The Hydrolysis Properties of Polyethylene Glycol under Ambient Nonthermal Plasma Conditions
Abstract
Polyethylene glycol (PEG) has been widely used in various industries for its biodegradability. However, the biodegradation of high molecular weight PEGs poses challenges due to limited microbial uptake. In this study, we investigated a rapid nonthermal plasma-assisted hydrolysis method to break down long-chain PEGs into shorter chains and valuable liquid and gas products. Utilizing a dielectric barrier discharge (DBD) reactor under ambient conditions, we achieve complete conversion of PEG into gas and liquid products, including methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), methanol (CH3OH), ethanol (C2H5OH), acetic acid (CH3COOH), and ethylene glycol (C2H6O2), in mere minutes, which is significantly faster than conventional hydrolysis and biodegradation methods. Experimental results show that liquid products dominate throughout the reaction, while gas products increase over time, arising from secondary reactions of the liquid intermediates. Density functional theory (DFT) calculations elucidate the reaction pathways responsible for product generation. These findings highlight the promise of nonthermal plasma-assisted hydrolysis as an efficient approach for converting PEG into short-chain products and valuable chemical intermediates.
- This article is part of the themed collection: Research advancing UN SDG 12: Responsible consumption and production