High-strength hydrogel-based bioinks
Abstract
In the past few decades, the emerging three-dimensional printing (3D printing) techniques have revealed great potential for precise medicine and individualized therapy, thus attracting intensive attention in biomedical applications. 3D printing is heavily dependent on the properties of biomaterials, i.e., bioinks. High-strength hydrogels, resembling natural tissues with exceptional mechanics have demonstrated great potential as bioinks for 3D printing load-bearing tissue engineering scaffolds. However, achieving high-strength hydrogel inks and 3D printing them to construct a complex scaffold with the desired physicochemical and biofunctions for a definite biomedical application is still in its infancy. This review summarizes the progress of high-strength hydrogels for 3D printing from our team and other groups; their applications in biomedical areas are also presented. Meanwhile, the opportunities and challenges associated with 3D printing fabrication of high-strength hydrogels are discussed.
- This article is part of the themed collections: Materials Chemistry in Tianjin University and 2019 Materials Chemistry Frontiers Review-type Articles