Issue 6, 2023

Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering

Abstract

As an emerging class of two-dimensional (2D) materials, MBenes show enormous potential for optoelectronic applications. However, their use in molecular sensing as surface-enhanced Raman scattering (SERS)-active material is unknown. Herein, for the first time, we develop a brand-new high-performance MBene SERS platform. Ordered vacancy-triggered highly sensitive SERS platform with outstanding signal uniformity based on a 2D Mo4/3B2 MBene material was designed. The 2D Mo4/3B2 MBene presented superior SERS activity to most of the semiconductor SERS substrates, showing a remarkable Raman enhancement factor of 3.88 × 106 and an ultralow detection limit of 1 × 10−9 M. The underlying SERS mechanism is revealed from systematic experiments and density functional theory calculations that the ultrahigh SERS sensitivity of 2D Mo4/3B2 MBene is derived from the efficient photoinduced charge transfer process between MBene substrates and adsorbed molecules. The abundant electronic density of states near the Fermi level of 2D Mo4/3B2 MBene enables its Raman enhancement by a factor of 100 000 times higher than that of the bulk MoB. Consequently, the 2D Mo4/3B2 MBene could accurately detect various trace chemical analytes. Moreover, with ordered metal vacancies in the 2D Mo4/3B2 MBene, uniform charge transfer sites are formed, resulting in an outstanding signal uniformity with a relative standard deviation down to 6.0%. This work opens up a new horizon for the high-performance SERS platform based on MBene materials, which holds great promise in the field of chemical sensing.

Graphical abstract: Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering

Supplementary files

Article information

Article type
Paper
Submitted
09 নবে 2022
Accepted
05 জানু 2023
First published
06 জানু 2023

Nanoscale, 2023,15, 2779-2787

Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering

L. Lan, X. Fan, C. Zhao, J. Gao, Z. Qu, W. Song, H. Yao, M. Li and T. Qiu, Nanoscale, 2023, 15, 2779 DOI: 10.1039/D2NR06280A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements