ar)

Catalyst χbutane (%) Sbutadiene (%) χbutane (%) Sbutadiene (%) χbutane (%) Sbutadiene (%) χbutane (%) Sbutadiene (%)

1 4.7 3.8 18.5 1.2 16.5 2.2 40.0 2.0
2 9.0 4.0 26.5 3.3 13.7 6.0 36.2 3.7
3 5.3 8.5 10.0 0.3 12.5 12.8 29.5 7.5
4 8.5 8.0 14.4 5.2 15.5 13.7 37.0 6.0
5 9.0 5.3 27.0 3.2 14.2 8.2 35.5 5.5
6 4.5 5.0 10.0 3.5 15.0 5.0 34.8 4.0
7 14.0 6.0 36.0 4.0 17.5 5.0 40.0 2.2
8 15.2 6.0 40.0 5.0 20.6 3.5 43.5 1.6
9 6.0 1.6 16.0 1.1 15.0 1.9 36.5 1.7
10 7.8 11.2 22.3 6.5 11.7 8.2 30.5 6.2
11 9.5 8.0 14.5 7.0 16.5 9.3 42.0 8.3
12 13.0 9.0 37.0 6.0 15.5 6.0 40.0 5.0
13 10.3 6.3 26.5 4.5 15.0 6.0 40.0 4.5
14 10.5 7.0 20.0 5.4 16.5 10.2 37.4 8.0
15 9.0 14.0 20.0 3.0 12.0 14.0 22.0 6.0

Fig. 1 Summary plot showing the percentage total selectivity for
butenes vs. the percentage conversion of n-butane for catalysts 1–15
under condition sets A–H.
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has an interesting history: it was a popular subject of
research following WW II, when synthetic rubber was in
short supply. The interest subsided in the 1960s, when large-
scale cracking of naphtha provided a steady stream of 1,3-
butadiene. It then resumed around 2010, with the advent of
shale gas and the political unrest in the Persian Gulf. Follow-
ing our work on ethane24 and propane25 oxidative dehydroge-
nation, we were approached by Lanxess Deutchland GmbH,
one of the main users of 1,3-butadiene, to collaborate on
using predictive modelling methods for finding new butane
oxidative dehydrogenation catalysts.

(1)

Table 3 shows the conversion and butadiene selectivity
results for the four reaction conditions A–D. Running the

Fig. 2 Graphs showing a typical radial distribution function (RDF) based on the Slater-type orbitals used for deriving the four descriptors for
(mixed) oxides (left), and examples of these orbitals for AgOx:SrOx/Al2O3 (catalyst 1) and WOx:MnOx/Al2O3 (catalyst 12).

Fig. 3 Biplot representation following a principal component analysis (PCA) of the experimental results, showing the distribution of the conversion
and selectivity of catalysts 1–15 running under reaction conditions A–H in the space of the two first principal components. Each symbol represents
one catalyst under one set of reaction conditions. The arrows indicate the direction and magnitude of the descriptors and the figures of merit. For
example, the fact that the FFWHion arrow is opposite to Sbutadiene (%) means that oxides with a higher FFWHion value will give less butadiene. Simi-
larly (and unsurprisingly) the conversion of butane is strongly correlated with the oxygen : butane ratio.
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reactions using lower catalyst loadings (conditions E–H)
yielded lower conversions, but very similar selectivity results
(results shown in Fig. 1 only). The reactions at lower catalyst
loadings were run to confirm that the same mechanism is in
effect at both regimes. This was confirmed by the similar
product selectivity at lower conversions. Fig. 1 shows the con-
version and total butenes selectivity results for all 15 catalysts

at all eight condition sets. The remaining difference to 100%
is due to oxidation to CO and CO2. No deactivation was
observed over 24 h on stream, and control experiments on
three different catalysts running for 100 h showed also no
deactivation.

Choosing relevant catalyst descriptors

In general, there are three approaches for modelling catalyst
performance. One option is based on an in-depth analysis of
the reaction mechanism, combined with high-level quantum
mechanics models. Although these models are computation-
ally very expensive, they often provide accurate data, that can
then be used for making good predictions. Examples in
heterogeneous catalysis include work from the groups of
Nørskov and Bligaard,10 Neurock,26 van Santen27 and Sautet,28

as well as from our group.29 Yet these in-depth models are typ-
ically too expensive to be applied to large data sets.

The second approach is using purely data-driven models.
These “black-box” models are based on statistical analysis,
often combined with stochastic optimization methods, such
as neural networks or genetic algorithms.23,30 Such models

Fig. 4 Bar chart showing the loading coefficients of each sample on
the two first principal components.

Fig. 5 Schematic flowchart showing the iterative process of
hypothesis formulation, data collection, regression modelling,
screening of virtual catalysts (meta-modelling), and testing in the lab
(experimental validation of the model results).

Fig. 6 Predicted vs. experimental values for χbutane (%, graph a) and
Sbutadiene (%, graph b) obtained using the bimetallic oxide catalysts 1–15.
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are fast, but connecting their results to ‘chemical intuition’
is difficult, and they cannot adapt well to new factors. Here,
we opted for a third approach, using so-called ‘grey models’,
that combine simple descriptors based on chemical princi-
ples with statistical modelling. As we will show, such models
are effective in predicting catalyst performance, giving a good
cost-to-benefit ratio.

Previously, we showed that descriptors based on radial
distribution functions (RDFs) derived from Slater-type
orbitals (STOs) are effective for modelling and predicting the
performance of hydrogenation catalysts.31,32 These RDF
descriptors are robust. Their calculation is straightforward,
and their implementation is easy. Here, we will show that the
same approach works also in an oxidative environment, but
instead of using the parameters for metals, we now apply the
analogous parameters for their oxide salts. This is an impor-
tant generalizing step – the same paradigm that works well
for monometallic and bimetallic catalysts applies also to
monometallic oxides and mixed metal oxides.

Basically, we reduce the combined STOs of the frontier
orbitals of each metal to four parameters: the distance from
the nucleus where the probability of finding the electrons is
highest, rapex, the value of the RDF at this distance, Rapex, the
peak width at half height, FWHH, and the skewness of the
peak, Skew (the latter is calculated as the area on one side of
the peak divided by the area on the other side, see Fig. 2).
However, considering that the (mixed) oxide system is more
complex than the pure metallic one, we introduced three
additional parameters as descriptors: electronegativity,33

atomic radius34,35 and ionization potential.36

To construct a statistical model that can predict the per-
formance of these mixed oxide catalysts, we first used princi-
pal component analysis (PCA) and partial least squares (PLS)
regression for distinguishing important parameters from

marginal ones. This must be done to avoid over-fitting and
ensure that the model will be based on the simplest and
most robust parameters (a tutorial on using PCA and PLS in
catalysis research is published elsewhere37). Fig. 3 shows a
biplot representation based on the PCA analysis. The symbols
on the graph show the distribution of the conversion and
selectivity for catalysts 1–15 running under reaction condi-
tions A–H. In this graph, the axes are the two first principal
components (PCs, also called ‘latent variables’). These two
PCs explain 53% of the variance in the data. The arrows indi-
cate the direction and magnitude of the descriptors, the reac-
tion conditions, and the figures of merit. The direction of the
arrows gives the relation between the parameters: if two
arrows are close together, it means that the two parameters
are highly correlated. Similarly, if two arrows are close
together yet pointing at opposite directions, it means that the
two parameters are inversely correlated. Finally, if two arrows
are orthogonal to each other, it means that the two parame-
ters are uncorrelated.

Looking at the biplot in Fig. 3, we see that the conversion
of n-butane (χbutane) is very closely grouped with three reac-
tion parameters: catalyst amount, O2 : n-butane flow and reac-
tion temperature. Indeed, this is what you would expect. Fur-
ther, we see that the selectivity of total butene is inverse to
χbutane (cf. Fig. 1). Sbutadiene is correlated with the RDF
descriptors. It depends directly on the parameters Rapex and
Skew, and inversely on rapex and FWHHion. Interestingly, the
product selectivity does not depend directly on the reaction
conditions. This does not mean that Sbutadiene and Sbutenes are
independent of each other. Butenes produced by ODH could
be used for making 1,3-butadiene. Fig. 4 shows the loading
of each sample on the first two principal components (PC1
and PC2). PC1 is sensitive to the type of catalyst, yet insensi-
tive to any changes in the reaction conditions. This is

Fig. 7 Periodic table showing the 59 metals used for creating the 1711 bimetallic oxide catalyst combinations in silico.
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important, because PC1 explains the largest amount of vari-
ance in the data, and the largest change in the production of
butadiene comes when you change the catalyst precursor.
Conversely, PC2 is much more sensitive to changes in the
reaction conditions.

Predicting the performance of new ODH catalysts

Now that we have pinpointed good descriptors for these cata-
lysts, we can use these for building a model for predicting
the performance of new catalysts. Therein lies the real value
of descriptor models. We use these models for screening a
large space of virtual catalysts, and then test in the lab those
catalysts for which the model predicts the desired perfor-
mance (so-called ‘figure of merit’, see flowchart in Fig. 5).19

In this specific case, we are searching for bimetallic
supported oxides that will give both high conversion of
butane and a high selectivity for 1,3-butadiene. Thus, we want
to maximise both χbutane and Sbutadiene. In addition, we need
to synthesise and test some catalyst candidates with low pre-
dicted values. This may seem counter-productive, and it is
always a sore point of discussion with the people who actu-
ally carry out the experiments. Yet testing “bad” candidates is
essential for confirming the model's viability and robustness
over a wide range of data.

First, we created and modeled our training set of 15 bime-
tallic supported oxide catalysts (catalysts 1–15). We applied a
partial least squares (PLS) regression model, using the
descriptor values based on the metal ion STOs as input.
These differ from the pure metal STOs that we used earlier
for modelling hydrogenation catalysts.16 The reason is that
the pristine catalysts are metal oxides, and in an oxidative
environment, metal(0) species are unlikely. The correlation
coefficients (see Fig. 6) using the metal ion STOs were good:
R2 = 0.865 for χbutane and R2 = 0.610 for Sbutadiene. These
numbers may seem low, but they are actually impressive,
especially considering the simplicity of the descriptors, and
the fact that no interaction parameters were included for
these bimetallic oxides. Control experiments showed that
the correlation with metal(0) STO descriptors was much
lower, R2 = 0.5748 for χbutane and 0.2321 for Sbutadiene,
respectively, confirming the hypothesis that oxide models
are more suitable for modelling metal oxides than pure
metal models. All of the models were validated using leave-
one-out cross-validation.

We then created a large set of virtual bimetallic oxides,
comprised of 1711 bimetallic combinations of 59 elements in
total (see Fig. 7). Calculating the descriptor values for these
1711 virtual catalysts is very fast (especially as there are no
interaction parameters). It takes only seconds using a simple
laptop. We then projected the results of the descriptor
models for the 1711 virtual catalysts on the set of the 15 real
catalysts, and selected six bimetallic supported oxides cata-
lysts. These were then synthesized and tested in the lab.
Fig. 8 shows the so-called parity plot of the predicted vs. the
experimental results, both for the conversion of butane and

the selectivity to 1,3-butadiene. The plot shows that there is a
good fit between the model's predictions and the actual
experimental data. Note that we selected not only catalysts
with an expected high performance (high conversion and

Fig. 8 Parity plot showing the predicted vs. experimental butane
conversion (a) and 1,3-butadiene selectivity (b) of the six new bimetallic
oxide catalysts that were synthesised following the model's predictions.
The formulas of catalysts A–C cannot be disclosed for proprietary
reasons. Reaction conditions: each reactor was loaded with 100 mg
catalysts. All catalysts were first activated in situ before each reac-
tion in a flow of 45 ml min−1 Ar and 5 ml min−1 O2 at 500 °C. After activa-
tion, a feed of 50 ml min−1 was passed for 24 h in each reactor, with
an O2 :C4H10 : Ar volumetric ratio of 1 : 1 : 8. Conversion and selectivity
were monitored by GC and on-line MS (see the Experimental section
for details).

Fig. 9 Cartoons of a catalyst surface containing small amounts of two
oxides, where the chances of formation of a mixed oxide are lower
(left) and of a second catalyst surface containing large amounts of a
main oxide and small amounts of dopant, where the chances of
formation of a mixed oxide sites are higher (right).
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selectivity) but also ones for which we had low expectations.
This is important, because it shows the wide operational
range of the model. There is an understandable bias in pub-
lished papers towards good results – publishing papers about
badly performing catalysts is a tough sell, but if you want to
predict the performance of catalysts, your model should cover
a wide range. This means testing both good and bad
candidates.

The good performance of the models in the case of mixed
metal oxide raises the question of the importance (or in this
case, lack of importance) of the interaction parameter. Basi-
cally, if no interaction parameter is included, it means that
the model is limited to a linear combination of the effects of
oxide A and oxide B. That is, for a catalyst containing two
metals, M1 and M2, the figure of merit would be FOM =
fĲM1Ox) + fĲM2Ox), giving some weighted average of the effects
of the two oxides. This does not necessarily mean that there
is no interaction effect at all. Rather, it may reflect the fact
that these catalysts contain relatively little active material, 1
wt% of M1 and 1 wt% of M2. When these are impregnated on
the alumina support and calcined, the actual sites where
mixing occurs between the oxides are probably few and far
between (see Fig. 9, left). In such a case, the weighted average
would give (and indeed gives) a good description of the cata-
lytic properties of the surface. Avoiding the interaction term
in the model makes sense, because such a second-order term
would increase the chances of over-fitting. In the case of a
main metal and a promoter metal (see example in Fig. 9,
right) there may be more justification for including interac-
tion parameters (e.g. in the dehydrogenation of alkanes
catalysed by Pt/Sn).

Conclusions

Complex catalytic reactions such as the oxidative dehydroge-
nation of butane to butenes and butadiene can be modeled
efficiently using heuristic descriptor models. These data-
driven models are ‘quick & dirty’ – they cost practically zero
in computer time, yet deliver surprisingly accurate results.
The fact that such models work well also under oxidation
conditions may not surprise mathematicians, who consider a
model's performance as a function with a figure of merit and
residuals. But for chemists, this means that the RDF descrip-
tors based on Slater-type orbitals can now be applied across a
wide range of catalytic processes. Since they perform well for
metal(0) catalysts and metal oxides, they should in principle
also do well in predicting the activity and selectivity of metal
sulfides, nitrides and carbides. We hope that this work will
encourage colleagues in academia and industry to apply these
models as they search for new, active, selective and robust
catalytic materials.
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