In situ preparation of Bi2O2Se/MoO3 thin-film heterojunction array flexible photodetectors†
Abstract
Bi2O2Se has broad applications in optoelectronics and electronics because of its excellent air stability and electron mobility. Bi2O2Se is a promising candidate for high-performance infrared (IR) applications. However, very few studies on Bi2O2Se-based IR devices have been reported so far. Here we developed a Bi2O2Se/MoO3 thin-film heterojunction photodetector in the broadband range of 405–1550 nm that exhibits a fast-response time, and ultrahigh specific responsivity (Ri), detectivity (D*), and on/off ratio. The device showed excellent long-term stability (>90 days) without any protective measures under environmental conditions. Furthermore, the prepared Bi2O2Se thin film showed no selectivity for the substrate, making it a promising candidate for preparing CMOS-compatible and flexible devices. The device exhibited great flexibility, and the performance was decreased by only 7.17% after bending by 39% and remained unchanged for 1000 cycles. The device's excellent photoelectric properties suggest that the Bi2O2Se/inorganic heterojunction is a promising way for the fabrication of high-efficiency optoelectronic devices for remote sensing, imaging, and military applications.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers