Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy†
Abstract
Nanotheranostic reagents that integrate magnetic resonance imaging (MRI) and photothermal therapy (PTT) offer a promising strategy for the treatment of human disease. However, classic gadolinium (Gd)-based T1-MRI contrast agents are limited by their low relaxivity. To address this, we produced Gd-loaded Tobacco mosaic virus (TMV) particles coated with the mussel-inspired biopolymer polydopamine (PDA). Such biocompatible nanotheranostic reagents can be used to facilitate PTT, guided by multimodal magnetic resonance/photoacoustic imaging. The r1-relaxivity of the Gd-TMV–PDA particles at 60 MHz was ∼80 mM−1 s−1, compared to 13.63 mM−1 s−1 for the uncoated Gd-TMV particles. The Gd-TMV–PDA particles also promoted strong near-infrared absorption with high photothermal conversion efficiency (28.9%) and demonstrated excellent photoacoustic contrast. Multimodal imaging and PTT resulted in the effective killing of PC-3 prostate cancer cells. Gd-TMV–PDA nanoparticles therefore offer a promising theranostic approach that can now be tested in vivo in cancer models.
- This article is part of the themed collection: International Year of the Periodic Table: Applications for magnetic materials