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Combining Chemical, Geometric, and Novel Topological 

Features to Develop Generalizable Machine Learning 

Models for Predicting Mechanically Stable MOFs
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ABSTRACT: Metal-organic frameworks (MOFs) are promising functional materials, but poor 
mechanical stability leading to loss of porosity and degraded performance under external 
pressure limit their commercial use. The diversity of MOF building blocks makes exhaustive 
experimental or simulation-based screening for high mechanical stability impractical. While 
some prior work has used machine learning (ML) to accelerate discovery, ML models typically 
lack the ability to generalize across diverse MOF topologies. Starting from a dataset with around 
an order of magnitude more secondary building units and topology types than previously studied, 
we develop a generalizable and interpretable ML framework to predict MOF mechanical stability 
(i.e., the bulk modulus). Our ML models incorporate novel and interpretable topological features 
developed based on principles of net theory and chemical features that are applicable across a 
broad range of MOF chemistries and topologies. We employ our models in a virtual high-
throughput screening of over ~435k MOFs from existing hypothetical and experimental 
databases to identify the most mechanically stable candidates with potential industrial 
applications. 
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1. Introduction.

Metal-organic frameworks1 (MOFs) represent a prominent class of porous, crystalline 

materials assembled from inorganic secondary building units (SBUs) and organic linkers. Their 

exceptional chemical tunability2,3 and high porosity4 make them promising candidates for a wide 

range of applications, including gas separation and storage5,6, catalysis7,8, atmospheric water 

harvesting9-12, and desalination13-15. The modular nature of MOF construction allows for a vast 

combinatorial space, offering extensive possibilities for designing materials with tailored 

properties. Despite their potential, a significant barrier to the widespread, real-world 

implementation of MOFs is their typically limited mechanical stability. Under external stress, 

many MOFs undergo deleterious phase transitions that can lead to a loss of crystallinity, reduced 

pore volume, and eventual structural collapse.16-19 This mechanical fragility curtails their utility 

in large-scale applications where structural integrity is paramount.20-22 Consequently, identifying 

exceptionally stable MOFs and establishing clear design principles to enhance their mechanical 

robustness are critical steps toward realizing the industrial potential of this material class.

The extensive combinatorial space of MOF SBUs, linkers, and nets corresponds to 

millions of potential structures23, making experimental discovery of a MOF with the optimal 

properties for a desired application a formidable challenge. Experimentally validated MOFs have 

been compiled from the Cambridge Structural Database24 by refining single-crystal structures, 

with around 9-10,000 MOFs total from either the CoRE MOF 2019 ASR25 or the revised CoRE 

MOF DB 2024 ASR26 databases. Hypothetical MOFs have been systematically enumerated by 

combining different building blocks. Earlier hypothetical databases include hMOF27 (~130,000 

structures), BW-DB28 (~300,000 structures), and ToBaCCo29 (~13,000 structures). Motivated by 

the observation of a lack of diversity30 and stability31 in these hypothetical MOFs compared to 
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experimental MOFs, USMOF31 (~54,000 structures) was developed with more topological and 

metal diversity. Systematically synthesizing and testing this vast array of either experimental or 

hypothetical candidates for mechanical stability is both resource-intensive and prohibitively 

time-consuming. As a result, virtual high-throughput screening (VHTS) powered by computer 

simulations has emerged as an indispensable tool for efficiently navigating this expansive 

chemical space to identify promising new materials.26-28

A key indicator of the mechanical failure point of a MOF is the pressure at which it loses 

crystallinity, as determined from its stress–strain curve.32,33 However, computing the entire curve 

for thousands of structures is computationally intractable for VHTS. The bulk modulus, a 

measure of a material's resistance to compression calculated within its elastic regime, has been 

established as a reliable and computationally efficient proxy for mechanical stability34 suitable 

for VHTS.35 Bulk moduli can most accurately be obtained from DFT and ab initio molecular 

dynamics,36,37 but classical force fields offer a faster alternative with reasonable accuracy.35,38 

Nevertheless, for truly large-scale screening on the order of 500k experimental and hypothetical 

MOFs, even faster alternatives are needed.

To overcome the cost of VHTS, machine learning (ML) has proven to be a powerful 

accelerator. By establishing quantitative structure–property relationships (QSPRs), ML models 

can rapidly predict the properties of unseen MOFs, bypassing the need for expensive 

simulations.39-42 In recent years, ML has been successfully applied to predict MOF performance 

in various applications like separation43-48 and storage49-51, along with their stability52-58 under 

varying conditions. However, previous applications of ML to mechanical stability have faced 

several key limitations. QSPRs for the bulk modulus have often been constrained by datasets 

with limited diversity in MOF building blocks and topologies. For instance, an early ML model 
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trained on 3,385 ToBaCCo29 MOFs highlighted the influence of pore geometry on stability but 

lacked the chemical and topological breadth needed for broad generalizability. Another effort 

using 20,342 QMOFs59 addressed the building block limitations of the ToBaCCo set but failed to 

address the question of topological diversity.53 Furthermore, a critical gap in many of these 

studies has been the absence of robust featurization methods capable of encoding the global 

topology of the framework,53-55 which is crucial for establishing clear QSPRs linking a MOF's 

topology to its stability. As a result, a systematic understanding of which building blocks are 

most or least critical for mechanical integrity remains largely unexplored, and a unified ML-

driven workflow for discovering exceptionally stable MOFs across all major databases has been 

missing.

In this work, we address these limitations to build the most comprehensive and 

generalizable QSPR model for MOF mechanical stability to date. We previously curated31 a bulk 

modulus dataset for 7,330 thermally and activation stable USMOFs, which offers an order of 

magnitude greater diversity in its building blocks and topologies compared to the preceding 

ToBaCCo set. Nevertheless, no QSPRs were established on that dataset, which we address in the 

present study. First, we use this dataset to systematically quantify the hierarchical influence of 

different MOF building blocks on the bulk modulus, identifying the structural components most 

critical for enhancing stability. Next, we introduce a set of novel and interpretable topological 

features derived from net theory to overcome the representation challenges of previous models. 

We demonstrate that combining these topological features with established geometric and 

chemical descriptors leads to ML models with good generalizability. Finally, we leverage our 

predictive models to perform a massive VHTS campaign across both hypothetical and 

experimental MOF databases, identifying over 22,000 candidates with exceptionally mechanical 
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stability. We validate our high-throughput screening results by performing direct MD 

simulations on the top-performing structures, confirming the efficacy of our ML-guided 

discovery pipeline.

2. Computational Details.

2.1. Data set.

We employed 7,330 hypothetical “ultrastable” MOFs (i.e., with respect to thermal 

stability and activation stability) in the ultrastable MOF database (USMOF DB) and their Voigt-

Reuss-Hill bulk modulus (KVRH) computed in prior work.31 As in the original study, we 

categorized the building blocks of USMOFs as nodes (any organic or inorganic component 

containing more than two connection points) and edges (organic building blocks with two 

connection points) rather than using the terms “linker” and “SBU,” enabling an unambiguous 

decomposition of a MOF structure into distinct building blocks.31 As per the definitions of node 

and edge, both organic nodes and edges are essentially linkers, while inorganic nodes are SBUs. 

The 7,330 USMOFs used in our study comprise three configurations of inorganic nodes, organic 

nodes, and organic edges: (1) one inorganic node and one edge (1inor-1edge, totaling 3,900 

MOFs), (2) one inorganic node, one organic node, and one edge (1inor-1org-1edge, totaling 

2,395 MOFs), and (3) two inorganic nodes and one edge (2inor-1edge, totaling 1,035 MOFs). 

Another effort using 20,342 QMOFs59 addressed the building block limitations of the ToBaCCo 

set, but we do not use bulk moduli calculated in that study because differences in calculation 

protocol make it hard to combine both datasets for the ML prediction task. 

2.2. MOF featurization.
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In this work, we used both numerical and text-based MOF features to train and fine-tune 

different machine-learning models. We used three classes of numerical descriptors: (1) 176 

revised autocorrelations60 (RACs) obtained using molSimplify v1.7.361, (2) 14 geometric 

descriptors obtained from Zeo++ v0.362, and (3) 10 novel topological features that we developed 

in this work based on the principles of net theory. RACs, initially created as features for 

transition metal complexes60 and subsequently adapted for MOFs,63 identify the chemical 

features and local topology of MOFs by assessing the products and differences of different 

atomic properties (Supporting Information Text S1 and Table S1). Out of 176 RACs, we 

removed 28 that were invariant over USMOF DB, leaving us with 148 RACs as MOF 

descriptors (Supporting Information Table S2). The geometric descriptors assess the pore 

geometry of MOFs by measuring pore size, probe accessible and non-accessible volume, surface 

area, and pore volume (Supporting Information Table S3). To calculate the probe accessible/non-

accessible volume, we selected a probe radius of 1.86 Å, which reflects the approximate radius 

of a nitrogen molecule. The combined use of RACs and geometric descriptors has allowed ML 

models to attain outstanding results in forecasting MOF properties in numerous recent 

studies.31,44,46,56,57,64 Still, prior work55 has shown a strong correlation between MOF nets and 

mechanical stability. Hence, in this work, we introduce novel topological features to explore 

their effect on the performance of our models. The novel topological features are developed 

based on the short symbol65 representation of periodic nets present. They contain the normalized 

frequency of different cycle lengths, starting from the minimum cycle length of three up to the 

maximum cycle length of twelve found amongst 495 distinct nets in the USMOF database 

(Supporting Information Text S2 and Table S5). A net with a higher frequency of smaller cycle 

lengths (e.g., 3, 4, and 5) corresponds to a higher average metal coordination number (MCN) and 
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a more rigid pore network, thereby resulting in greater mechanical stability (Supporting 

Information Text S2 and Table S4). We also use two combinations of the numerical features to 

train our ML models: (1) RACs and Zeo++ features and (2) RACs, Zeo++, along with 

topological features, which allows us to investigate the explicit effect of topological features on 

the performance of our ML models (Supporting Information Figure S1). For text-based 

representation of MOFs, we used the previously developed MOFid,66 which is a structure-

agnostic representation of MOFs containing symbols of metals present in the SBU, SMILES67 

strings of MOF linkers, and the Reticular Chemistry Structural Resource68 (RCSR) symbol of 

MOF nets (Supporting Information Figure S2).

2.3 Development of ML models and MOF screening.

We used scikit-learn69 v1.3.0 to train ML models with four different architectures: 

random forest regressor (RFR), gradient boosting regressor (GBR), and kernel-ridge regressor 

(KRR) with Laplacian or radial basis function kernel. We also used PyTorch70 v1.10.1 with 

CUDA Toolkit v11.3.1 support to train artificial neural networks (ANNs) with more complex 

architectures. Since the USMOF database contains three distinct classes of MOFs based on the 

number and type of nodes (1inor-1edge, 1inor-1org-1edge, and 2inor-1edge), it is important to 

know if a model trained on one MOF class can generalize to other classes. For each of the five 

model architectures, we trained three ML models for each MOF class separately and one model 

for all the MOFs, resulting in a total of twenty models trained from scratch. All twenty ML 

models across the five different ML architectures were trained using two combinations of the 

numerical descriptors (see Section 2.2). Apart from training ML models from scratch, we also 

implemented a transfer learning approach where we fine-tuned a previously developed 

transformer model with a self-attention mechanism called MOFormer71 to predict mechanical 
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stability in MOFs. As we did for the other ML architectures, we fine-tuned four different 

MOFormer models separately for each MOF class and the entire USMOF DB using MOFid (see 

Section 2.2) as a text-based representation of MOFs. Before model training and fine-tuning, we 

created 80/20 train/test splits for our datasets. For numerical features, we Z-normalized both the 

training and test set features using the mean and standard deviation of the respective training set 

features. After dataset normalization, we performed recursive feature addition (RFA) for all 

models except the ANNs (i.e., the RFR, GBR, and KRR models) to avoid overfitting and 

improve interpretability and generalizability (Supporting Information Tables S6 and S7). For 

RFA, we began with the five most important features and incrementally added additional 

features until model performance no longer improved. We performed extensive hyperparameter 

optimization either using grid search for RFR, GBR, and KRR models or using hyperopt v0.2.772 

for the ANN models, along with five-fold cross-validation (Supporting Information Table S7). 

Due to the large computational cost associated with fine-tuning the MOFormer model, we 

carried out a less extensive hyperparameter optimization with three-fold cross-validation for that 

model (Supporting Information Table S7). After training and fine-tuning, we assessed the 

performance of all the models on the set-aside test set and performed Shapley additive 

explanation (SHAP)73 analysis of the best-performing models to understand the structure–

property relationships in mechanical stability. We also computed the latent space distance (LSD) 

scaled by the maximum latent space distance to any point in the test set and averaged over ten 

nearest neighbors74 to use as an uncertainty quantification metric. Before screening for novel 

MOFs with exceptional stability using our ANN model, we implemented the uniform manifold 

approximation and projection75 (UMAP) algorithm to reduce the dimensionality of the 512-

dimensional latent space of the model into two dimensions, which illustrates the coverage of the 
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training USMOFs in the space of hypothetical and experimental MOFs. To determine if these 

datasets contained duplicate MOFs, we identified them using the Weisfeiler-Lehman graph 

hash76 method implemented in NetworkX77 v3.0. 

2.4 Molecular simulation for KVRH estimation.

We calculated MOF KVRH for MOFs not previously assessed following the same 

methodology as in our earlier work.31 We employed the LAMMPS v29Sep202178 package and 

the UFF4MOF79,80 force field to describe the MOFs. The KVRH values were obtained from the 

6x6 stiffness matrix.81 This tensor encompasses all the information regarding the mechanical 

behavior of a MOF in the elastic region of the stress–strain curve. To compute the stiffness 

matrix, we imposed a maximum strain of 1% and assessed the relative energy variation between 

the deformed and the original structure. Conjugate gradient minimization was employed for 

geometry optimization prior to stiffness calculation.

3. Results and Discussion.

3a. Trends among KVRH and MOF properties.

We first explored the distribution of KVRH previously calculated in the USMOFs 

dataset.31 We observed a wide range (0.02–96.0 GPa) of mechanical strengths in our dataset with 

moderate average values (3.02 GPa) and a long-tailed distribution (Figure 1a). We identified a 

set of 270 (3.7% of 7,330) exceptionally mechanically stable MOFs, which we define as those 

with mechanical stability at least two standard deviations above average (i.e., all MOFs with 

KVRH>11.86 GPa). Of the connectivity classes, we found most exceptionally stable MOFs were 

1inor-1edge MOFs (200 MOFs, 74.1%), and the fewest were 1inor-1org-1edge MOFs (23 
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10

MOFs, 8.5%). When we compared this distribution of MOFs with that of the original set, we 

found enrichment of 1inor-1edge MOFs (53.2% MOFs in the original set) and significant 

depletion of 1inor-1org-1edge MOFs (32.7% MOFs in the original set) in the exceptionally 

stable subset. Focusing on the ten most mechanically stable MOFs, we found all the MOFs with 

outstanding mechanical stability (KVRH>39 GPa) to be from the 1inor-1edge class. The two most 

mechanically stable are characterized by lanthanides (Tb or Eu) based dinuclear nodes with 

carboxylate and bipyridine linkers that lead to exceptionally high mechanical stability (Figure 1b 

and Supporting Information Table S8).82 
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11

Figure 1. (a) Stacked bar plots showing the distribution of KVRH for 1inor-1edge MOFs (blue 
bars), 1inor-1org-1edge MOFs (red bars), and 2inor-1edge MOFs (green bars). The vertical 
dashed lines denote the following: gray for overall mean KVRH and orange for two standard 
deviations higher KVRH than the overall mean KVRH. (b) Structures of the two MOFs with the 
highest KVRH in our dataset. The inorganic nodes in both the MOFs are shown in the inset, with 
the node identities and metals present in the nodes. The KVRH values are reported. In the 
structures, the atoms are colored as follows: white for hydrogen, gray for carbon, blue for 
nitrogen, red for oxygen, magenta for europium, and tuorquoise for terbium. (c) Stacked bar 
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plots representing the distribution of bulk density (top left), diameter of the largest included 
sphere (top right), volumetric pore volume (bottom left), and gravimetric surface area (bottom 
right) of 1inor-1edge MOFs (blue bars), 1inor-1org-1edge MOFs (red bars), and 2inor-1edge 
MOFs (green bars). In each plot, the orange star denotes the mean geometric property of the top 
ten exceptionally stable MOFs (Supporting Information Table S8). The mean geometric 
properties of all three classes of MOFs and the top ten MOFs are reported.

We next investigated the geometric properties of the ten most mechanically stable MOFs 

in our dataset. MOF geometry has been found to be significantly relevant for mechanical 

stability.53,55 We computed and compared the distribution of four geometric properties (see 

Methods): bulk density (), diameter of largest included sphere (Di, also known as the largest 

cavity diameter), fractional volumetric pore volume (VPOV), and gravimetric surface area 

(GSA). We found the mean Di, VPOV, and VSA of the top ten MOFs to be at least three times 

lower than the rest of the MOF set, and we found the mean  of the top ten MOFs to be over six 

times higher than the mean  of the remaining MOFs (Figure 1c and Supporting Information 

Table S9). Thus, the top ten MOFs are characterized by lower porosity and high bulk density, as 

might be expected.53,55 Our observation is further confirmed by the negative correlation between 

pore dimensions (Di, VPOV, and VSA) and KVRH (Spearman’s r  -0.41) and a positive 

correlation between  and KVRH (Spearman’s r  0.53) for all three classes of MOFs present in 

our dataset (Supporting Information Figure S3). This explains why MOFs in the class that 

contains organic nodes lack exceptional mechanical stability, as they have consistently higher 

pore dimensions (Di, VPOV, and VSA) and lower density (Figure 1c). While mechanically 

stable MOFs with lower porosity are expected, we investigated if there are MOFs that have high 

mechanical stability despite having high porosity, since such MOFs are likely targets for gas 

storage applications. We identified one such Mg-based 1inor-1edge MOF with carboxylate 

linkers that both belongs to the exceptionally stable subset (KVRH = 19.30 GPa) and possesses 
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above average (i.e., by one std. dev.) porosity as judged by the largest included sphere  (Di = 64.5 

Å, Supporting Information Figure S4). 

We next investigated the building blocks in the most mechanically stable MOFs. We first 

explored the linker chemistry that was common across the distinct inorganic nodes (N12, N41, 

N45, N47, N48, N49, and N76) present in the top 10 stable MOFs (Figure 2a). We observed 

three distinct linker chemistries with similar occurrence: carboxylate linkers (4 MOFs, nodes 

N12, N49, and N76), porphyrin linkers (3 MOFs, node N41), and combined 

carboxylate/bipyridine linkers (3 MOFs, nodes N45, N47, and N48) (Figure 2a). Upon 

investigating only the linker chemistries that are enriched in mechanically stable MOFs 

compared to the entire set, we discovered significant enrichment of both porphyrin and combined 

carboxylate/bipyridine linkers, with nearly eight times enrichment of porphyrin linkers and two 

times enrichment of combined carboxylate/bipyridine linkers (Supporting Information Table 

S10). To isolate our focus to the portion of the linker that does not coordinate the metal, we 

evaluated edge frequency. As per the definition of node and edge, MOFs in our dataset can 

occasionally only be comprised of nodes and lack edges (see Sec. 2),31 and, indeed, most of the 

highest-stability MOFs (8 of 10) lack edges (Supporting Information Table S8).55,83,84 In the 

remaining two MOFs, we found two edges (E0 and E3) with short lengths (Figure 2a and 

Supporting Information Figure S5).31 
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Figure 2. (a) Structures of the seven distinct inorganic nodes (N12, N41, N45, N47, N48, N49, 
and N76) and two distinct organic edges (E0 and E3) present in the ten most mechanically stable 
MOFs. The metals present in the inorganic nodes are reported. In the structures, the atoms are 
colored as follows: white for hydrogen, gray for carbon, blue for nitrogen, red for oxygen, 
yellowish green for magnesium, light pink for cobalt, magenta for europium, turquoise for 
terbium, and teal for holmium. The black circles denote the atoms present in the inorganic nodes 
and edges that serve as connection points with other building blocks. (b) 2D convex hull of KVRH 
vs. diameter of the largest included sphere for MOFs containing any of the five most frequent 
inorganic nodes (top left), organic nodes (top right), nets (bottom left), and edges (bottom right) 
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in our entire dataset (Supporting Information Figure S6). In each panel, the purple vertical 
dashed line corresponds to the average diameter of the largest included sphere (34.7 Å) of all 
MOFs in our dataset.; The metals present in the inorganic nodes, the average metal coordination 
number of the nets, and the 2 values from the Kruskal-Wallis tests are reported.

Turning to SBU chemistry, there are five unique metals present across seven distinct 

inorganic nodes, out of which three are lanthanides (Tb, Eu, and Ho) and two are lighter 

elements (Co, Mg, Figure 2a). All five metals were enriched in the most stable MOFs over the 

original set, with the highest enrichment of Ho (10% of the top ten MOFs vs. 0.7% of 7,330 

MOFs, Supporting Information Table S11 and Figure S7). Although the presence of Co, 

specifically in porphyrinic nodes, and lanthanides has been shown to enhance the mechanical 

stability of MOFs,53 the observation Mg MOFs having high mechanical stability had not been 

reported.  

We also investigated the most frequent nets in the top ten mechanically stable MOFs. Despite 

the highest presence of gar and ptr nets over our entire dataset (7.1% and 6.8% respectively), we 

discovered the qtz-e net to be the net for the three three most stable MOFs, and therefore the 

most frequent among the top ten (Supporting Information Figure S8 and Table S8). This is a 

significant enrichment of this net from its presence in the original set (0.16% of 7,330 MOFs). 

We further probed the average metal coordination number (MCN) of the nets. Consistent with 

prior work55, we found enrichment of higher MCNs of six (6 top-ten MOFs vs 16.5% of all 

MOFs) and eight (1 top-ten MOF vs. 1.1% of all MOFs) in comparison to the predominant MCN 

of 4 in the overall set (38.9% of all MOFs, Supporting Information Figure S9). The fact that the 

qtz-e net has an MCN of six potentially contributes to its abundance among the ten most stable 

MOFs. 
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To uncover the influence of the MOF building blocks and nets on KVRH, we performed 

the non-parametric Kruskal-Wallis tests85 that can quantify the extent of variations in KVRH with 

different MOF building blocks and nets using a 2 metric (i.e., higher values indicate larger 

variations). For the five most frequent building blocks and nets across all MOFs in our dataset, 

we found the most significant variations in KVRH for inorganic nodes and nets (2 of 0.40 and 

0.39 for inorganic nodes and nets, Figure 2b, and Supporting Information Text S3 and Figure 

S6). Although both organic nodes and edges are analogous to MOF linkers, we discovered 

significantly lower variation in KVRH with edges than with organic nodes (2 of 0.02 vs 0.15), 

which can be explained by the substantially greater influence of organic nodes on MOF pore size 

than edges (Figure 2b and Supporting Information Figure S10). Our finding that the identity of 

the inorganic node has the highest influence of on MOF mechanical stability was consistent 

across all three classes of MOFs, at odds with prior work that identified MOF net to be the 

dominant factor for predicting mechanical stability (Supporting Information Figures S11–S13).55 

3b. ML models for mechanical stability prediction.

To capture complex structure–property relationships between mechanical stability and 

MOF building blocks, topology, and pore geometry, we trained interpretable ML models. We 

considered several strategies for featurizing our MOFs. We introduced a new type of topological 

features that encode the frequency of different cycle lengths (i.e., connected rings in the structure 

of the MOF). We also featurized MOFs using graph-based RACs30,86 that encode atom-wise 

chemistry and local connectivity, and we included Zeo++ features62 that encode MOF pore 

geometry (Supporting Information Texts S1–S2 and Tables S1–S3). We also trained models over 

each of the three individual classes of MOFs (1inor-1edge, 1inor-1org-1edge, and 2inor-1edge) 
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to investigate possible variability in the structure–property relationships between the three MOF 

classes. 

Inspired by previous work on ML for MOF mechanical stability,55 we first trained an 

ANN using only four geometric features (, Di, VPOV, and GSA) obtained using Zeo++ in 

combination with one-hot encoded net features to evaluate if this set of features alone is 

sufficient to develop generalizable ML models for KVRH prediction across our dataset. Due to the 

heavily skewed distribution of KVRH towards lower values, we selected the log R2 (i.e., the log 

transform was applied prior to computing R2) as a more appropriate performance evaluation 

metric for our models instead of R2, since achieving high R2 in significantly skewed data is 

challenging.53 Unlike in prior work, we observed extremely poor performance for the ANN 

model trained over the entire dataset (test set log R2 = 0.47, Figure 3a). Similar unsatisfactory 

performance by the ANN models was observed when training on individual classes of MOFs, 

with the best performance for 1inor-1org-1edge MOFs and the worst performance for 2inor-

1edge MOFs (test set log R2 = 0.51 vs. 0.42, Supporting Information Table S12). Overall, the 

poor performance of the models is likely due to the greater chemical and topological diversity in 

our USMOF dataset than in the subset of ToBaCCo MOFs used in the previous work.29,55 
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Figure 3. Test set parity plots of predicted vs. true KVRH for the ANN models trained on the 
entire USMOF dataset containing all three classes (1inor-1edge, 1inor-1org-1edge, and 2inor-
1edge) of MOFs using (a) one-hot encoded topology and four Zeo++ features, (b) 10 cycle 
length frequency and 14 Zeo++ features, (c) 148 RAC and 14 Zeo++ features, and (d) 10 cycle 
length frequency, 148 RAC, and 14 Zeo++ topological features. The data points are colored by 
kernel density estimation (KDE) density values as shown by inset color bars, and black dashed 
lines indicate the parity lines. For each model, the datapoint corresponding to the most extreme 
outlier MOF is denoted by the black circle, and the structures of those MOFs are shown in 
Supporting Information Figure S14. The values of log R2 are reported.
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While investigating the most extreme outlier MOF (id: MOF_net-sod-g_node1-

N66_edge1-E7) during our prediction task over the entire set, we found the MOF to be highly 

porous ( = 0.048 g/cm3, Di = 92.3 Å, and VPOV = 0.96 cm3/cm3) with a bulk density less than 

25% of the average for MOFs in our dataset (Supporting Information Figure S14 and Table S9). 

This motivated us to explore alternate featurization. To investigate whether adding other 

geometric features (e.g., the diameter of the largest free sphere) could improve the performance 

of the ANN models, we retrained our models with ten additional geometric features obtained 

using Zeo++, but we did not observe any improvement in model performance (Supporting 

Information Tables S3 and S12). 

Motivated by the overriding effect that topology had in earlier estimations of mechanical 

stability, we next investigated whether we could introduce customized topological features to 

improve ANN model performance over one-hot encoded features. One disadvantage of one-hot 

encoded features in our USMOF set is that this does not encode any measure of similarity among 

different nets. Using a feature set based on the properties, rather than the identities of the nets, 

allows similarity to be leveraged by the model. We instead developed topological features based 

on the short symbol65 representation of periodic nets. Specifically, these features contain the 

normalized frequency of different cycle lengths (Supporting Information Text S2). Our models 

trained only with these new topological features and all fourteen Zeo++ features showed 

somewhat enhanced performance over the entire dataset (test set log R2 = 0.51 vs 0.47) in 

comparison to the one-hot encoding and Zeo++ feature set (Figure 3b). Still, our model 

performance was only somewhat improved with the topological features, which we attribute to 

the absence of MOF chemical information from the feature set. 
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With the aim of improving upon the geometry/topology-only model in mind, we encoded 

the chemistry of the MOFs through a combination of RAC and Zeo++ features used extensively 

in our previous work on MOFs, but we omitted information about the global 

topology.30,31,44,46,49,56,57,64 Although global topology is not explicitly present in this new feature 

set, this information is partially encoded in the MOF graph captured by RACs as the local 

connectivity between atoms. Using RAC and Zeo++ features, we found significant improvement 

in the performance of the models over the geometry/topology-only models for the entire set (test 

set log R2 = 0.72 vs. 0.51, MAE = 1.19 GPa, Figure 3c). We again observed the best performance 

for the model trained on 1inor-1org-1edge MOFs and the worst for the model trained on 2inor-

1edge MOFs (test set log R2 = 0.72 vs. 0.66, Supporting Information Table S12). 

We next investigated whether we could further improve the performance of the models 

by adding information about the global topology missing in RACs. We first added the one-hot 

encoded topology to the set of RAC and Zeo++ features, but the ANNs trained with this new 

feature set performed similarly to the models trained with RAC and Zeo++ features alone 

(Supporting Information Table S12). When we instead added our novel topological features 

instead of one-hot encoded topology features, we observed further improvement in model 

predictions beyond the performance of models trained with only RAC and Zeo++ features (test 

set log R2 = 0.76 vs. 0.72 when training and evaluating over the entire set, MAE = 1.13 GPa, 

Figure 3d). However, out of the three individual MOF classes, we only found appreciable model 

performance improvement for the model trained on 1inor-1edge MOFs when using this feature 

set (test set log R2 = 0.74 vs. 0.72, Supporting Information Table S12). The negligible influence 

of our novel topological features on the model performance for 1inor-1org-1edge MOFs is 

possibly due to a lower influence of topology on KVRH for those MOFs, as hypothesized earlier. 
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However, a low effect for 2inor-1edge MOFs is probably due to similarity in topologies present 

in those MOFs, with most of them having an average MCN of 5 (78% of MOFs, Supporting 

Information Figure S9). For all feature sets considered (i.e., after adding RACs), the most 

extreme outlier is the same for all models (id: MOF_net-ske_node1-N17_edge1-E13, Supporting 

Information Figure S14). Despite the building blocks of the outlier MOF appearing during 

training, the inability to correctly predict KVRH for this MOF is likely due to a more complex 

synergistic effect between building blocks that is not represented elsewhere in the training data. 

We next investigated if we could further improve the performance of our best-performing 

ANN models trained with RAC, Zeo++, and the novel topological features by employing more 

interpretable model architectures and feature engineering. Such models have previously 

demonstrated comparable performance to ANNs.49,57 To test this, we used four distinct simpler 

model architectures: a random forest regressor (RFR), a gradient boosting regressor (GBR), and 

a kernel ridge regressor (KRR) utilizing either a Laplacian kernel (KRR-Laplacian) or a radial 

basis function kernel (KRR-RBF). The KRR kernels encode similarity relationships, unlike 

ANNs which encode complex non-linear relationships. To prevent overfitting and to reduce the 

impact of uninformative features in these models, we employed recursive feature addition (RFA) 

(Supporting Information Table S6). All four RFA-trained model architectures modestly 

outperform our best-performing ANN models, both when evaluating over the entire set and also 

when restricting scope to each of the three individual MOF classes (Supporting Information 

Table S13 and Figure S15). Of the four models, we found the KRR-Laplacian model to perform 

best across the entire set (test set log R2 = 0.79 vs. 0.76 for the best-performing ANN model, 

MAE = 1 GPa) and also when trained on individual MOF classes.
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To compare an alternative approach to the KVRH prediction task, we implemented a 

transfer learning approach where we fine-tuned a previously developed transformer model with a 

self-attention mechanism called MOFormer.71 MOFormer, which was pretrained on > 400k 

MOF structures, has demonstrated excellent performance when finetuned on relatively small 

datasets (~14k to ~137k) in predicting band gap and gas adsorption.71 For the USMOFs in our 

dataset, we first obtained the structure-agnostic text-based representation of MOFs used by 

MOFormer, called the “MOFid,” which encodes MOF chemistry and topology (Supporting 

Information Figure S2).66 We fine-tuned MOFormer on individual USMOF classes and also over 

the entire USMOF DB. Surprisingly, we found poor performance of the MOFormer model in all 

the prediction tasks when compared to our best-performing KRR-Laplacian model (test set log 

R2 over the entire set = 0.65 for MOFormer vs. 0.79 for the KRR-Laplacian model, Supporting 

Information Figure S16 and Table S14). When we compared the performance of the MOFormer 

model with the ANNs trained earlier, we found that the fine-tuned MOFormer performed better 

than all the geometry/topology-only models, but it always performed worse than an ANN when 

RACs were included in the ANN feature set. This can most likely be attributed to the smaller 

training dataset size compared to past prediction tasks and missing information about MOF 3D 

structure in MOFid that is extremely relevant for MOF mechanical stability. Thus, out of all the 

models considered, we identified the KRR-Laplacian model with RACs, Zeo++, and topological 

features to be the best-performing model across our data, with mean absolute errors of 1 GPa 

over all test MOFs and 8.24 GPa over exceptionally stable test MOFs (Supporting Information 

Tables S13 and S15). 

We next identified the most influential MOF features and quantify their contribution to 

predicting KVRH with our best-performing KRR-Laplacian model for the three MOF classes 
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(1inor-1edge, 1inor-1org-1edge, and 2inor-1edge) using feature importance analysis (see Sec. 

2).73 This analysis assigned importance values to each feature, which we then normalized to 

show relative importance (Figure 4). Consistent with observations on model performance 

depending strongly on the addition of RACs, our analysis revealed the paramount importance of 

RACs for all the MOF classes, with RACs having the highest importance for 2inor-1edge MOFs 

(84.2% of collective importance, Figure 4). Specifically, we found the electronegativity of the 

metal and around the metal center (mc--0, mc--1, and mc--2, where ' indicates a difference 

RAC) to be the most important out of all the RACs (e.g., mc--1 contributes 31% for 2inor-

1edge MOFs, Figure 4 and Supporting Information Table S1). The key importance of metal 

electronegativity can be attributed to hard-soft acid base (HSAB) theory, where metals with low 

electronegativity form exceptionally strong bonds with hard bases like O and N common to MOF 

linkers. This feature importance result is consistent with the prevalence of lanthanides and Mg in 

the top ten stable MOFs, since such metals are harder acids than more abundant 3d transition 

metals like Cd and Zn present in USMOFs (Figure 2, Supporting Information Table S11, and 

Figure S7).31 

Figure 4. SHAP feature importance analysis for the best-performing KRR-Laplacian models 
individually trained on the KVRH dataset containing 1inor-1edge MOFs (left), 1inor-1org-1edge 
MOFs (center), and 2inor-1edge MOFs (right). The relative importance of all the features is 
shown in the bar plots. The bars are color-coded based on the feature class to which each feature 
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belongs: blue for geometric features, green for topological features, and red for RACs. The 
percentage of importance of the geometric features, topological features, and RACs is shown in 
the inset pie charts. See Supporting Information Tables S1–S3 and Texts S1–S2 for explanation 
of feature nomenclature.

We next investigated the most important geometric and topological features. Out of all 

the geometric features, we found MOF surface area and pore volume to be the most important, 

which is consistent with the strong negative correlation between those features and KVRH 

(Supporting Information Figure S3). When comparing the three MOF types, geometric features 

had the most significant effect for 1inor-1org-1edge MOFs out of the three MOF classes (29.8% 

of total importance), emphasizing our hypothesis that geometry is more important for these 

MOFs because they sample a larger range of high porosities. With respect to topological 

features, we found these to be most important for 1inor-1edge MOFs (27.9%), with the 

normalized frequencies of three to six cycle lengths were most important topological features. 

The maximum cycle length in our set is twelve, and thus emphasizing smaller cycle lengths 

suggests the importance of higher connectivity (i.e., higher average MCN) for mechanical 

stability. For the other MOFs, we expected higher influence of geometric features for 1inor-1org-

1edge MOFs, and we attribute the lack of topological diversity for  2inor-1edge MOFs as the 

reason why those features are not selected (Figure 4). For example, 78% of 2inor-1edge MOFs 

have an average MCN of 5 (Supporting Information Figure S9). Overall, our feature importance 

analysis consistently demonstrated the strongest influence of metal chemistry on mechanical 

stability for all classes of MOFs over geometry or topology.

3c. Identifying mechanically stable MOFs in databases.

Page 24 of 43Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
 1

44
7.

 D
ow

nl
oa

de
d 

on
 1

8/
07

/4
7 

11
:1

6:
36

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5TA08080K

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k


25

To identify MOFs with exceptional mechanical stability in databases of hypothetical and 

experimental MOFs, we next used our ML models to screen these MOFs. For experimental 

MOFs, we selected the all-solvent-removed (ASR) MOFs from the CoRE MOF DB 202426 

database, whereas the hypothetical MOFs were selected from three databases: (1) BW-DB,28 (2) 

hMOF,27 and (3) ToBaCCo.29 Despite the best performance of the KRR-Laplacian model across 

our USMOF DB, we chose the second-best model, which is an ANN,  for the screening task 

because ANNs perform well in their application to unseen materials (Supporting Information 

Table S12). We selected the ANN model trained with RACs, Zeo++, and novel topological 

features trained over the entire USMOF DB, which showed the best performance out of all the 

ANN models in our work (see Figure 3). Because the topological features are essential for the 

screening task, we only screened MOFs that 1) do not have any ambiguities associated with their 

topology and 2) their topologies have valid short symbol representations to enable the 

determination of their topological features. Starting from 475,891 hypothetical and 8,854 

experimental MOFs, this filtering step reduced our MOFs to a total of 433,550 hypothetical and 

3,157 experimental MOFs. We further removed 949 duplicate experimental MOFs (see Sec. 2), 

resulting in a final pool of 2,208 experimental MOFs (Supporting Information Table S16). 

Overall, we observed a significantly higher attrition rate of experimental MOFs than hypothetical 

MOFs in obtaining our final MOF pool, which is expected since a vast majority of experimental 

MOFs (35% MOFs) contain topologies that cannot be assigned RCSR symbols. 

To first assess the suitability of applying the ANN model to unseen experimental and 

hypothetical MOFs, we compared the distribution of hypothetical and experimental MOFs with 

the training set USMOFs in the latent space of the model. We employed dimensionality 

reduction to visualize the coverage of training MOFs in the space of hypothetical and 
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experimental MOFs (Figure 5). While we observed overall good overlap of the training MOFs 

with the broader hypothetical and experimental MOF space, some regions of space were more 

well-populated than others. Although, by design,31 the USMOFs have similar metal diversity to 

experimental MOFs, Cu and Zr metals were less well-represented in USMOFs compared to 

experimental or hypothetical MOFs. In terms of geometric properties, all hypothetical and 

experimental MOFs are significantly less porous than the training set USMOFs, with an average 

bulk density 4-6x that of the training set USMOFs (Supporting Information Table S17). The 

connectivity (i.e., the MCN), all three sets of MOFs were quite similar (Figure 5b). Overall, good 

coverage in properties is observed between the training set of USMOFs and the sets we would 

like to predict properties on, but we might expect relatively high model uncertainty for model 

predictions due to differences in the porosity and metal frequency between the USMOFs and the 

other datasets. 
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Figure 5. (a) Uniform Manifold Approximation and Projection (UMAP) dimensionality 
reduction on the latent space of the ANN model trained with RACs, Zeo++, and novel 
topological features over the entire USMOF DB to visualize the coverage of training set 
USMOFs (red points) across the space of hypothetical (blue points) and experimental (green 
points) MOFs. (b) Radar plots showing the distribution of metal identities (left) and average 
metal coordination number (MCN, right) for training set USMOFs and the set of MOFs present 
in three hypothetical (BW-DB, hMOF, and ToBaCCo) and experimental CoRE MOF DB 2025 
v2.0 ASR database that were used to screen exceptionally mechanically stable MOFs. The 
distributions are shown on a logarithmic scale. For metal identity, the sum of the MOF 
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percentages for all the metals may exceed one since a MOF can have more than one metal type. 
The average MCN is computed by averaging over the MCNs of all distinct types of nodes 
present in a MOF, which can make the average MCN fractional (e.g., average MCN of 3.5 for a 
MOF with nodes having MCNs 3 and 4).

To overcome potential limitations in coverage of hypothetical and experimental MOF 

space by the USMOF DB training data, we incorporated uncertainty quantification (UQ) prior to 

making predictions. The distance to training data (LSD) in the last layer of the model provides an 

estimate of model uncertainty.74 We scaled the LSD with respect to training data and confirmed 

that the threshold value of this quantity can be adjusted to systematically reduce test set error 

(Supporting Information Figure S17). For screening unseen MOFs, we selected the LSD 

threshold (0.37) that produced a 1 GPa mean absolute error on the retained test set MOFs. Using 

this threshold, we estimated KVRH for 35% of hypothetical MOFs (152,805 out of 433,550 

MOFs) with highest percentage for ToBaCCo MOFs (46.4%) and lowest percentage for hMOFs 

(23.4%), which can be attributed to their relative similarity to USMOF MOFs in terms of their 

average geometric properties (Supporting Information Tables S17–S18). Unlike hypothetical 

MOFs, we were only able to make uncertainty-controlled estimates off KVRH for 6.9% of 

experimental MOFs (152 out of 2,208 MOFs), which can be explained by the low porosity of 

experimental MOFs that makes their geometric properties most dissimilar to those of training set 

USMOFs (Supporting Information Tables S17–S18 and Figure S18). 

In total, we estimated KVRH of 152,957 MOFs. From this subset, we identified 22,609 

exceptionally stable MOFs (22,583 hypothetical and 26 experimental) that have two standard 

deviations higher KVRH than the mean KVRH of USMOFs (KVRH >11.86 GPa). Out of the 22,583 

hypothetical MOFs with exceptional stability, we found the vast majority to be BW-DB MOFs 

Page 28 of 43Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
 1

44
7.

 D
ow

nl
oa

de
d 

on
 1

8/
07

/4
7 

11
:1

6:
36

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5TA08080K

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k


29

(18,883 MOFs) with the lowest representation of ToBaCCo MOFs (only 43 MOFs, Supporting 

Information Table S18). When we investigated the percentage of MOFs with estimated KVRH 

that have exceptional stability, we observed significantly higher percentages for both BW-DB 

and hMOFs (15.1% and 15.6%) over ToBaCCo MOFs (1.1%), which can be explained by the 

lower porosities of  BW-DB and hMOFs compared to ToBaCCo MOFs (Supporting Information 

Tables S17–S18). We observed the percentage of exceptionally stable MOFs to be even higher 

for experimental MOFs (17.1%), which can similarly be explained by the lowest porosity of 

experimental MOFs out of all the MOF databases (Supporting Information Tables S17–S18). A 

comprehensive list of all exceptionally stable MOFs is provided in the Zenodo repository.87

For our predicted top-performing MOFs, we next validated our ANN-predicted KVRH 

values with molecular simulation. Out of eight MOFs corresponding to the top two from each of 

the four experimental/hypothetical databases, six were found to be exceptionally stable (KVRH > 

11.86 GPa) based on their simulated KVRH values (Supporting Information Table S19). The 

ANN-predicted KVRH values on hypothetical MOFs showed considerable deviations from 

simulated values, with errors as high as 295%.  For the experimental MOFs, this error generally 

corresponded to an underprediction, while for hypothetical MOFs it often corresponded to an 

overprediction. For top experimental MOFs, the underprediction by our model is likely due to 

the limitation of the model in extrapolating to MOFs with KVRH higher than the mean KVRH of 

top experimental MOFs (KVRH > 30.8 GPa), since our training set of USMOFs contains only 

0.4% of such MOFs. Nevertheless, the 75% success rate of the ANN model demonstrates its 

potential in uncovering novel and exceptionally stable MOFs. A broader analysis of 100 

randomly sampled MOFs from the set of exceptionally stable screened MOFs achieved a 70% 

success rate in classifying MOFs (Supporting Information Text S4 and Figure S19). Our analysis 
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has also identified that the instances of limited generalization by our models arise due to 

significant mismatches between the geometric features of training USMOFs and the screened 

MOFs.

We further examined the characteristics of the six (i.e., exceptionally stable) highest-

performing screened MOFs that were predicted by our ML model and validated by simulation. 

We found that they all contained common metals (Zn, Cu) and linker chemistry (i.e., N or O 

coordination), consistent with the prevalence of these features in the overall MOF sets (Figure 6 

and Supporting Information Figure S20). Surprisingly, we did not find any lanthanide MOFs in 

our top MOFs even though we found those MOFs to be the most stable in USMOFs, which can 

be explained by the absence of lanthanides in the hypothetical MOFs and limited presence of 

such MOFs in the prediction set of experimental MOFs (8.6% of MOFs in the experimental 

prediction set vs. 23.8% of USMOFs). In terms of overall topology, we observed that four out of 

six MOFs have the pcu net with an MCN of 6 (Figure 6). This is again likely due to the higher 

frequency of the pcu net in both the experimental and combined hypothetical prediction set (i.e.,  

26% of experimental MOFs and 64% of combined hypothetical MOFs) and the fact that an MCN 

of 6 is the highest possible value in all sets excluding ToBaCCo (Supporting Information Figure 

S21). Finally, we assessed four key geometric properties (Di, , VPOV, and GSA) for all the top 

six stable MOFs. We observed that four out of the six exceptionally stable MOFs were less 

porous than the average MOF in the respective prediction set, with as much as 3.7x lower GSA 

than an average MOF in the prediction set (for the top stable ToBaCCo MOF, Supporting 

Information Tables S20–S21).88 Overall, our results indicate that the preference for topology 

with the highest available MCN and lower porosity than the original training set is a common 

feature of highly mechanically stable MOFs. However, based on the feature analysis on our 
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models, further significant improvement in the mechanical stability can be achieved by judicious 

metal substitution in SBUs based on the chemistry of the linker connecting atoms. Specifically, 

hard acid metals like lanthanides and magnesium substitution are highly recommended in MOFs 

with oxygen or nitrogen as linker connecting atoms.  
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Figure 6. Structures of the top simulation-validated, exceptionally stable (KVRH > 11.86 GPa) (a) 
experimental and (b) hypothetical MOFs derived after screening MOFs in the experimental MOF 
(CoRE MOF DB 2025 v2.0 ASR) database and three hypothetical MOF databases (BW-DB, 
hMOF, and ToBaCCo). The experimental CoRE MOFs and hypothetical MOFs are denoted 
using their Cambridge Structural Database24 (CSD) reference code and their database ID, 
respectively. Each MOF is noted with its metal identity and the Reticular Chemistry Structure 
Resource68 (RCSR) topology symbols (in parentheses). In the structures, the atoms of MOFs are 
color-coded as follows: white for hydrogen, gray for carbon, blue for nitrogen, red for oxygen, 
pink for iron, yellow for copper, and gray blue for zinc. The geometric properties of the MOFs 
and their ANN-predicted and molecular simulation-calculated KVRH values are provided in 
Supporting Information Table S19. 

We finally investigated the chemical realizability of 22,583 exceptionally stable 

hypothetical MOFs. The building blocks of these MOFs were originally obtained from 

experimental MOFs in previous databases (e.g., CoRE 201489 and CoRE 201925), which 

contained several structural errors, including overlapping atoms, invalid atom connectivity, and 

incorrect metal oxidation states.90-92 By employing a recently developed positive-unlabeled 

crystal graph convolutional network, MOFClassifier,93 we have identified 6,863 exceptionally 

stable hypothetical MOFs with valid structures, suggesting their potential synthetic feasibility. In 

total, our VHTS approach has enabled the identification of 6,889 exceptionally stable MOFs 

(6,863 hypothetical and 26 experimental) with chemically valid structures. The list of stable 

hypothetical MOFs with valid structures is provided in our Zenodo repository.87

4. Conclusions

In this work, we have advanced the search for mechanically stable MOFs by developing 

generalizable ML models trained with novel topological features and chemical descriptors (i.e., 

RACs). We started with a dataset of 7,330 hypothetical ultrastable MOFs (USMOFs) with over 

six times the inorganic node diversity and ten times the topological diversity of prior work. 
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While we found a dominant presence of hard acid metals like lanthanides and magnesium in the 

most mechanically stable MOFs, we also discovered the frequent appearance of topologies with 

high average metal coordination numbers in the top stable MOFs. Using non-parametric 

Kruskal-Wallis tests, we uncovered the most significant dependence of KVRH on inorganic node 

identity, followed by topology, organic nodes, and edges. 

We next constructed ML models with different architectures and MOF features to 

uncover structure–stability relationships. Contrary to prior work, we demonstrated the significant 

limitations of only geometric and categorically encoded topological features in developing 

generalizable models across broad MOF chemistry. We showed improvement in the performance 

of our models after incorporating RACs encoding MOF chemistry and local connectivity as well 

as through novel topological features based on the short symbol representation of periodic nets. 

Feature importance analysis on our models revealed the most significant contribution of metal 

chemistry over MOF geometry and topology in dictating MOF mechanical stability. 

Finally, we screened around 433k hypothetical and 2.2k experimental MOFs to identify 

exceptionally stable MOFs. Using our best-performing ANN model, we confidently identified 

KVRH of 152,957 MOFs (152,805 hypothetical and 152 experimental) with a 75% success rate of 

our model identifying MOFs with exceptional stability in the set of eight most stable MOFs. 

Further improvement of the models in this work, especially identifying stable experimental 

MOFs, could be achieved by enlarging datasets to capture more MOFs with lower porosity that 

are representative of the geometric properties of experimental MOFs. Additionally, the accuracy 

of predicted KVRH could be further enhanced by developing integrated ML-based workflows with 

judicious DFT screening or employing emergent machine-learned interatomic potentials that can 

achieve DFT-level accuracy with significantly lower computation cost than DFT. Overall, we 
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expect that hard acid metal substitution will be a successful strategy to enhance mechanical 

stability in porous MOFs and that the developed topological features could be useful in other 

materials such as covalent organic frameworks and polymer networks. 
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Supplementary Information: details of revised autocorrelations (RACs); list of different types and 
number of RACs; list of invariant RACs; list of geometric features; details of topological features 
developed using net theory; list of MOF nets with missing topological features; details of MOFid 
representation; list of recursive feature addition selected features; details of ML hyperparameter 
optimization; list of top ten mechanically stable USMOFs; list of mean geometric properties of top 
ten USMOFs; correlation between KVRH and geometric properties; structures of the exceptionally 
stable USMOFs with high porosity; linkers and metals present in the top ten stable MOFs; metals 
and nets, average metal coordination number (MCN) distribution in USMOFs; length of edges 
present in USMOFs; details of Kruskal-Wallis test; list of most frequent building blocks in 
USMOFs; convex hull of pore volume vs. diameter of the largest included sphere; convex hull of 
KVRH vs. cavity diameter for 1inor-1edge, 1inor-1org-1edge, and 2inor-1edge MOFs; test set 
performance of ML models; structures of the most extreme outlier MOF; test set ML parity plots; 
number of MOFs in hypothetical and experimental databases; mean geometric properties of MOFs 
that were screened; details of uncertainty quantification; summary of MOF screening results; KVRH 
and geometric properties of top screened MOFs; metal, MCN, and geometric properties of 
hypothetical and experimental MOFs within ANN uncertainty. 
Zenodo repository: The features and KVRH of our USMOF dataset, features of hypothetical and 
experimental MOFs, Python scripts to train machine learning models, a Jupyter notebook for MOF 
screening, KVRH of screened MOFs, a Jupyter notebook and associated files to construct USMOFs 
from their building blocks, and LAMMPS scripts to determine MOF KVRH are available at an 
online Zenodo repository (https://doi.org/10.5281/zenodo.17088767). 
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