Tailored MXenes and graphene as efficient telemedicine platforms for personalized health wellness
Abstract
This comprehensive review paper provides an insightful exploration of the burgeoning field of 2D nanostructures and their development as telemedicine platforms for futuristic smart healthcare systems. A remote health monitoring device is known as telemedicine for continuous surveillance of body parameters. 2D materials, such as graphene and MXenes with their unique physical, chemical, and electrical properties, have recently garnered significant attention in this field. Graphene, composed of a single layer of carbon atoms in a hexagonal lattice, boasts a high surface-to-volume ratio, exceptional electrical and thermal conductivity, and remarkable mechanical strength. In the realm of telemedicine, graphene-based nanostructures have emerged as versatile tools for biosensing, targeted drug delivery, and bioimaging. The exceptional attributes of graphene facilitate efficient drug loading and controlled release. Additionally, its outstanding electrical conductivity supports the development of biosensors with heightened sensitivity and selectivity. On the other hand, MXenes, a family of 2D transition metal carbides and nitrides, offer distinct surface chemistry and excellent biocompatibility. These materials exhibit promise in various biological applications, including biosensing and drug delivery. Their substantial surface area and diverse surface characteristics enhance drug-loading capabilities and cellular interactions. Furthermore, the integration of hybrid nanocomposites, combining graphene and MXenes, presents an opportunity to synergistically enhance the functionality and performance of telemedicine platforms. Moreover, the integration of 2D nanomaterials with artificial intelligence (AI) amplifies the potential of telemedicine. AI-powered systems optimize the release of therapeutic agents in drug delivery systems and improve the precision of disease detection through data analysis and modeling. Real-time data analysis allows for personalized healthcare, enabling immediate adjustments and tailored interventions. This convergence of 2D nanomaterials and AI fosters dynamic synergy, offering the prospect of elevated patient outcomes, reduced side effects, and the expedited development of cutting-edge healthcare solutions. The future of telemedicine is undeniably promising with these advancements.
- This article is part of the themed collections: Recent Review Articles and Advanced materials for sensing and biomedical applications