Structural colors in metasurfaces: principle, design and applications
Abstract
Structural colors resulting from the interference between incident light and structures are ubiquitous in nature and daily life. In contrast to conventional chemical pigments and dyes, structural colors have the advantages of low consumption, environmental protection and high durability. To reach higher resolutions beyond diffraction limits, structural colors based on metasurfaces consisting of artificially designed nanoresonators at subwavelength scale have been proposed in recent years. In this review, we classify structural colors into plasmonic colors and dielectric colors according to different mechanisms, summarizing the development and applications for a variety of color filters. Moreover, four significant methods of dynamically tunable colors are discussed, including mechanical stretching, chemical reaction, electrical control, and photon doping.
- This article is part of the themed collections: 2019 Materials Chemistry Frontiers Review-type Articles and Celebrating the 100th anniversary of Nankai University