Issue 8, 2025

Ultraviolet durable and recyclable radiative cooling covering for efficient building energy saving

Abstract

Passive radiative cooling (PRC) is a zero-energy thermal management technology used for efficient building energy saving. Polymer-based porous films are promising PRC materials, but their low ultraviolet (UV) durability and lack of recyclability limit their long-term and widespread application. Herein, a recyclable polymer-based porous radiative cooling film with excellent ultraviolet durability was developed as the covering of a building. Owing to the Mie scattering effect of the porous structure and strong infrared emittance of ethyl cellulose, the film demonstrated a radiative cooling capability of 10.6 °C at a solar irradiance of 510 W m−2. The calculated energy consumption results indicated that the average cooling consumption reached 429.4 kW h, and 31% of the cooling energy could be saved. Notably, owing to the conjugated benzene ring structure of styrene–ethylene–butylene–styrene (SEBS), the film blocked most of the incident UV radiation and diffused the absorptive energy through the delocalization effect of electron clouds. Thus, the film retained high solar reflectivity after continuous UV exposure for 240 h. Notably, the film could be cyclically utilized using a simple nonsolvent-induced phase separation (NIPS) approach. This research offers new insights into the design of UV-durable and recyclable PRC materials, providing a promising prospect for minimizing global building energy consumption and facilitating the development of sustainable buildings.

Graphical abstract: Ultraviolet durable and recyclable radiative cooling covering for efficient building energy saving

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
30 ডিচে 2024
Accepted
21 ফেব্রু 2025
First published
24 ফেব্রু 2025

Mater. Horiz., 2025,12, 2535-2544

Ultraviolet durable and recyclable radiative cooling covering for efficient building energy saving

S. Song, C. Hou, A. Yang, L. Wei, H. Liu, D. Xie and Y. Song, Mater. Horiz., 2025, 12, 2535 DOI: 10.1039/D4MH01926A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements