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Environmental Significance Statement 

 

Aerosols act as a surface for heterogeneous reactions and multiphase processes in the atmosphere, which 

impacts their climate-relevant properties (scattering, absorption, and cloud droplet and ice crystal 

nucleation). Raman microspectroscopy is able to probe organic and inorganic functional groups at ambient 

temperature and pressure, but is challenging to apply to aerosols critical to climate since the most abundant 

sizes by number in the atmosphere (~100 nm) are smaller than the diffraction limit of visible light. We 

show that surface enhanced Raman spectroscopy (SERS) can extend analysis of atmospheric particles down 

to 150 nm, revealing new chemical detail about accumulation mode particles in the atmosphere and the 

potential to enable future studies of the complex chemistry occurring at aerosol surfaces. 
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Abstract (50-250 words) 14 

 Due to their small size, measurements of the complex composition of atmospheric 15 

aerosol particles and their surfaces are analytically challenging. This is particularly true for 16 

microspectroscopic methods, where it can be difficult to optically identify individual particles 17 

smaller than the diffraction limit of visible light (~350 nm) and measure their vibrational modes. 18 

Recently, surface enhanced Raman spectroscopy (SERS) has been applied to the study of aerosol 19 

particles, allowing for detection and characterization of previously undistinguishable vibrational 20 

modes. However, atmospheric particles analyzed via SERS have primarily been > 1 µm to date, 21 

much larger than the diameter of the most abundant atmospheric aerosols (~100 nm). To push 22 

SERS towards more relevant particle sizes, a simplified approach involving Ag foil substrates 23 

was developed.  Both ambient particles and several laboratory-generated model aerosol systems 24 

(polystyrene latex spheres (PSLs), ammonium sulfate, and sodium nitrate) were investigated to 25 

determine SERS enhancements. SERS spectra of monodisperse, model aerosols between 400-26 

800 nm were compared with non-SERS enhanced spectra, yielding average enhancement factors 27 

of 10
2
 for both inorganic and organic vibrational modes. Additionally, SERS-enabled detection 28 

of 150 nm size-selected ambient particles represent the smallest individual aerosol particles 29 

analyzed by Raman microspectroscopy to date, and the first time atmospheric particles have been 30 

measured at sizes approaching the atmospheric number size distribution mode. SERS-enabled 31 

detection and identification of vibrational modes in smaller, more atmospherically-relevant, 32 

particles has the potential to improve understanding of aerosol composition and surface 33 

properties, as well as their impact on heterogeneous and multiphase reactions involving aerosol 34 

surfaces.  35 
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1 Introduction 36 

Atmospheric aerosol particles impact climate by scattering and absorbing solar radiation 37 

and acting as cloud condensation and ice nuclei, which modify cloud properties and 38 

precipitation.
1–8

 However, these impacts are difficult to quantify due to the complex 39 

physicochemical properties of aerosols,
8–10

 particularly in terms of chemical composition and 40 

mixing state.
9,11–19

 This is complicated by the fact that individual particles can contain hundreds 41 

to thousands of different chemical species from difference sources and atmospheric aging.
8
 An 42 

important example of aerosol chemical complexity is secondary organic aerosol (SOA), which 43 

forms when low volatility oxidation products of volatile organic compounds (VOCs) condense 44 

onto or heterogeneously react with existing aerosol particles containing inorganic salts (e.g. 45 

ammonium sulfate).
20–22

 Though it is known that these particles contain both organic and 46 

inorganic components, particle-to-particle variability in chemical composition and mixing state 47 

due to different multiphase processes in the atmosphere are not well understood.
20,23,24

 In 48 

addition, aerosols can have intraparticle chemical variability through processes such as liquid-49 

liquid phase separations.
24–28

 More detailed investigations of particle chemical composition and 50 

surface properties are needed to improve understanding of multiphase processes,
29,30

 such as 51 

heterogeneous reactions occurring on surfaces,
31–33

 water uptake,
34,35

 viscous particles,
36–38

 phase 52 

transitions,
39,40

 and gas-particle partitioning.
41,42

 53 

Over the past decade, Raman microspectroscopy has been increasingly applied as an 54 

analytical technique for chemical characterization of aerosol particles.
9,43–46

 This technique uses 55 

inelastically scattered light to detect vibrational modes present within a sample, which can then 56 

be used to identify functional groups and chemical species. Raman microspectroscopy has been 57 

applied to characterize many different particle types, such as sea spray and other marine 58 
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aerosol,
44,47–49

 soot and elemental carbon (EC) particles,
50–53

 mineral dust,
53–56

 and SOA,
46

 as 59 

well as specific compounds commonly found in aerosols, including biological molecules
57

 and 60 

various organic compounds like organic nitrates,
58

 organosulfates,
59

 and glyoxal oligomers.
60

 61 

Raman analysis has also been used to study hygroscopic properties,
61–65

 phase separations,
66–68

 62 

heterogeneous reactions,
49,69,70

 ice nucleation,
71

 and acidity of aerosols.
72,73

 Advantages of this 63 

technique include minimal sample preparation and non-destructive analysis under ambient 64 

temperature and relative humidity (RH) conditions. However, detection limits in terms of both 65 

particle size and analyte concentrations can make Raman microspectroscopic studies of aerosol 66 

particles challenging. The majority of aerosol particles, particularly those with long atmospheric 67 

lifetimes that react and undergo atmospheric processing, are smaller than 1 µm, but Raman 68 

microspectroscopy has been applied mostly to the study of individual particles larger than 1 µm, 69 

often 10-30 µm, because it is difficult to optically distinguish smaller particles due to the 70 

wavelengths commonly used for Raman analysis (532 or 640 nm) and the diffraction limit of 71 

optical microscopy (300-400 nm). Furthermore, even in supermicron atmospheric particles, 72 

chemical species are often present in very low concentration, making it difficult to detect Raman 73 

signal with enough intensity to determine the identity of vibrational modes and corresponding 74 

functional groups. Lastly, important particle properties, such as deliquescence relative humidity 75 

can be size-dependent, limiting the ability to translate studies on large particles to 76 

atmospherically relevant sizes.
74

 If SERS can be used to overcome the detection limit challenges 77 

associated with small particle sizes, the potential for Raman microspectroscopic analysis of 78 

aerosol particles to improve understanding of chemical composition and mixing state will greatly 79 

increase.  80 
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Surface enhanced Raman spectroscopy (SERS) has been used to improve the limit of 81 

detection of low concentration chemical species,
75

 all the way to single molecules.
76

 Through 82 

SERS, weak Raman signals are enhanced via interactions with localized surface plasmon 83 

resonances (LSPRs), which are generated by excited electrons in metallic substrates.
75,77–80

 The 84 

metallic substrates are often silver, gold, or copper and can be in the form of foils, geometric 85 

nanoparticles, and colloids.
78,80,81

 SERS has applications in many different fields, from 86 

biosensing to art preservation, and enhancement factors (EFs) for vibrational intensities of 87 

analytes are reported that range from 10
2
 – 10

10
.
75,77–80,82,83

 The volumes that experience SERS 88 

enhancements are small and typically located less than 5-10 nm from a hotspot, which shows the 89 

potential to measure submicron particles that are challenging to identify optically, since a 90 

detected SERS-enhanced spectrum originates from a such a small area, it most likely 91 

corresponds to an individual particle at low substrate loadings (e.g. no particle overlap). In the 92 

future, SERS hotspots could be used to probe phenomena localized near aerosol surfaces.  With 93 

SERS, limitations of optically distinguishing particles for analysis and detection of chemical 94 

species present in trace amounts within aerosol particles can be overcome. 95 

Prior to 2015, only a few preliminary, qualitative studies had used SERS for aerosol 96 

analysis, with a focus on bioaerosols.
84–86

 Since 2015, SERS has been applied to the study of 97 

aerosol particles more broadly and in a more quantitative manner. In 2015, Craig et al. used 98 

silver nanoparticle coated quartz substrates to investigate both ammonium sulfate and sodium 99 

nitrate aerosol particle standards as well as ambient aerosol.
87

 In 2016, Fu et al. used Klarite, a 100 

commercially available Au substrate of structured gold inverted pyramids, to study mixed 101 

ammonium sulfate and naphthalene particles.
88

 A few variations of SERS, such as tip-enhanced 102 

Raman spectroscopy (TERS),
89

 electrospray SERS (ES-SERS),
90

 and surface-enhanced 103 
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resonance Raman spectroscopy (SERRS) of trapped and suspended particles,
91

 have also been 104 

applied to study aerosol particles. Reported EFs ranged from 2.0 – 70 for νs(SO4
2-

), νs(NO3
-
), 105 

ν(C-H), ν(O-H), and δ(C-C) vibrational modes
87,88,90

 and 10
5
 for vibrational modes of 106 

Rhodamine 590 chloride (R6G), a dye with a large scattering cross-section commonly used for 107 

SERS studies.
91

 However, most particles probed in these studies were supermicron, not in the 108 

submicron size range most abundant for ambient aerosol, and further work is needed to increase 109 

EFs for vibrational modes corresponding to more atmospherically-relevant chemical compounds.  110 

In this study, silver SERS substrates, including Ag nanoparticles and commercial Ag foil, 111 

were tested with both organic and inorganic species commonly observed in aerosols. 112 

Additionally, laboratory-generated and ambient aerosol particles <1 µm were analyzed to explore 113 

the lower limit in terms of particle size for SERS using these simple methods. The results of this 114 

study highlight the potential for SERS analysis of aerosol particles with atmospherically-relevant 115 

sizes (down to 150 nm) to improve understanding of chemical composition, mixing state, and 116 

reactions occurring on aerosol surfaces that impact aerosol climate effects.  117 

2 Experimental 118 

2.1 Materials and Reagents 119 

Quartz slides (Ted Pella, Inc.) and silver foil (ESPI Metals) were purchased and used as 120 

substrates. Silver nitrate (Ag(NO3)2) (Sigma-Aldrich), hydroxylamine hydrochloride (Sigma-121 

Aldrich), and sodium hydroxide (Fischer) were used for silver nanoparticle (AgNP) synthesis 122 

(described below). Polystyrene latex sphere (PSL) standards (Polysciences, Inc.), ammonium 123 

sulfate ((NH4)2SO4) (Alfa Aesar), and sodium nitrate (Sigma Aldrich) were used as model 124 

aerosol systems. All chemicals were >98% purity and used without further purification.  125 

2.2 Substrate Preparation 126 
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Quartz coverslips were cut and cleaned prior to use as either directly as substrates or as a 127 

base for a silver nanoparticle (AgNP) SERS substrates. AgNPs were synthesized by reducing 128 

silver nitrate with hydroxylamine hydrochloride, according to the method by Leopold and 129 

Lendl.
92

 The resulting colloidal solution of AgNPs was drop-coated onto clean quartz slides and 130 

dried in a desiccator to create SERS substrates in the same manner as Craig et al.
87

 Size 131 

distribution data collected via Nanoparticle Tracking Analysis (NTA)
93–95

 for the AgNPs prior to 132 

dropcoating is included in the Supplementary Information. Silver foil (0.002” thick, ESPI 133 

Metals) was cut for use as SERS substrates. Microscopy characterization of the Ag foil is 134 

included in the Supplementary Information. 135 

2.3 Laboratory-Generated Aerosol Particle Samples 136 

Organic particle standards were generated by aerosolizing colloidal solutions of PSLs of 137 

varying size (400 nm, 600 nm, and 800 nm). Prior studies have analyzed PSLs with SERS going 138 

back to the 1990’s,
96

 providing useful reference points for Raman studies focused on aerosol 139 

particles. Inorganic aerosol particle standards were generated by aerosolizing solutions of 30 mM 140 

(NH4)2SO4 or 30 mM NaNO3. All solutions were made with 18.3 MΩ Milli-Q water. 141 

Aerosolization was conducted with a Collison nebulizer operated with HEPA-filtered air and the 142 

generated aerosol was passed through two diffusion dryers to remove excess water before being 143 

impacted onto substrates with a microanalysis particle sampler (MPS-3, California Instruments, 144 

Inc.). Prior to impaction, the inorganic standard particles were size-selected at 400 nm, 600 nm, 145 

or 800 nm (electrical mobility diameter) with an electrostatic classifier (Model 3080, TSI 146 

Corporation) equipped with a long differential mobility analyzer (Model 3082, TSI Corporation) 147 

at sample to sheath flow ratio of 1:8.3 (0.3 to 2.5 lpm)  148 

2.4 Ambient Aerosol Particle Samples 149 
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Ambient samples were collected from outside the University of Michigan Chemistry 150 

Building (42.2783° N, 83.7372° W). Samples were size selected at 150 nm (electrical mobility 151 

diameter) with an electrostatic classifier (Model 3080, TSI Corporation) and then collected on 152 

Ag foil via impaction with the MPS-3. Each sample was collected for ~1 hour. 153 

2.5 Raman Microspectroscopy 154 

Raman analysis was performed with a Horiba Labram HR Evolution Raman spectrometer 155 

(Horiba Scientific) coupled to a confocal optical microscope (100x Olympus objective, 0.9 156 

N.A.). The spectrometer was equipped with a Nd:YAG laser source (50mW, 532nm) and a CCD 157 

detector. A 600 groove/mm diffraction grating yielded spectral resolution of 1.8 cm
-1

. 158 

Calibration was carried out daily against the Stokes Raman signal of a pure silicon standard at 159 

520 cm
-1

. Laser power was attenuated with neutral density (ND) filters ranging from 1 to 100 to 160 

prevent sample damage. Spectra were collected for the range of 500 to 4000 cm
-1

 for 3 161 

accumulations with 15 s acquisition time. 8-15 particles were analyzed for each sample. Raman 162 

maps were collected with computer-controlled XY Raman mapping, with spectra recorded using 163 

a point-by-point scanning mode with a 0.25 µm step size. Map spectra were also collected from 164 

500 to 4000 cm
-1

 for 3 accumulations with 15 s acquisition time. Each spectrum collected during 165 

a map acquisition was matched to its corresponding location in an optical image to determine if it 166 

represented an aerosol particle. Samples were exposed to ambient relative humidity and 167 

temperature conditions during Raman analysis (~23ºC and 40-60% RH). 168 

SERS EFs were calculated for vibrational modes of interest according to Equation 1, 169 

ISERS and IRS are the Raman signal under SERS and non-SERS conditions, respectively, and cSERS 170 

and cRS are the analyte concentration under SERS and non-SERS conditions, respectively.
97

  171 

Eq. 1     EF =
�SERS/�SERS

�RS/�RS
=

�SERS

�RC
 172 
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Since sample preparation for SERS and non-SERS conditions was identical, the concentration 173 

cSERS can be assumed to be equal to cRS and the equation to calculate EFs can be simplified to a 174 

comparison of ISERS and IRC. ISERS and IRC are represented by the integrated peak area for the 175 

respective vibrational modes. Integrated peak areas were determined along the natural baseline 176 

of the spectra using a multipeak fitting software package (Igor Pro, WaveMetrics). The average 177 

integrated peak area for Raman spectra collected under non-SERS conditions was used for IRC. 178 

3 Results and Discussion 179 

 Laboratory-generated aerosol particle standards were used to investigate enhancement 180 

from various Ag SERS substrates, including AgNP coated quartz and Ag foil, and their 181 

application to aerosol particle studies, specifically particles <1 µm. Raman spectra of standard 182 

PSL particles sized 400 nm, 600 nm, and 800 nm collected from each substrate showed that, 183 

while both Ag SERS substrates 184 

enhanced the Raman signal across 185 

all vibrational modes, Ag foil 186 

yielded significantly higher EFs 187 

(Figure 1). Raman spectra were 188 

successfully collected for PSL 189 

particles of all sizes on the Ag foil 190 

and quartz substrates, but due to low 191 

intensity and the resulting small 192 

enhancement, only the 800 nm PSLs 193 

were tested with the AgNP 194 

substrate. Even though Raman 195 Figure 1. (A) Average Raman spectra for 400 nm, 600 

nm, and 800 nm PSL particles on quartz, Ag foil, and 

AgNP substrates. (B) Box and whisker plot of calculated 

EFs for vibrational modes of interest for all particle sizes. 

The center line represents the median, the box outlines the 

inner quartiles, and the whiskers represent the 10
th

 and 

90
th

 percentile. 
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signal was detected for PSL particles on plain quartz substrate, intensity was very low and 196 

vibrational modes were difficult to distinguish from background noise, particularly for the 400 197 

nm sized particles. For the 800 nm PSL particles, EFs for the symmetric ring stretching modes, 198 

νs(C-C)
98–100

 at 1000 cm
-1

 and νs(C=C)
98–100

 at 1602 cm
-1

, ranged for 7 to 32 and 11 to 33, 199 

respectively, for the Ag foil and 1 to 4 and 2 to 9 for the AgNP substrate, respectively. In 200 

comparison to the ring stretching modes, C-H bending and stretching modes showed greater 201 

enhancement in response to the SERS effect. EFs for the C-H bending mode (δ(C-H), 1452 cm
-

202 

1
),

98,99
 C-H stretching mode (ν(C-H), 2908 cm

-1
),

98,99
 and aromatic C-H stretching mode (ν(C-H) 203 

aromatic, 3054 cm
-1

)
98,99

 ranged from 20 to 161, 54 to 233, and 4 to 142, respectively, for the Ag 204 

foil and 5 to 26, 1 to 4, and 1 to 3, respectively, for the AgNP substrate. The EF values for the 205 

AgNP substrate samples are consistent with previously reported EF values for (NH4)2SO4 and 206 

NaNO3 standard particles analyzed with SERS using similar substrates.
87

 SERS enhancement 207 

was observed for the 400 and 600 nm sized particles on Ag foil and EFs for the five PSL 208 

vibrational modes ranged from 4 to 151, with the δ(C-H) and ν(C-H) modes again exhibiting the 209 

largest enhancements. All Raman spectra, for PSL particles on both quartz and Ag foil, are 210 

provided in the Supplementary Information. It should be noted that both the 400 nm and 600 nm 211 

particles are smaller than the 721 nm diameter of the laser spot (for a 532 nm laser with 0.9 N.A. 212 

objective). 213 

The large variability in EFs, particularly evident for the Ag foil samples, could be 214 

attributed to varying degrees of coupling between LSPRs with analytes depending on location of 215 

the particle with respect to the SERS-enhanced volume on the rough surface of the Ag foil or 216 

inconsistent distribution of AgNPs. Preliminary work testing several other Ag SERS substrates is 217 

included in the Supplementary Information and results were, at best, comparable to the AgNP 218 
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enhancement shown here. Despite the variability in enhancement, the Ag foil substrate yielded 219 

the highest EFs and thus, was used as the SERS substrate for all subsequent experiments in this 220 

work. 221 

 Across all vibrational modes, there was no clear relationship between particle size and 222 

enhancement. Enhancement was expected to increase with increasing particle size, as the higher 223 

number of analyte molecules present in the larger particles could enable more opportunities for 224 

coupling to LSPRs and lead to greater enhancement of the Raman signal. This was observed 225 

somewhat for the largest and smallest sized PSL particles analyzed, as the 800 nm particles were 226 

consistently more enhanced than the 400 nm particles, but the 600 nm particles exhibited the 227 

lowest levels of enhancement. The cause for the low enhancement observed for the 600 nm PSL 228 

particles is unclear at this time, but could possibly be due to PSL quality, crowding effects, or the 229 

arrangement of PSL molecules hindering coupling between LSPRs and analyte molecules. The 230 

cause of the low enhancement for the 600 nm PSL particles remains unclear, as the inorganic 231 

particles investigated as part of this study (discussed below) were more consistent with the 400 232 

nm and 800 nm PSL particles, with larger sized particles yielding more enhanced spectra. 233 

In addition to PSL particles, which are primarily organic, (NH4)2SO4 and NaNO3 234 

particles were also tested since atmospheric aerosol particles often contain these inorganic 235 

components.
101

 (NH4)2SO4 and NaNO3 particles were generated from solution and size-selected 236 

at 400 nm, 600 nm, and 800 nm for SERS analysis. For (NH4)2SO4, the ν(SO4
2-

) and the ν(N-H) 237 

stretching mode of NH4
+
 were studied (Figure 2). The ν1(SO4

2-
)
44,46,47,102,103

 mode at 963 cm
-1

 238 

had EFs ranging from  30 to 841, which is up to ~420 times greater than the average EFs 239 

reported by Craig et al. using AgNP SERS substrates.
87

 There was a red shift in peak location for 240 

the SERS enhanced ν1(SO4
2-

) mode, shifting from 975 cm
-1

 to 963 cm
-1

, along with an increase 241 
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in peak broadness. This shift is possibly 242 

attributed to charge-transfer interactions 243 

between Ag and the (NH4)2SO4 molecules 244 

and is consistent with earlier work studying 245 

SERS enhancement of (NH4)2SO4/sucrose 246 

particles.
90

 The ν(N-H)
102,103

 mode centered 247 

at 3130 cm
-1

 had EFs ranging from 33 to 248 

730. It should be noted that ν(N-H) is 249 

broader due to hydrogen bonding and can 250 

be difficult to quantify in low-intensity 251 

spectra. For NaNO3, three stretches 252 

corresponding to NO3
-
 were studied (Figure 253 

3). ν1(NO3
-
)
47,103,104

 at 1067 cm
-1

 had EFs 254 

ranging from 8 to 48, which is up to ~16 255 

times greater than the average EFs reported 256 

by Craig et al. using AgNP SERS 257 

Figure 2. (A) Average Raman spectra for 400 nm, 

600 nm, and 800 nm (NH4)2SO4 particles on quartz 

and Ag foil substrates. (B) Box and whisker plot of 

calculated EFs for vibrational modes of interest for 

all particle sizes. The center line represents the 

median, the box outlines the inner quartiles, and the 

whiskers represent the 10
th

 and 90
th

 percentile. 
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substrates.
87

 There was a slight blue shift in 258 

peak location for the SERS enhanced ν1(NO3
-

259 

) mode, shifting from 1056 cm
-1

 to 1067 cm
-1

, 260 

along with an increase in peak sharpness. The 261 

1054 cm
-1

 mode corresponds to aqueous, free 262 

NO3
-
, while the 1067 cm

-1
 mode corresponds 263 

to
 

Na
+
-bound NO3

-
.
69,103

 Interestingly, this 264 

result is inconsistent with previous work that 265 

observed a red shift from 1067 cm
-1

 to 1054 266 

cm
-1

 for ν1(NO3
-
).

87,105
 Previous work 267 

proposed that NaNO3 cannot couple as 268 

effectively as NO3
-
 with the Ag substrate due 269 

to interaction with sodium or incorporation 270 

into a NaNO3 amorphous solid or crystal, 271 

leading to a red shift occurring with increased 272 

enhancment.
87

 Experimental conditions, such as RH impacts on particle phase, could play a role, 273 

but further work is needed to characterize this phenomenon and reconcile the discrepancy in 274 

observed peak shifting. Other modes, ν3(NO3
-
)
103,104

 at 1386 cm
-1

 and ν4(NO3
-
)
103,104

 at 725 cm
-1

, 275 

had larger EFs, ranging from 5 to 116, and no observable peak shifts. All Raman spectra, for 276 

(NH4)2SO4 and NaNO3 particles on both quartz and Ag foil, are provided in the Supplementary 277 

Information. 278 

Qualitative observation shows that EFs increased with increasing particle size for the 279 

vibrational modes studied for the 400 nm and 800 nm (NH4)2SO4 particles. As discussed 280 

Figure 3. (A) Average Raman spectra for 400 

nm, 600 nm, and 800 nm NaNO3 particles on 

quartz and Ag foil substrates. (B) Box and 

whisker plot of calculated EFs for vibrational 

modes of interest for all particle sizes. The center 

line represents the median, the box outlines the 

inner quartiles, and the whiskers represent the 

10
th

 and 90
th

 percentile. 
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previously, this could be attributed to the higher number of analyte molecules present in the 281 

larger particles and the greater probability that a portion of the particle would be within the 282 

enhanced region of a LSPR after impaction leading to greater observed enhancement. An 283 

alternate explanation for increased enhancement is the accumulation of crystals or ions at the foil 284 

interface as aqueous particles spread upon impaction. This effect applies only to the (NH4)2SO4 285 

and NaNO3 particles, as the PSL particles are solid. Similar to the PSL particles, the 600 nm 286 

(NH4)2SO4 particles exhibited the lowest enhancement. There is no apparent trend for the EFs for 287 

the vibrational modes studied for all sized NaNO3 particles. Also, as with the PSL particles, there 288 

was a high level of variability in enhancement for all of the (NH4)2SO4 and NaNO3 vibrational 289 

modes. Further testing with more samples, both in terms of particle sizes studied and number of 290 

particles analyzed, is necessary to resolve any trends or relationships between particle size and 291 

enhancement. 292 

Thus far in this study, through SERS, the smallest particle size shown has been 400 nm, 293 

which is about 2-3 times smaller than the size of aerosol particles typically characterized through 294 

Raman analysis. However, SERS is capable of single molecule detection and so, should allow 295 

for Raman analysis of aerosol particles < 400 nm. To test this limit, 150 nm PSL particles were 296 

collected on Ag foil. It should be noted that a 150 nm sized particle is well below to the 297 

diffraction limit of visible light and the Raman spectrometer used in this study (300-400 nm and 298 

361 nm, respectively), making individual particle identification challenging. Automated point-299 

by-point mapping with a step size of 0.25 µm was used over a larger region of the substrate, 300 

enabling spectra to be collected for the 150 nm particles that were difficult to distinguish 301 

optically due to spatial resolution limitations. A representative spectrum for a 150 nm PSL 302 

particle and its corresponding location are shown in Figure 4. The five vibrational modes focused 303 
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on in the earlier analysis are indicated, though other vibrational modes were also enhanced and 304 

present. In the optical image, the yellow box highlights the mapped region, while the red circle 305 

indicates the point corresponding to the SERS PSL spectrum. The small, dark spots are 306 

individual 150 nm PSL particles, while the larger spots are most likely agglomerates and were 307 

avoided for this analysis. It should also be noted that marks and scratches to the Ag foil can lead 308 

to intensity in the Raman spectra that make it difficult to identify vibrational modes 309 

corresponding to the particles. To reduce substrate interference, smooth regions of the Ag foil 310 

were selected for mapping analysis.  311 

In addition to testing SERS with laboratory-generated aerosol standards below the 312 

diffraction limit, ambient aerosol particles were also sampled, size-selected at 150 nm, and 313 

impacted in a same manner (Figure 5). Based on the sampling time and aerosol concentrations, 314 

the substrate has primarily individual particles with minimal overlap. While it is difficult to 315 

Figure 4. (A) SERS spectrum collected via automated point-by-point mapping of a 150 nm PSL 

particle on Ag foil substrate. (B) Optical image of 150 nm PSL sample on Ag foil, with the 

yellow box highlighting the mapped area and the red circle indicating the location of the Raman 

spectrum shown in (A).  
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definitively identify vibrational modes in 316 

ambient aerosol due to their complex 317 

chemical composition and overlapping 318 

regions where modes can be present, tentative 319 

assignments are proposed. Peaks in the 500-320 

900 cm
-1

 region could correspond to ν(Si-O-321 

Si), δ(Si-O-Al), and other lattice vibrations of 322 

fly ash or silicon and aluminosilicate 323 

minerals,
54,98,106–108

 δ(C-O) of carbonates and 324 

carboxylic acids,
54,87,98

 or “breathing” modes 325 

of aromatic rings.
57

 The peaks at 963 – 988 326 

cm
-1

 most likely correspond to ν1(SO4
2-

),
44,46,47,102,103

 and are exhibiting the same red shift 327 

observed for the (NH4)2SO4 standard particles discussed earlier.
90

 Peaks in the 1000-1700 cm
-1

 328 

region could correspond to a range of vibrational modes of organic functional groups, including 329 

stretching modes, such as ν(C-O), ν(C-C), ν(C=C), ν(COO
-
), and ν(C-OH), and bending and 330 

twisting modes, such as δ(CH2), δ(CH3), δ(C-C), δ(O-C-O), and δ(O-H).
44,47,54,57–60,67,98,109,110

 331 

Peaks in the higher energy 2700-3000 cm
-1

 region correspond to symmetric and asymmetric 332 

ν(CH2) and ν(CH3) modes.
44,47,54,57,59,98

 Specific compounds present in the ambient aerosol 333 

particles related to these functional groups could include long chain aliphatics, glyoxal 334 

oligomers, peroxides, organic sulfates, and minerals associated with dust.
47,54,59,60,70

 To our 335 

knowledge, this is the first SERS-enhanced spectroscopic analysis of aerosol particles that have a 336 

smaller diameter than the visible light diffraction limit, an important step towards measurements 337 

of aerosol particles in a key size range for atmospheric surface chemistry. Additionally, for these 338 

Figure 5. SERS-enhanced spectra obtained from 

Raman mapping of 150 nm size-selected 

ambient aerosol particles. 
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ambient spectra, vibrational modes attributed to organic species exhibited greater enhancement 339 

in the lower frequency region (1000 – 1800 cm
-1

) than the higher frequency region (2700 – 3000 340 

cm
-1

), which is consistent with previous work with SERS of ambient particles.
87

 This 341 

demonstrates the potential for SERS to enable the study of vibrational modes that are not as well 342 

characterized in the literature due to the difficulties associated with detecting them in aerosol 343 

particles via traditional microspectroscopic methods. 344 

 345 

4 Conclusions 346 

SERS was applied to the study of atmospheric aerosol particles to improve the limit of 347 

detection in terms of particles size. 400 nm, 600 nm, and 800 nm size-selected laboratory-348 

generated aerosol particle standards of PSLs, ammonium sulfate, and sodium nitrate were 349 

collected on Ag foil SERS substrates and analyzed. Average enhancement factors for a range of 350 

inorganic and organic vibrational modes were calculated to be on the order of 10
2
 and as large as 351 

530.  SERS enhancements may increase with increasing particle size, as observed with the 400 352 

nm and 800 nm PSL and (NH4)2SO4 standards, but the 600 nm PSL and (NH4)2SO4 had the 353 

lowest EF values and there was no observed consistent trend between SERS enhancement and 354 

particle size for the NaNO3 standard. These results are likely due to variability in LSPRs on the 355 

foil surface and subsequent coupling with analyte molecules. Further testing with more particle 356 

sizes and increased number of particles analyzed is necessary to resolve a definitive relationship 357 

between particle size and enhancement. Ag foil substrates were also used for SERS analysis of 358 

150 nm PSL and ambient aerosol particles via automated Raman mapping. All five PSL 359 

vibrational modes characterized with the larger sized particles were identified in the SERS 360 

enhanced spectra of the 150 nm particles. For the ambient aerosol, a range of inorganic and 361 

organic vibrational modes were detected, and corresponding functional groups were proposed. 362 
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To our knowledge, this is the first vibrational spectroscopic analysis of aerosol particles 363 

approaching the mode of the atmospheric number size distribution (~100 nm). These results 364 

show the potential for SERS to enable improved analysis of aerosol particle chemical 365 

composition and mixing state for the most atmospherically abundant particle sizes. The ability to 366 

detect chemical species in these small volume particles also shows the potential for future SERS 367 

work to probe differences in composition at aerosol surfaces due to phase separation, the 368 

presence of surfactants, or surface-level reactions. Overall, future SERS studies of atmospheric 369 

aerosol composition could lead to improved understanding of multiphase atmospheric processing 370 

and aerosol impacts on climate and human health. 371 
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