Tunable dual emission of Ca3Al4ZnO10:Bi3+,Mn4+via energy transfer for indoor plant growth lighting
Abstract
We synthesized a series of Bi3+ doped and Bi3+ and Mn4+ co-doped Ca3Al4ZnO10 (CAZO) phosphors via a conventional high-temperature solid-state reaction (SSR). Upon excitation at 330 nm, CAZO:Bi3+ shows blue-violet emission with a peak located at 405 nm. Under the same excitation source, Bi3+ and Mn4+ co-doped CAZO phosphors show dual emission, where the blue-violet emission is mainly from the 3P1 → 1S0 transition of Bi3+ and the far red emission is attributed to the 2E → 4A2 transition of Mn4+. The intrinsic great overlap between the emission band of Bi3+ and the excitation band of Mn4+ indicates the occurrence of energy transfers from Bi3+ to Mn4+. Fluorescence decays and photoluminescence spectra were measured to investigate the energy transfer process. The energy transfer efficiencies were also calculated. The relative emission intensities of Bi3+ and Mn4+ can be easily controlled by adjusting the concentrations of raw materials. It is demonstrated that the emission of CAZO:Bi3+,Mn4+ matches well with the absorption of four dominating pigments in plants, implying that the as-prepared phosphors are suitable to be applied in agricultural fields.
- This article is part of the themed collection: 2018 Journal of Materials Chemistry C HOT Papers