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ABSTRACT: Metal-organic frameworks (MOFs) are promising functional materials, but poor
mechanical stability leading to loss of porosity and degraded performance under external
pressure limit their commercial use. The diversity of MOF building blocks makes exhaustive
experimental or simulation-based screening for high mechanical stability impractical. While
some prior work has used machine learning (ML) to accelerate discovery, ML models typically
lack the ability to generalize across diverse MOF topologies. Starting from a dataset with around
an order of magnitude more secondary building units and topology types than previously studied,
we develop a generalizable and interpretable ML framework to predict MOF mechanical stability
(i.e., the bulk modulus). Our ML models incorporate novel and interpretable topological features
developed based on principles of net theory and chemical features that are applicable across a
broad range of MOF chemistries and topologies. We employ our models in a virtual high-
throughput screening of over ~435k MOFs from existing hypothetical and experimental
databases to identify the most mechanically stable candidates with potential industrial
applications.
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1. Introduction.

Metal-organic frameworks' (MOFs) represent a prominent class of porous, crystalline
materials assembled from inorganic secondary building units (SBUs) and organic linkers. Their
exceptional chemical tunability?? and high porosity* make them promising candidates for a wide
range of applications, including gas separation and storage>S, catalysis’®, atmospheric water
harvesting®!2, and desalination'3-!°. The modular nature of MOF construction allows for a vast
combinatorial space, offering extensive possibilities for designing materials with tailored
properties. Despite their potential, a significant barrier to the widespread, real-world
implementation of MOFs is their typically limited mechanical stability. Under external stress,
many MOFs undergo deleterious phase transitions that can lead to a loss of crystallinity, reduced
pore volume, and eventual structural collapse.'®!® This mechanical fragility curtails their utility
in large-scale applications where structural integrity is paramount.?-22 Consequently, identifying
exceptionally stable MOFs and establishing clear design principles to enhance their mechanical

robustness are critical steps toward realizing the industrial potential of this material class.

The extensive combinatorial space of MOF SBUs, linkers, and nets corresponds to
millions of potential structures?, making experimental discovery of a MOF with the optimal
properties for a desired application a formidable challenge. Experimentally validated MOFs have
been compiled from the Cambridge Structural Database’* by refining single-crystal structures,
with around 9-10,000 MOFs total from either the CoRE MOF 2019 ASR? or the revised CoRE
MOF DB 2024 ASR?¢ databases. Hypothetical MOFs have been systematically enumerated by
combining different building blocks. Earlier hypothetical databases include hMOF?7 (~130,000
structures), BW-DB?® (~300,000 structures), and ToBaCCo0? (~13,000 structures). Motivated by

the observation of a lack of diversity?? and stability3! in these hypothetical MOFs compared to
2
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experimental MOFs, USMOF?! (~54,000 structures) was developed with more topological and
metal diversity. Systematically synthesizing and testing this vast array of either experimental or
hypothetical candidates for mechanical stability is both resource-intensive and prohibitively
time-consuming. As a result, virtual high-throughput screening (VHTS) powered by computer
simulations has emerged as an indispensable tool for efficiently navigating this expansive

chemical space to identify promising new materials.?6-28

A key indicator of the mechanical failure point of a MOF is the pressure at which it loses
crystallinity, as determined from its stress—strain curve.3>33 However, computing the entire curve
for thousands of structures is computationally intractable for VHTS. The bulk modulus, a
measure of a material's resistance to compression calculated within its elastic regime, has been
established as a reliable and computationally efficient proxy for mechanical stability3* suitable

for VHTS.3 Bulk moduli can most accurately be obtained from DFT and ab initio molecular

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

dynamics,3%37 but classical force fields offer a faster alternative with reasonable accuracy.’>38

Nevertheless, for truly large-scale screening on the order of 500k experimental and hypothetical

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

MOFs, even faster alternatives are needed.

(cc)

To overcome the cost of VHTS, machine learning (ML) has proven to be a powerful
accelerator. By establishing quantitative structure—property relationships (QSPRs), ML models
can rapidly predict the properties of unseen MOFs, bypassing the need for expensive
simulations.?*-#? In recent years, ML has been successfully applied to predict MOF performance
in various applications like separation®*8 and storage*->!, along with their stability>>-® under
varying conditions. However, previous applications of ML to mechanical stability have faced
several key limitations. QSPRs for the bulk modulus have often been constrained by datasets

with limited diversity in MOF building blocks and topologies. For instance, an early ML model
3
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trained on 3,385 ToBaCCo?» MOFs highlighted the influence of pore geometry on stability but
lacked the chemical and topological breadth needed for broad generalizability. Another effort
using 20,342 QMOFs>® addressed the building block limitations of the ToBaCCo set but failed to
address the question of topological diversity.”>? Furthermore, a critical gap in many of these
studies has been the absence of robust featurization methods capable of encoding the global
topology of the framework,33-3 which is crucial for establishing clear QSPRs linking a MOF's
topology to its stability. As a result, a systematic understanding of which building blocks are
most or least critical for mechanical integrity remains largely unexplored, and a unified ML-
driven workflow for discovering exceptionally stable MOFs across all major databases has been

missing.

In this work, we address these limitations to build the most comprehensive and
generalizable QSPR model for MOF mechanical stability to date. We previously curated?! a bulk
modulus dataset for 7,330 thermally and activation stable USMOFs, which offers an order of
magnitude greater diversity in its building blocks and topologies compared to the preceding
ToBaCCo set. Nevertheless, no QSPRs were established on that dataset, which we address in the
present study. First, we use this dataset to systematically quantify the hierarchical influence of
different MOF building blocks on the bulk modulus, identifying the structural components most
critical for enhancing stability. Next, we introduce a set of novel and interpretable topological
features derived from net theory to overcome the representation challenges of previous models.
We demonstrate that combining these topological features with established geometric and
chemical descriptors leads to ML models with good generalizability. Finally, we leverage our
predictive models to perform a massive VHTS campaign across both hypothetical and
experimental MOF databases, identifying over 22,000 candidates with exceptionally mechanical

4
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stability. We wvalidate our high-throughput screening results by performing direct MD
simulations on the top-performing structures, confirming the efficacy of our ML-guided

discovery pipeline.

2. Computational Details.

2.1. Data set.

We employed 7,330 hypothetical ‘“ultrastable” MOFs (i.e., with respect to thermal
stability and activation stability) in the ultrastable MOF database (USMOF DB) and their Voigt-
Reuss-Hill bulk modulus (Kygry) computed in prior work.3! As in the original study, we
categorized the building blocks of USMOFs as nodes (any organic or inorganic component
containing more than two connection points) and edges (organic building blocks with two
connection points) rather than using the terms “linker” and “SBU,” enabling an unambiguous

decomposition of a MOF structure into distinct building blocks.3! As per the definitions of node

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

and edge, both organic nodes and edges are essentially linkers, while inorganic nodes are SBUs.
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The 7,330 USMOFs used in our study comprise three configurations of inorganic nodes, organic
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nodes, and organic edges: (1) one inorganic node and one edge (linor-ledge, totaling 3,900
MOFs), (2) one inorganic node, one organic node, and one edge (linor-lorg-ledge, totaling
2,395 MOFs), and (3) two inorganic nodes and one edge (2inor-ledge, totaling 1,035 MOFs).
Another effort using 20,342 QMOFs>? addressed the building block limitations of the ToBaCCo
set, but we do not use bulk moduli calculated in that study because differences in calculation

protocol make it hard to combine both datasets for the ML prediction task.

2.2. MOF featurization.
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In this work, we used both numerical and text-based MOF features to train and fine-tune
different machine-learning models. We used three classes of numerical descriptors: (1) 176
revised autocorrelations® (RACs) obtained using molSimplify v1.7.361, (2) 14 geometric
descriptors obtained from Zeo++ v0.3%2, and (3) 10 novel topological features that we developed
in this work based on the principles of net theory. RACs, initially created as features for
transition metal complexes®® and subsequently adapted for MOFs,% identify the chemical
features and local topology of MOFs by assessing the products and differences of different
atomic properties (Supporting Information Text S1 and Table S1). Out of 176 RACs, we
removed 28 that were invariant over USMOF DB, leaving us with 148 RACs as MOF
descriptors (Supporting Information Table S2). The geometric descriptors assess the pore
geometry of MOFs by measuring pore size, probe accessible and non-accessible volume, surface
area, and pore volume (Supporting Information Table S3). To calculate the probe accessible/non-
accessible volume, we selected a probe radius of 1.86 A, which reflects the approximate radius
of a nitrogen molecule. The combined use of RACs and geometric descriptors has allowed ML
models to attain outstanding results in forecasting MOF properties in numerous recent
studies.31:44:46,56,57.64 Still, prior work> has shown a strong correlation between MOF nets and
mechanical stability. Hence, in this work, we introduce novel topological features to explore
their effect on the performance of our models. The novel topological features are developed
based on the short symbol®® representation of periodic nets present. They contain the normalized
frequency of different cycle lengths, starting from the minimum cycle length of three up to the
maximum cycle length of twelve found amongst 495 distinct nets in the USMOF database
(Supporting Information Text S2 and Table S5). A net with a higher frequency of smaller cycle

lengths (e.g., 3, 4, and 5) corresponds to a higher average metal coordination number (MCN) and
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a more rigid pore network, thereby resulting in greater mechanical stability (Supporting
Information Text S2 and Table S4). We also use two combinations of the numerical features to
train our ML models: (1) RACs and Zeo++ features and (2) RACs, Zeo++, along with
topological features, which allows us to investigate the explicit effect of topological features on
the performance of our ML models (Supporting Information Figure S1). For text-based
representation of MOFs, we used the previously developed MOFid,® which is a structure-
agnostic representation of MOFs containing symbols of metals present in the SBU, SMILESS’
strings of MOF linkers, and the Reticular Chemistry Structural Resource®® (RCSR) symbol of

MOF nets (Supporting Information Figure S2).

2.3 Development of ML models and MOF screening.

We used scikit-learn® v1.3.0 to train ML models with four different architectures:

random forest regressor (RFR), gradient boosting regressor (GBR), and kernel-ridge regressor

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

KRR) with Laplacian or radial basis function kernel. We also used PyTorch’ v1.10.1 with
( ) p y

CUDA Toolkit v11.3.1 support to train artificial neural networks (ANNs) with more complex

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

architectures. Since the USMOF database contains three distinct classes of MOFs based on the
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number and type of nodes (linor-ledge, linor-lorg-ledge, and 2inor-1ledge), it is important to
know if a model trained on one MOF class can generalize to other classes. For each of the five
model architectures, we trained three ML models for each MOF class separately and one model
for all the MOFs, resulting in a total of twenty models trained from scratch. All twenty ML
models across the five different ML architectures were trained using two combinations of the
numerical descriptors (see Section 2.2). Apart from training ML models from scratch, we also
implemented a transfer learning approach where we fine-tuned a previously developed

transformer model with a self-attention mechanism called MOFormer’! to predict mechanical
7
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stability in MOFs. As we did for the other ML architectures, we fine-tuned four different
MOFormer models separately for each MOF class and the entire USMOF DB using MOFid (see
Section 2.2) as a text-based representation of MOFs. Before model training and fine-tuning, we
created 80/20 train/test splits for our datasets. For numerical features, we Z-normalized both the
training and test set features using the mean and standard deviation of the respective training set
features. After dataset normalization, we performed recursive feature addition (RFA) for all
models except the ANNs (i.e., the RFR, GBR, and KRR models) to avoid overfitting and
improve interpretability and generalizability (Supporting Information Tables S6 and S7). For
RFA, we began with the five most important features and incrementally added additional
features until model performance no longer improved. We performed extensive hyperparameter
optimization either using grid search for RFR, GBR, and KRR models or using hyperopt v0.2.77>
for the ANN models, along with five-fold cross-validation (Supporting Information Table S7).
Due to the large computational cost associated with fine-tuning the MOFormer model, we
carried out a less extensive hyperparameter optimization with three-fold cross-validation for that
model (Supporting Information Table S7). After training and fine-tuning, we assessed the
performance of all the models on the set-aside test set and performed Shapley additive
explanation (SHAP)”? analysis of the best-performing models to understand the structure—
property relationships in mechanical stability. We also computed the latent space distance (LSD)
scaled by the maximum latent space distance to any point in the test set and averaged over ten
nearest neighbors’ to use as an uncertainty quantification metric. Before screening for novel
MOFs with exceptional stability using our ANN model, we implemented the uniform manifold
approximation and projection” (UMAP) algorithm to reduce the dimensionality of the 512-

dimensional latent space of the model into two dimensions, which illustrates the coverage of the
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training USMOFs in the space of hypothetical and experimental MOFs. To determine if these
datasets contained duplicate MOFs, we identified them using the Weisfeiler-Lehman graph

hash’® method implemented in NetworkX”” v3.0.

2.4 Molecular simulation for Kyry estimation.

We calculated MOF Kyry for MOFs not previously assessed following the same
methodology as in our earlier work.?! We employed the LAMMPS v29Sep202178 package and
the UFFAMOF7°#0 force field to describe the MOFs. The Kyry values were obtained from the
6x6 stiffness matrix.®! This tensor encompasses all the information regarding the mechanical
behavior of a MOF in the elastic region of the stress—strain curve. To compute the stiffness
matrix, we imposed a maximum strain of 1% and assessed the relative energy variation between
the deformed and the original structure. Conjugate gradient minimization was employed for

geometry optimization prior to stiffness calculation.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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We first explored the distribution of Kyry previously calculated in the USMOFs
dataset.3! We observed a wide range (0.02-96.0 GPa) of mechanical strengths in our dataset with
moderate average values (3.02 GPa) and a long-tailed distribution (Figure 1a). We identified a
set of 270 (3.7% of 7,330) exceptionally mechanically stable MOFs, which we define as those
with mechanical stability at least two standard deviations above average (i.e., all MOFs with
Kyvrg>11.86 GPa). Of the connectivity classes, we found most exceptionally stable MOFs were

linor-ledge MOFs (200 MOFs, 74.1%), and the fewest were linor-lorg-ledge MOFs (23
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MOFs, 8.5%). When we compared this distribution of MOFs with that of the original set, we
found enrichment of linor-ledge MOFs (53.2% MOFs in the original set) and significant
depletion of linor-lorg-ledge MOFs (32.7% MOFs in the original set) in the exceptionally
stable subset. Focusing on the ten most mechanically stable MOFs, we found all the MOFs with
outstanding mechanical stability (Kyry>39 GPa) to be from the linor-1edge class. The two most
mechanically stable are characterized by lanthanides (Tb or Eu) based dinuclear nodes with
carboxylate and bipyridine linkers that lead to exceptionally high mechanical stability (Figure 1b

and Supporting Information Table S8).82
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Figure 1. (a) Stacked bar plots showing the distribution of Kyry for linor-ledge MOFs (blue
bars), linor-lorg-ledge MOFs (red bars), and 2inor-ledge MOFs (green bars). The vertical
dashed lines denote the following: gray for overall mean Kyry and orange for two standard
deviations higher Kygry than the overall mean Kyry. (b) Structures of the two MOFs with the
highest Kyry in our dataset. The inorganic nodes in both the MOFs are shown in the inset, with
the node identities and metals present in the nodes. The Kygry values are reported. In the
structures, the atoms are colored as follows: white for hydrogen, gray for carbon, blue for
nitrogen, red for oxygen, magenta for europium, and tuorquoise for terbium. (¢) Stacked bar
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plots representing the distribution of bulk density (top left), diameter of the largest included
sphere (top right), volumetric pore volume (bottom left), and gravimetric surface area (bottom
right) of linor-ledge MOFs (blue bars), linor-lorg-ledge MOFs (red bars), and 2inor-ledge
MOFs (green bars). In each plot, the orange star denotes the mean geometric property of the top
ten exceptionally stable MOFs (Supporting Information Table S8). The mean geometric
properties of all three classes of MOFs and the top ten MOFs are reported.

We next investigated the geometric properties of the ten most mechanically stable MOFs
in our dataset. MOF geometry has been found to be significantly relevant for mechanical
stability.>3>> We computed and compared the distribution of four geometric properties (see
Methods): bulk density (p), diameter of largest included sphere (D;, also known as the largest
cavity diameter), fractional volumetric pore volume (VPOV), and gravimetric surface area
(GSA). We found the mean D;, VPOV, and VSA of the top ten MOFs to be at least three times
lower than the rest of the MOF set, and we found the mean p of the top ten MOFs to be over six
times higher than the mean p of the remaining MOFs (Figure 1c and Supporting Information
Table S9). Thus, the top ten MOFs are characterized by lower porosity and high bulk density, as
might be expected.>-3 Our observation is further confirmed by the negative correlation between
pore dimensions (D;, VPOV, and VSA) and Kyry (Spearman’s » < -0.41) and a positive
correlation between p and Kyry (Spearman’s » > 0.53) for all three classes of MOFs present in
our dataset (Supporting Information Figure S3). This explains why MOFs in the class that
contains organic nodes lack exceptional mechanical stability, as they have consistently higher
pore dimensions (D;, VPOV, and VSA) and lower density (Figure 1c). While mechanically
stable MOFs with lower porosity are expected, we investigated if there are MOFs that have high
mechanical stability despite having high porosity, since such MOFs are likely targets for gas
storage applications. We identified one such Mg-based linor-ledge MOF with carboxylate

linkers that both belongs to the exceptionally stable subset (Kyry = 19.30 GPa) and possesses
12
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above average (i.e., by one std. dev.) porosity as judged by the largest included sphere (D;= 64.5

A, Supporting Information Figure S4).

We next investigated the building blocks in the most mechanically stable MOFs. We first
explored the linker chemistry that was common across the distinct inorganic nodes (N12, N41,
N45, N47, N48, N49, and N76) present in the top 10 stable MOFs (Figure 2a). We observed
three distinct linker chemistries with similar occurrence: carboxylate linkers (4 MOFs, nodes
N12, N49, and N76), porphyrin linkers (3 MOFs, node N41), and combined
carboxylate/bipyridine linkers (3 MOFs, nodes N45, N47, and N48) (Figure 2a). Upon
investigating only the linker chemistries that are enriched in mechanically stable MOFs
compared to the entire set, we discovered significant enrichment of both porphyrin and combined
carboxylate/bipyridine linkers, with nearly eight times enrichment of porphyrin linkers and two
times enrichment of combined carboxylate/bipyridine linkers (Supporting Information Table

S10). To isolate our focus to the portion of the linker that does not coordinate the metal, we

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

evaluated edge frequency. As per the definition of node and edge, MOFs in our dataset can

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

occasionally only be comprised of nodes and lack edges (see Sec. 2),°! and, indeed, most of the

(cc)

highest-stability MOFs (8 of 10) lack edges (Supporting Information Table S8).38384 In the
remaining two MOFs, we found two edges (EO and E3) with short lengths (Figure 2a and

Supporting Information Figure S5).3!
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Figure 2. (a) Structures of the seven distinct inorganic nodes (N12, N41, N45, N47, N48, N49,
and N76) and two distinct organic edges (EO and E3) present in the ten most mechanically stable
MOFs. The metals present in the inorganic nodes are reported. In the structures, the atoms are
colored as follows: white for hydrogen, gray for carbon, blue for nitrogen, red for oxygen,
yellowish green for magnesium, light pink for cobalt, magenta for europium, turquoise for
terbium, and teal for holmium. The black circles denote the atoms present in the inorganic nodes
and edges that serve as connection points with other building blocks. (b) 2D convex hull of Kyry
vs. diameter of the largest included sphere for MOFs containing any of the five most frequent
inorganic nodes (top left), organic nodes (top right), nets (bottom left), and edges (bottom right)
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in our entire dataset (Supporting Information Figure S6). In each panel, the purple vertical
dashed line corresponds to the average diameter of the largest included sphere (34.7 A) of all
MOFs in our dataset.; The metals present in the inorganic nodes, the average metal coordination
number of the nets, and the n? values from the Kruskal-Wallis tests are reported.

Turning to SBU chemistry, there are five unique metals present across seven distinct
inorganic nodes, out of which three are lanthanides (Tb, Eu, and Ho) and two are lighter
elements (Co, Mg, Figure 2a). All five metals were enriched in the most stable MOFs over the
original set, with the highest enrichment of Ho (10% of the top ten MOFs vs. 0.7% of 7,330
MOFs, Supporting Information Table S11 and Figure S7). Although the presence of Co,
specifically in porphyrinic nodes, and lanthanides has been shown to enhance the mechanical
stability of MOFs,>? the observation Mg MOFs having high mechanical stability had not been

reported.

We also investigated the most frequent nets in the top ten mechanically stable MOFs. Despite

the highest presence of gar and ptr nets over our entire dataset (7.1% and 6.8% respectively), we

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

discovered the g#z-e net to be the net for the three three most stable MOFs, and therefore the

most frequent among the top ten (Supporting Information Figure S8 and Table S8). This is a

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

significant enrichment of this net from its presence in the original set (0.16% of 7,330 MOFs).

(cc)

We further probed the average metal coordination number (MCN) of the nets. Consistent with
prior work>®, we found enrichment of higher MCNs of six (6 top-ten MOFs vs 16.5% of all
MOFs) and eight (1 top-ten MOF vs. 1.1% of all MOFs) in comparison to the predominant MCN
of 4 in the overall set (38.9% of all MOFs, Supporting Information Figure S9). The fact that the
qtz-e net has an MCN of six potentially contributes to its abundance among the ten most stable

MOFs.

15


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

Page 16 of 43

View Article Online
DOI: 10.1039/D5TA08080K

To uncover the influence of the MOF building blocks and nets on Kyry, we performed
the non-parametric Kruskal-Wallis tests®> that can quantify the extent of variations in Kyry with
different MOF building blocks and nets using a m? metric (i.e., higher values indicate larger
variations). For the five most frequent building blocks and nets across all MOFs in our dataset,
we found the most significant variations in Kygry for inorganic nodes and nets (n? of 0.40 and
0.39 for inorganic nodes and nets, Figure 2b, and Supporting Information Text S3 and Figure
S6). Although both organic nodes and edges are analogous to MOF linkers, we discovered
significantly lower variation in Kyry with edges than with organic nodes (n? of 0.02 vs 0.15),
which can be explained by the substantially greater influence of organic nodes on MOF pore size
than edges (Figure 2b and Supporting Information Figure S10). Our finding that the identity of
the inorganic node has the highest influence of on MOF mechanical stability was consistent
across all three classes of MOFs, at odds with prior work that identified MOF net to be the

dominant factor for predicting mechanical stability (Supporting Information Figures S11-S13).%

3b. ML models for mechanical stability prediction.

To capture complex structure—property relationships between mechanical stability and
MOF building blocks, topology, and pore geometry, we trained interpretable ML models. We
considered several strategies for featurizing our MOFs. We introduced a new type of topological
features that encode the frequency of different cycle lengths (i.e., connected rings in the structure
of the MOF). We also featurized MOFs using graph-based RACs3%8 that encode atom-wise
chemistry and local connectivity, and we included Zeo++ features®? that encode MOF pore
geometry (Supporting Information Texts S1-S2 and Tables S1-S3). We also trained models over

each of the three individual classes of MOFs (linor-ledge, linor-1org-ledge, and 2inor-1edge)
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to investigate possible variability in the structure—property relationships between the three MOF

classes.

Inspired by previous work on ML for MOF mechanical stability,’> we first trained an
ANN using only four geometric features (p, D;, VPOV, and GSA) obtained using Zeo++ in
combination with one-hot encoded net features to evaluate if this set of features alone is
sufficient to develop generalizable ML models for Kyry prediction across our dataset. Due to the
heavily skewed distribution of Kyry towards lower values, we selected the log R? (i.e., the log
transform was applied prior to computing R?) as a more appropriate performance evaluation
metric for our models instead of R?, since achieving high R? in significantly skewed data is
challenging.’* Unlike in prior work, we observed extremely poor performance for the ANN
model trained over the entire dataset (test set log R?> = 0.47, Figure 3a). Similar unsatisfactory

performance by the ANN models was observed when training on individual classes of MOFs,

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

with the best performance for linor-lorg-ledge MOFs and the worst performance for 2inor-

ledge MOFs (test set log R?> = 0.51 vs. 0.42, Supporting Information Table S12). Overall, the

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

poor performance of the models is likely due to the greater chemical and topological diversity in

(cc)

our USMOF dataset than in the subset of ToBaCCo MOFs used in the previous work.?->
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(b) 10 cycle length frequency and 14 Zeo++ features
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Figure 3. Test set parity plots of predicted vs. true Kygry for the ANN models trained on the
entire USMOF dataset containing all three classes (linor-ledge, linor-lorg-ledge, and 2inor-
ledge) of MOFs using (a) one-hot encoded topology and four Zeo++ features, (b) 10 cycle
length frequency and 14 Zeo++ features, (c) 148 RAC and 14 Zeo++ features, and (d) 10 cycle
length frequency, 148 RAC, and 14 Zeo++ topological features. The data points are colored by
kernel density estimation (KDE) density values as shown by inset color bars, and black dashed
lines indicate the parity lines. For each model, the datapoint corresponding to the most extreme
outlier MOF is denoted by the black circle, and the structures of those MOFs are shown in
Supporting Information Figure S14. The values of log R? are reported.
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While investigating the most extreme outlier MOF (id: MOF net-sod-g nodel-
N66_edgel-E7) during our prediction task over the entire set, we found the MOF to be highly
porous (p = 0.048 g/cm? D;=92.3 A, and VPOV = 0.96 cm?/cm?) with a bulk density less than
25% of the average for MOFs in our dataset (Supporting Information Figure S14 and Table S9).
This motivated us to explore alternate featurization. To investigate whether adding other
geometric features (e.g., the diameter of the largest free sphere) could improve the performance
of the ANN models, we retrained our models with ten additional geometric features obtained
using Zeo++, but we did not observe any improvement in model performance (Supporting

Information Tables S3 and S12).

Motivated by the overriding effect that topology had in earlier estimations of mechanical
stability, we next investigated whether we could introduce customized topological features to

improve ANN model performance over one-hot encoded features. One disadvantage of one-hot

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

encoded features in our USMOF set is that this does not encode any measure of similarity among

different nets. Using a feature set based on the properties, rather than the identities of the nets,

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

allows similarity to be leveraged by the model. We instead developed topological features based

(cc)

on the short symbol® representation of periodic nets. Specifically, these features contain the
normalized frequency of different cycle lengths (Supporting Information Text S2). Our models
trained only with these new topological features and all fourteen Zeo++ features showed
somewhat enhanced performance over the entire dataset (test set log R?> = 0.51 vs 0.47) in
comparison to the one-hot encoding and Zeo++ feature set (Figure 3b). Still, our model
performance was only somewhat improved with the topological features, which we attribute to

the absence of MOF chemical information from the feature set.
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With the aim of improving upon the geometry/topology-only model in mind, we encoded
the chemistry of the MOFs through a combination of RAC and Zeo++ features used extensively
in our previous work on MOFs, but we omitted information about the global
topology.30-31:44:46:49.56,57.64 Although global topology is not explicitly present in this new feature
set, this information is partially encoded in the MOF graph captured by RACs as the local
connectivity between atoms. Using RAC and Zeo++ features, we found significant improvement
in the performance of the models over the geometry/topology-only models for the entire set (test
set log R? =0.72 vs. 0.51, MAE = 1.19 GPa, Figure 3¢). We again observed the best performance
for the model trained on linor-1org-ledge MOFs and the worst for the model trained on 2inor-

ledge MOFs (test set log R> = 0.72 vs. 0.66, Supporting Information Table S12).

We next investigated whether we could further improve the performance of the models
by adding information about the global topology missing in RACs. We first added the one-hot
encoded topology to the set of RAC and Zeo++ features, but the ANNs trained with this new
feature set performed similarly to the models trained with RAC and Zeo++ features alone
(Supporting Information Table S12). When we instead added our novel topological features
instead of one-hot encoded topology features, we observed further improvement in model
predictions beyond the performance of models trained with only RAC and Zeo++ features (test
set log R?> = 0.76 vs. 0.72 when training and evaluating over the entire set, MAE = 1.13 GPa,
Figure 3d). However, out of the three individual MOF classes, we only found appreciable model
performance improvement for the model trained on linor-ledge MOFs when using this feature
set (test set log R? = 0.74 vs. 0.72, Supporting Information Table S12). The negligible influence
of our novel topological features on the model performance for linor-lorg-ledge MOFs is

possibly due to a lower influence of topology on Kyry for those MOFs, as hypothesized earlier.
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However, a low effect for 2inor-1edge MOFs is probably due to similarity in topologies present
in those MOFs, with most of them having an average MCN of 5 (78% of MOFs, Supporting
Information Figure S9). For all feature sets considered (i.e., after adding RACs), the most
extreme outlier is the same for all models (id: MOF net-ske nodel-N17 edgel-E13, Supporting
Information Figure S14). Despite the building blocks of the outlier MOF appearing during
training, the inability to correctly predict Kygry for this MOF is likely due to a more complex

synergistic effect between building blocks that is not represented elsewhere in the training data.

We next investigated if we could further improve the performance of our best-performing
ANN models trained with RAC, Zeo++, and the novel topological features by employing more
interpretable model architectures and feature engineering. Such models have previously
demonstrated comparable performance to ANNs.#>37 To test this, we used four distinct simpler
model architectures: a random forest regressor (RFR), a gradient boosting regressor (GBR), and

a kernel ridge regressor (KRR) utilizing either a Laplacian kernel (KRR-Laplacian) or a radial

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

basis function kernel (KRR-RBF). The KRR kernels encode similarity relationships, unlike

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

ANNSs which encode complex non-linear relationships. To prevent overfitting and to reduce the

(cc)

impact of uninformative features in these models, we employed recursive feature addition (RFA)
(Supporting Information Table S6). All four RFA-trained model architectures modestly
outperform our best-performing ANN models, both when evaluating over the entire set and also
when restricting scope to each of the three individual MOF classes (Supporting Information
Table S13 and Figure S15). Of the four models, we found the KRR-Laplacian model to perform
best across the entire set (test set log R?> = 0.79 vs. 0.76 for the best-performing ANN model,

MAE = 1 GPa) and also when trained on individual MOF classes.
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To compare an alternative approach to the Kyry prediction task, we implemented a
transfer learning approach where we fine-tuned a previously developed transformer model with a
self-attention mechanism called MOFormer.”! MOFormer, which was pretrained on > 400k
MOF structures, has demonstrated excellent performance when finetuned on relatively small
datasets (~14k to ~137Kk) in predicting band gap and gas adsorption.”! For the USMOFs in our
dataset, we first obtained the structure-agnostic text-based representation of MOFs used by
MOFormer, called the “MOFid,” which encodes MOF chemistry and topology (Supporting
Information Figure S2).¢ We fine-tuned MOFormer on individual USMOF classes and also over
the entire USMOF DB. Surprisingly, we found poor performance of the MOFormer model in all
the prediction tasks when compared to our best-performing KRR-Laplacian model (test set log
R? over the entire set = 0.65 for MOFormer vs. 0.79 for the KRR-Laplacian model, Supporting
Information Figure S16 and Table S14). When we compared the performance of the MOFormer
model with the ANNSs trained earlier, we found that the fine-tuned MOFormer performed better
than all the geometry/topology-only models, but it always performed worse than an ANN when
RACs were included in the ANN feature set. This can most likely be attributed to the smaller
training dataset size compared to past prediction tasks and missing information about MOF 3D
structure in MOFid that is extremely relevant for MOF mechanical stability. Thus, out of all the
models considered, we identified the KRR-Laplacian model with RACs, Zeo++, and topological
features to be the best-performing model across our data, with mean absolute errors of 1 GPa
over all test MOFs and 8.24 GPa over exceptionally stable test MOFs (Supporting Information

Tables S13 and S15).

We next identified the most influential MOF features and quantify their contribution to

predicting Kyry with our best-performing KRR-Laplacian model for the three MOF classes
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(linor-ledge, linor-lorg-ledge, and 2inor-ledge) using feature importance analysis (see Sec.
2).7* This analysis assigned importance values to each feature, which we then normalized to
show relative importance (Figure 4). Consistent with observations on model performance
depending strongly on the addition of RACs, our analysis revealed the paramount importance of
RAC:s for all the MOF classes, with RACs having the highest importance for 2inor-1edge MOFs
(84.2% of collective importance, Figure 4). Specifically, we found the electronegativity of the
metal and around the metal center (mc-%-0, mc-y-1, and mc'-x-2, where ' indicates a difference
RAC) to be the most important out of all the RACs (e.g., mc-y-1 contributes 31% for 2inor-
ledge MOFs, Figure 4 and Supporting Information Table S1). The key importance of metal
electronegativity can be attributed to hard-soft acid base (HSAB) theory, where metals with low
electronegativity form exceptionally strong bonds with hard bases like O and N common to MOF
linkers. This feature importance result is consistent with the prevalence of lanthanides and Mg in
the top ten stable MOFs, since such metals are harder acids than more abundant 3d transition
metals like Cd and Zn present in USMOFs (Figure 2, Supporting Information Table S11, and

Figure S7).3!
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Figure 4. SHAP feature importance analysis for the best-performing KRR-Laplacian models
individually trained on the Kyry dataset containing linor-ledge MOFs (left), linor-lorg-ledge
MOFs (center), and 2inor-ledge MOFs (right). The relative importance of all the features is
shown in the bar plots. The bars are color-coded based on the feature class to which each feature
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belongs: blue for geometric features, green for topological features, and red for RACs. The
percentage of importance of the geometric features, topological features, and RACs is shown in
the inset pie charts. See Supporting Information Tables S1-S3 and Texts S1-S2 for explanation
of feature nomenclature.

We next investigated the most important geometric and topological features. Out of all
the geometric features, we found MOF surface area and pore volume to be the most important,
which is consistent with the strong negative correlation between those features and Kyry
(Supporting Information Figure S3). When comparing the three MOF types, geometric features
had the most significant effect for 1inor-1org-ledge MOFs out of the three MOF classes (29.8%
of total importance), emphasizing our hypothesis that geometry is more important for these
MOFs because they sample a larger range of high porosities. With respect to topological
features, we found these to be most important for linor-ledge MOFs (27.9%), with the
normalized frequencies of three to six cycle lengths were most important topological features.
The maximum cycle length in our set is twelve, and thus emphasizing smaller cycle lengths
suggests the importance of higher connectivity (i.e., higher average MCN) for mechanical
stability. For the other MOFs, we expected higher influence of geometric features for linor-1org-
ledge MOFs, and we attribute the lack of topological diversity for 2inor-ledge MOFs as the
reason why those features are not selected (Figure 4). For example, 78% of 2inor-1edge MOFs
have an average MCN of 5 (Supporting Information Figure S9). Overall, our feature importance
analysis consistently demonstrated the strongest influence of metal chemistry on mechanical

stability for all classes of MOFs over geometry or topology.

3c. Identifying mechanically stable MOFs in databases.
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To identify MOFs with exceptional mechanical stability in databases of hypothetical and
experimental MOFs, we next used our ML models to screen these MOFs. For experimental
MOFs, we selected the all-solvent-removed (ASR) MOFs from the CoRE MOF DB 202426
database, whereas the hypothetical MOFs were selected from three databases: (1) BW-DB,?? (2)
hMOF,?” and (3) ToBaCCo.% Despite the best performance of the KRR-Laplacian model across
our USMOF DB, we chose the second-best model, which is an ANN, for the screening task
because ANNs perform well in their application to unseen materials (Supporting Information
Table S12). We selected the ANN model trained with RACs, Zeo++, and novel topological
features trained over the entire USMOF DB, which showed the best performance out of all the
ANN models in our work (see Figure 3). Because the topological features are essential for the
screening task, we only screened MOFs that 1) do not have any ambiguities associated with their
topology and 2) their topologies have wvalid short symbol representations to enable the

determination of their topological features. Starting from 475,891 hypothetical and 8,854

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

experimental MOFs, this filtering step reduced our MOFs to a total of 433,550 hypothetical and
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3,157 experimental MOFs. We further removed 949 duplicate experimental MOFs (see Sec. 2),

(cc)

resulting in a final pool of 2,208 experimental MOFs (Supporting Information Table S16).
Overall, we observed a significantly higher attrition rate of experimental MOFs than hypothetical
MOFs in obtaining our final MOF pool, which is expected since a vast majority of experimental

MOFs (35% MOFs) contain topologies that cannot be assigned RCSR symbols.

To first assess the suitability of applying the ANN model to unseen experimental and
hypothetical MOFs, we compared the distribution of hypothetical and experimental MOFs with
the training set USMOFs in the latent space of the model. We employed dimensionality

reduction to visualize the coverage of training MOFs in the space of hypothetical and
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experimental MOFs (Figure 5). While we observed overall good overlap of the training MOFs
with the broader hypothetical and experimental MOF space, some regions of space were more
well-populated than others. Although, by design,’! the USMOFs have similar metal diversity to
experimental MOFs, Cu and Zr metals were less well-represented in USMOFs compared to
experimental or hypothetical MOFs. In terms of geometric properties, all hypothetical and
experimental MOFs are significantly less porous than the training set USMOFs, with an average
bulk density 4-6x that of the training set USMOFs (Supporting Information Table S17). The
connectivity (i.e., the MCN), all three sets of MOFs were quite similar (Figure 5b). Overall, good
coverage in properties is observed between the training set of USMOFs and the sets we would
like to predict properties on, but we might expect relatively high model uncertainty for model
predictions due to differences in the porosity and metal frequency between the USMOFs and the

other datasets.
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Hypothetical MOFs
Experimental MOFs
Training MOFs
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—— BW-DB —— hMOF ToBaCCo —— CoRE MOF DB 2025 v2.0 ASR —— Training USMOFs

Figure 5. (a) Uniform Manifold Approximation and Projection (UMAP) dimensionality
reduction on the latent space of the ANN model trained with RACs, Zeo++, and novel
topological features over the entire USMOF DB to visualize the coverage of training set
USMOFs (red points) across the space of hypothetical (blue points) and experimental (green
points) MOFs. (b) Radar plots showing the distribution of metal identities (left) and average
metal coordination number (MCN, right) for training set USMOFs and the set of MOFs present
in three hypothetical (BW-DB, hMOF, and ToBaCCo) and experimental CoORE MOF DB 2025
v2.0 ASR database that were used to screen exceptionally mechanically stable MOFs. The
distributions are shown on a logarithmic scale. For metal identity, the sum of the MOF
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percentages for all the metals may exceed one since a MOF can have more than one metal type.
The average MCN is computed by averaging over the MCNs of all distinct types of nodes
present in a MOF, which can make the average MCN fractional (e.g., average MCN of 3.5 for a
MOF with nodes having MCNs 3 and 4).

To overcome potential limitations in coverage of hypothetical and experimental MOF
space by the USMOF DB training data, we incorporated uncertainty quantification (UQ) prior to
making predictions. The distance to training data (LSD) in the last layer of the model provides an
estimate of model uncertainty.”* We scaled the LSD with respect to training data and confirmed
that the threshold value of this quantity can be adjusted to systematically reduce test set error
(Supporting Information Figure S17). For screening unseen MOFs, we selected the LSD
threshold (0.37) that produced a 1 GPa mean absolute error on the retained test set MOFs. Using
this threshold, we estimated Kygry for 35% of hypothetical MOFs (152,805 out of 433,550
MOFs) with highest percentage for ToBaCCo MOFs (46.4%) and lowest percentage for hMOFs
(23.4%), which can be attributed to their relative similarity to USMOF MOFs in terms of their
average geometric properties (Supporting Information Tables S17-S18). Unlike hypothetical
MOFs, we were only able to make uncertainty-controlled estimates off Kyry for 6.9% of
experimental MOFs (152 out of 2,208 MOFs), which can be explained by the low porosity of
experimental MOFs that makes their geometric properties most dissimilar to those of training set

USMOFs (Supporting Information Tables S17-S18 and Figure S18).

In total, we estimated Kyry of 152,957 MOFs. From this subset, we identified 22,609
exceptionally stable MOFs (22,583 hypothetical and 26 experimental) that have two standard
deviations higher Kyry than the mean Kygry of USMOFs (Kyry >11.86 GPa). Out of the 22,583

hypothetical MOFs with exceptional stability, we found the vast majority to be BW-DB MOFs
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(18,883 MOFs) with the lowest representation of ToBaCCo MOFs (only 43 MOFs, Supporting
Information Table S18). When we investigated the percentage of MOFs with estimated Kyry
that have exceptional stability, we observed significantly higher percentages for both BW-DB
and hMOFs (15.1% and 15.6%) over ToBaCCo MOFs (1.1%), which can be explained by the
lower porosities of BW-DB and hMOFs compared to ToBaCCo MOFs (Supporting Information
Tables S17-S18). We observed the percentage of exceptionally stable MOFs to be even higher
for experimental MOFs (17.1%), which can similarly be explained by the lowest porosity of
experimental MOFs out of all the MOF databases (Supporting Information Tables S17-S18). A

comprehensive list of all exceptionally stable MOFs is provided in the Zenodo repository.®’

For our predicted top-performing MOFs, we next validated our ANN-predicted Kyry
values with molecular simulation. Out of eight MOFs corresponding to the top two from each of
the four experimental/hypothetical databases, six were found to be exceptionally stable (Kygry >

11.86 GPa) based on their simulated Kygry values (Supporting Information Table S19). The

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

ANN-predicted Kyry values on hypothetical MOFs showed considerable deviations from

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

simulated values, with errors as high as 295%. For the experimental MOFs, this error generally

(cc)

corresponded to an underprediction, while for hypothetical MOFs it often corresponded to an
overprediction. For top experimental MOFs, the underprediction by our model is likely due to
the limitation of the model in extrapolating to MOFs with Kyry higher than the mean Kygry of
top experimental MOFs (Kygry > 30.8 GPa), since our training set of USMOFs contains only
0.4% of such MOFs. Nevertheless, the 75% success rate of the ANN model demonstrates its
potential in uncovering novel and exceptionally stable MOFs. A broader analysis of 100
randomly sampled MOFs from the set of exceptionally stable screened MOFs achieved a 70%

success rate in classifying MOFs (Supporting Information Text S4 and Figure S19). Our analysis
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has also identified that the instances of limited generalization by our models arise due to
significant mismatches between the geometric features of training USMOFs and the screened

MOFs.

We further examined the characteristics of the six (i.e., exceptionally stable) highest-
performing screened MOFs that were predicted by our ML model and validated by simulation.
We found that they all contained common metals (Zn, Cu) and linker chemistry (i.e., N or O
coordination), consistent with the prevalence of these features in the overall MOF sets (Figure 6
and Supporting Information Figure S20). Surprisingly, we did not find any lanthanide MOFs in
our top MOFs even though we found those MOFs to be the most stable in USMOFs, which can
be explained by the absence of lanthanides in the hypothetical MOFs and limited presence of
such MOFs in the prediction set of experimental MOFs (8.6% of MOFs in the experimental
prediction set vs. 23.8% of USMOFs). In terms of overall topology, we observed that four out of
six MOFs have the pcu net with an MCN of 6 (Figure 6). This is again likely due to the higher
frequency of the pcu net in both the experimental and combined hypothetical prediction set (i.e.,
26% of experimental MOFs and 64% of combined hypothetical MOFs) and the fact that an MCN
of 6 is the highest possible value in all sets excluding ToBaCCo (Supporting Information Figure
S21). Finally, we assessed four key geometric properties (D;, p, VPOV, and GSA) for all the top
six stable MOFs. We observed that four out of the six exceptionally stable MOFs were less
porous than the average MOF in the respective prediction set, with as much as 3.7x lower GSA
than an average MOF in the prediction set (for the top stable ToBaCCo MOF, Supporting
Information Tables S20-S21).38 Overall, our results indicate that the preference for topology
with the highest available MCN and lower porosity than the original training set is a common
feature of highly mechanically stable MOFs. However, based on the feature analysis on our
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models, further significant improvement in the mechanical stability can be achieved by judicious
metal substitution in SBUs based on the chemistry of the linker connecting atoms. Specifically,
hard acid metals like lanthanides and magnesium substitution are highly recommended in MOFs

with oxygen or nitrogen as linker connecting atoms.

(a) Experimental MOFs

CSD refcode: NINVAI (Fe, tbo)
(b) Hypothetical MOFs

ID: str m2_06_024 pcu_sym.91 (Cu, pcu)

ID: hMOF-5044727 (Zn, pcu) ID: ToBaCCo-5155 (Cu, nbo)
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Figure 6. Structures of the top simulation-validated, exceptionally stable (Kygry > 11.86 GPa) (a)
experimental and (b) hypothetical MOFs derived after screening MOFs in the experimental MOF
(CoRE MOF DB 2025 v2.0 ASR) database and three hypothetical MOF databases (BW-DB,
hMOF, and ToBaCCo). The experimental CORE MOFs and hypothetical MOFs are denoted
using their Cambridge Structural Database?* (CSD) reference code and their database ID,
respectively. Each MOF is noted with its metal identity and the Reticular Chemistry Structure
Resource®® (RCSR) topology symbols (in parentheses). In the structures, the atoms of MOFs are
color-coded as follows: white for hydrogen, gray for carbon, blue for nitrogen, red for oxygen,
pink for iron, yellow for copper, and gray blue for zinc. The geometric properties of the MOFs
and their ANN-predicted and molecular simulation-calculated Kygry values are provided in
Supporting Information Table S19.

We finally investigated the chemical realizability of 22,583 exceptionally stable
hypothetical MOFs. The building blocks of these MOFs were originally obtained from
experimental MOFs in previous databases (e.g., CoRE 2014% and CoRE 2019%), which

contained several structural errors, including overlapping atoms, invalid atom connectivity, and

incorrect metal oxidation states.’™%? By employing a recently developed positive-unlabeled
crystal graph convolutional network, MOFClassifier,” we have identified 6,863 exceptionally
stable hypothetical MOFs with valid structures, suggesting their potential synthetic feasibility. In
total, our VHTS approach has enabled the identification of 6,889 exceptionally stable MOFs
(6,863 hypothetical and 26 experimental) with chemically valid structures. The list of stable

hypothetical MOFs with valid structures is provided in our Zenodo repository.%’

4. Conclusions

In this work, we have advanced the search for mechanically stable MOFs by developing
generalizable ML models trained with novel topological features and chemical descriptors (i.e.,
RACG:s). We started with a dataset of 7,330 hypothetical ultrastable MOFs (USMOFs) with over

six times the inorganic node diversity and ten times the topological diversity of prior work.
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While we found a dominant presence of hard acid metals like lanthanides and magnesium in the
most mechanically stable MOFs, we also discovered the frequent appearance of topologies with
high average metal coordination numbers in the top stable MOFs. Using non-parametric
Kruskal-Wallis tests, we uncovered the most significant dependence of Kyry on inorganic node

identity, followed by topology, organic nodes, and edges.

We next constructed ML models with different architectures and MOF features to
uncover structure—stability relationships. Contrary to prior work, we demonstrated the significant
limitations of only geometric and categorically encoded topological features in developing
generalizable models across broad MOF chemistry. We showed improvement in the performance
of our models after incorporating RACs encoding MOF chemistry and local connectivity as well
as through novel topological features based on the short symbol representation of periodic nets.
Feature importance analysis on our models revealed the most significant contribution of metal

chemistry over MOF geometry and topology in dictating MOF mechanical stability.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Finally, we screened around 433k hypothetical and 2.2k experimental MOFs to identify

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

exceptionally stable MOFs. Using our best-performing ANN model, we confidently identified

(cc)

Kyry of 152,957 MOFs (152,805 hypothetical and 152 experimental) with a 75% success rate of
our model identifying MOFs with exceptional stability in the set of eight most stable MOFs.
Further improvement of the models in this work, especially identifying stable experimental
MOFs, could be achieved by enlarging datasets to capture more MOFs with lower porosity that
are representative of the geometric properties of experimental MOFs. Additionally, the accuracy
of predicted Kyry could be further enhanced by developing integrated ML-based workflows with
judicious DFT screening or employing emergent machine-learned interatomic potentials that can

achieve DFT-level accuracy with significantly lower computation cost than DFT. Overall, we
33
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expect that hard acid metal substitution will be a successful strategy to enhance mechanical
stability in porous MOFs and that the developed topological features could be useful in other

materials such as covalent organic frameworks and polymer networks.

ASSOCIATED CONTENT

Supporting Information. Details of revised autocorrelations (RACs); list of different types and
number of RACs; list of invariant RACs; list of geometric features; details of topological
features developed using net theory; list of MOF nets with missing topological features; details
of MOFid representation; list of recursive feature addition selected features; details of ML
hyperparameter optimization; list of top ten mechanically stable USMOFs; list of mean
geometric properties of top ten USMOFs; correlation between Kyry and geometric properties;
structures of the exceptionally stable USMOFs with high porosity; linkers and metals present in
the top ten stable MOFs; metals and nets, average metal coordination number (MCN)
distribution in USMOFs; length of edges present in USMOFs; details of Kruskal-Wallis test; list
of most frequent building blocks in USMOFs; convex hull of pore volume vs. diameter of the
largest included sphere; convex hull of Kygry vs. cavity diameter for linor-ledge, linor-1lorg-
ledge, and 2inor-ledge MOFs; test set performance of ML models; structures of the most
extreme outlier MOF; test set ML parity plots; number of MOFs in hypothetical and
experimental databases; mean geometric properties of MOFs that were screened; details of
uncertainty quantification; summary of MOF screening results; Kyry and geometric properties of
top screened MOFs; metal, MCN, and geometric properties of hypothetical and experimental
MOFs within ANN uncertainty. (PDF)

Zenodo repository. Features and Kyry of USMOFs, features of hypothetical and experimental
MOFs, Python scripts to train ML models, a Jupyter notebook for MOF screening, Kygry of
screened MOFs, a Jupyter notebook and associated files to construct USMOFs from their
building blocks, and LAMMPS scripts to determine MOF Kyru.

(https://doi.org/10.5281/zenodo.17088767)

AUTHOR INFORMATION
Corresponding Author
*email:hjkulik@mit.edu
Notes

The authors declare no competing financial interest.

34


https://doi.org/10.5281/zenodo.17088767
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

Page 35 of 43 Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08080K

ACKNOWLEDGMENT

This work was supported by the Defense Threat Reduction Agency under grant number
HDTRA12510008. A.K.B. was partially supported by a Massachusetts Institute of Technology
School of Engineering MathWorks Fellowship. H.J.K. acknowledges support in the form of an
Alfred P. Sloan Foundation Fellowship in Chemistry and the Simon Family Faculty Research
Innovation Fund. The authors acknowledge the MIT SuperCloud and Lincoln Laboratory for
providing HPC resources that have contributed to developing the ML models reported within this

article. The authors thank Adam H. Steeves for providing a critical reading of the manuscript.

REFERENCES

(1) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks.
Chemical Reviews?2012, 112, 673-674.

) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and
Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.

3) Wei, R.; Gaggioli, C. A.; Li, G.; Islamoglu, T.; Zhang, Z.; Yu, P.; Farha, O. K.; Cramer,
C. J.; Gagliardi, L.; Yang, D.; Gates, B. C. Tuning the Properties of ZrsOg Nodes in the
Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers.
Chemistry of Materials 2019, 31, 1655-1663.

€)) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.;
Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic
frameworks. Science 2010, 329, 424-428.

5) Chen, O. I.-F.; Liu, C.-H.; Wang, K.; Borrego-Marin, E.; Li, H.; Alawadhi, A. H.;
Navarro, J. A. R.; Yaghi, O. M. Water-Enhanced Direct Air Capture of Carbon Dioxide
in Metal-Organic Frameworks. Journal of the American Chemical Society 2024, 146,
2835-2844.

(6) Sadig, M. M.; Batten, M. P.; Mulet, X.; Freeman, C.; Konstas, K.; Mardel, J. I.; Tanner,
J.; Ng, D.; Wang, X.; Howard, S.; Hill, M. R.; Thornton, A. W. A Pilot-Scale
Demonstration of Mobile Direct Air Capture Using Metal-Organic Frameworks.
Advanced Sustainable Systems 2020, 4, 2000101.

@) Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E.
Probing the Lewis Acidity and Catalytic Activity of the Metal-Organic Framework
[Cus(btc),] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry — A European Journal 2006,
12,7353-7363.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

35


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

®)

€))

(10)

(11)

(12)

(13)

(14)

15)

(16)

17)

(18)

(19)

(20)

1)

Journal of Materials Chemistry A

Page 36 of 43

View Article Online
DOI: 10.1039/D5TA08080K

Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. Preparation, Clathration Ability, and
Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(IT)
and 4,4'-Bipyridine. Journal of the American Chemical Society 2002, 116, 1151-1152.
Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A.
S.; Yaghi, O. M.; Wang, E. N. Water harvesting from air with metal-organic frameworks
powered by natural sunlight. Science 2017, 356, 430-434.

Xu, W.; Yaghi, O. M. Metal-Organic Frameworks for Water Harvesting from Air,
Anywhere, Anytime. ACS Central Science 2020, 6, 1348-1354.

Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Metal-Organic Frameworks for Water
Harvesting from Air. Advanced Materials 2018, 30, 1704304.

Logan, M. W.; Langevin, S.; Xia, Z. Reversible Atmospheric Water Harvesting Using
Metal-Organic Frameworks. Scientific Reports 2020, 10, 1492.

Abdullah, N.; Yusof, N.; Ismail, A. F.; Lau, W. J. Insights into metal-organic
frameworks-integrated membranes for desalination process: A review. Desalination 2021,
500, 114867.

Ou, R.; Zhang, H.; Truong, V. X.; Zhang, L.; Hegab, H. M.; Han, L.; Hou, J.; Zhang, X.;
Deletic, A.; Jiang, L.; Simon, G. P.; Wang, H. A sunlight-responsive metal—organic
framework system for sustainable water desalination. Nature Sustainability 2020, 3,
1052-1058.

Cao, Z.; Liu, V.; Barati Farimani, A. Water Desalination with Two-Dimensional Metal—
Organic Framework Membranes. Nano Letters 2019, 79, 8638-8643.

Lapidus, S. H.; Halder, G. J.; Chupas, P. J.; Chapman, K. W. Exploiting High Pressures
to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular
Framework Zn(CN),. Journal of the American Chemical Society 2013, 135, 7621-7628.
Moggach, S. A.; Bennett, T. D.; Cheetham, A. K. The Effect of Pressure on ZIF-8:
Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47
GPa. Angewandte Chemie International Edition 2009, 48, 7087-7089.

Ramaswamy, P.; Wieme, J.; Alvarez, E.; Vanduythuys, L.; Itié, J.-P.; Fabry, P.; Van
Speybroeck, V.; Serre, C.; Yot, P. G.; Maurin, G. Mechanical properties of a gallium
fumarate metal-organic framework: a joint experimental-modelling exploration. Journal
of Materials Chemistry A 2017, 5, 11047-11054.

Yot, P. G.; Yang, K.; Guillerm, V.; Ragon, F.; Dmitriev, V.; Parisiades, P.; Elkaim, E.;
Devic, T.; Horcajada, P.; Serre, C.; Stock, N.; Mowat, J. P. S.; Wright, P. A.; Férey, G.;
Maurin, G. Impact of the Metal Centre and Functionalization on the Mechanical
Behaviour of MIL-53 Metal-Organic Frameworks. European Journal of Inorganic
Chemistry 2016, 2016, 4424-4429.

Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. Metal organic framework
mixed matrix membranes for gas separations. Microporous and Mesoporous Materials
2010, 731, 13-20.

Peterson, G. W.; DeCoste, J. B.; Glover, T. G.; Huang, Y.; Jasuja, H.; Walton, K. S.
Effects of pelletization pressure on the physical and chemical properties of the metal—

36


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

Page 37 of 43

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

€19

(32)

Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08080K

organic frameworks Cu;(BTC), and UiO-66. Microporous and Mesoporous Materials
2013, 779, 48-53.

Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal organic framework
based mixed matrix membranes: An increasingly important field of research with a large
application potential. Microporous and Mesoporous Materials 2013, 166, 67-78.
Moosavi, S. M.; Nandy, A.; Jablonka, K. M.; Ongari, D.; Janet, J. P.; Boyd, P. G.; Lee,
Y.; Smit, B.; Kulik, H. J. Understanding the diversity of the metal-organic framework
ecosystem. Nature Communications 2020, /1, 1-10.

Groom, C. R.; Bruno, 1. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural
Database. Acta Crystallographica Section B Structural Science, Crystal Engineering and
Materials 2016, 72, 171-179.

Chung, Y. G.; Haldoupis, E.; Bucior, B. J.; Haranczyk, M.; Lee, S.; Zhang, H.; Vogiatzis,
K. D.; Milisavljevic, M.; Ling, S.; Camp, J. S.; Slater, B.; Siepmann, J. 1.; Sholl, D. S.;
Snurr, R. Q. Advances, Updates, and Analytics for the Computation-Ready, Experimental
Metal-Organic Framework Database: CoORE MOF 2019. Journal of Chemical &
Engineering Data 2019, 64, 5985-5998.

Zhao, G.; Brabson, L. M.; Chheda, S.; Huang, J.; Kim, H.; Liu, K.; Mochida, K.; Pham,
T. D.; Prerna; Terrones, G. G.; Yoon, S.; Zoubritzky, L.; Coudert, F.-X.; Haranczyk, M.;
Kulik, H. J.; Moosavi, S. M.; Sholl, D. S.; Siepmann, J. L.; Snurr, R. Q.; Chung, Y. G.
CoRE MOF DB: A curated experimental metal-organic framework database with
machine-learned properties for integrated material-process screening. Matter 2025, &,
102140.

Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R.
Q. Large-scale screening of hypothetical metal-organic frameworks. Nature Chemistry
2011, 4, 83-89.

Boyd, P. G.; Chidambaram, A.; Garcia-Diez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.;
Gtadysiak, A.; Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; Reimer, J. A.;
Navarro, J. A. R.; Woo, T. K.; Garcia, S.; Stylianou, K. C.; Smit, B. Data-driven design
of metal-organic frameworks for wet flue gas CO2 capture. Nature 2019, 576, 253-256.
Colo6n, Y. J.; Gomez-Gualdrén, D. A.; Snurr, R. Q. Topologically Guided, Automated
Construction of Metal-Organic Frameworks and Their Evaluation for Energy-Related
Applications. Crystal Growth & Design 2017, 17, 5801-5810.

Moosavi, S. M.; Nandy, A.; Jablonka, K. M.; Ongari, D.; Janet, J. P.; Boyd, P. G.; Lee,
Y.; Smit, B.; Kulik, H. J. Understanding the diversity of the metal-organic framework
ecosystem. Nature Communications 2020, 11, 4068.

Nandy, A.; Yue, S.; Oh, C.; Duan, C.; Terrones, G. G.; Chung, Y. G.; Kulik, H. J. A
database of ultrastable MOFs reassembled from stable fragments with machine learning
models. Matter2023, 6, 1585-1603.

Chapman, K. W.; Halder, G. J.; Chupas, P. J. Pressure-Induced Amorphization and
Porosity Modification in a Metal—Organic Framework. Journal of the American
Chemical Society 2009, 131, 17546-17547.

37


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

Journal of Materials Chemistry A

Page 38 of 43

View Article Online
DOI: 10.1039/D5TA08080K

Yot, P. G.; Yang, K.; Ragon, F.; Dmitriev, V.; Devic, T.; Horcajada, P.; Serre, C.;
Maurin, G. Exploration of the mechanical behavior of metal organic frameworks UiO-
66(Zr) and MIL-125(Ti) and their NH, functionalized versions. Dalton Transactions
2016, 45, 4283-4288.

Rogge, S. M. J.; Wieme, J.; Vanduyfhuys, L.; Vandenbrande, S.; Maurin, G.;
Verstraelen, T.; Waroquier, M.; Van Speybroeck, V. Thermodynamic Insight in the
High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion.
Chemistry of Materials 2016, 28, 5721-5732.

Moosavi, S. M.; Boyd, P. G.; Sarkisov, L.; Smit, B. Improving the Mechanical Stability
of Metal-Organic Frameworks Using Chemical Caryatids. ACS Central Science 2018, 4,
832-839.

Tan, J.-C.; Civalleri, B.; Lin, C.-C.; Valenzano, L.; Galvelis, R.; Chen, P.-F.; Bennett, T.
D.; Mellot-Draznieks, C.; Zicovich-Wilson, C. M.; Cheetham, A. K. Exceptionally Low
Shear Modulus in a Prototypical Imidazole-Based Metal-Organic Framework. Physical
Review Letters 2012, 108, 095502.

Tan, J.-C.; Civalleri, B.; Erba, A.; Albanese, E. Quantum mechanical predictions to
elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs.
ZIF-zni. CrystEngComm 2015, 17, 375-382.

Castel, N.; Coudert, F.-X. Computation of Finite Temperature Mechanical Properties of
Zeolitic Imidazolate Framework Glasses by Molecular Dynamics. Chemistry of Materials
2023, 35, 4038-4047.

Barsoum, M. L.; Fahy, K. M.; Morris, W.; Dravid, V. P.; Hernandez, B.; Farha, O. K.
The Road Ahead for Metal-Organic Frameworks: Current Landscape, Challenges and
Future Prospects. ACS Nano 2025, 19, 13-20.

Demir, H.; Daglar, H.; Gulbalkan, H. C.; Aksu, G. O.; Keskin, S. Recent advances in
computational modeling of MOFs: From molecular simulations to machine learning.
Coordination Chemistry Reviews 2023, 484, 215112.

Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. Large-Scale Quantitative
Structure—Property Relationship (QSPR) Analysis of Methane Storage in Metal-Organic
Frameworks. The Journal of Physical Chemistry C2013, 117, 7681-76809.

Liu, Y.; Dong, Y.; Wu, H. Comprehensive overview of machine learning applications in
MOFs: from modeling processes to latest applications and design classifications. Journal
of Materials Chemistry A 2025, 13, 2403-2440.

Bai, X.; Shi, Z.; Xia, H.; Li, S.; Liu, Z.; Liang, H.; Liu, Z.; Wang, B.; Qiao, Z. Machine-
Learning-Assisted High-Throughput computational screening of Metal-Organic
framework membranes for hydrogen separation. Chemical Engineering Journal 2022,
446, 136783.

Oh, C.; Nandy, A.; Yue, S.; Kulik, H. J. MOFs with the Stability for Practical Gas
Adsorption Applications Require New Design Rules. ACS Applied Materials &
Interfaces 2024, 16, 55541-55554.

38


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

Page 39 of 43

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

(45)

(46)

(47)

(48)

(49)

(50)

(1)

(52)

(53)

(54)

(55)

(56)

(57)

Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08080K

Qiao, Z.; Yan, Y.; Tang, Y.; Liang, H.; Jiang, J. Metal-Organic Frameworks for Xylene
Separation: From Computational Screening to Machine Learning. 7he Journal of
Physical Chemistry C2021, 125, 7839-7848.

Rivera, M. P.; Terrones, G. G.; Lee, T. H.; Smith, Z. P.; Kulik, H. J. Data-Driven
Screening and Discovery of Metal-Organic Frameworks as C, Adsorbents from over 900
Experimental Isotherms. ACS Applied Materials & Interfaces 2024, 16, 64759-64773.
Xue, X.; Cheng, M.; Wang, S.; Chen, S.; Zhou, L.; Liu, C.; Ji, X. High-Throughput
Screening of Metal-Organic Frameworks Assisted by Machine Learning:
Propane/Propylene Separation. /ndustrial & Engineering Chemistry Research 2023, 62,
1073-1084.

Yuan, L.; Xu, M.; Zhang, Y.; Gao, Z.; Zhang, L.; Cheng, C.; Ji, C.; Hua, M.; Lv, L.;
Zhang, W. Machine learning-assisted screening of metal-organic frameworks (MOFs) for
the removal of heavy metals in aqueous solution. Separation and Purification Technology
2024, 339, 126732.

Ball, A. K.; Terrones, G. G.; Yue, S.; Kulik, H. J. Data-Driven Discovery of Water-
Stable Metal-Organic Frameworks with High Water Uptake Capacity. ACS Applied
Materials & Interfaces 2025, 17, 35971-35985.

Bobbitt, N. S.; Snurr, R. Q. Molecular modelling and machine learning for high-
throughput screening of metal-organic frameworks for hydrogen storage. Molecular
Simulation 2019, 45, 1069-1081.

Wang, R.; Zhong, Y.; Bi, L.; Yang, M.; Xu, D. Accelerating Discovery of Metal-Organic
Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
ACS Applied Materials & Interfaces 2020, 12, 52797-52807.

Batra, R.; Chen, C.; Evans, T. G.; Walton, K. S.; Ramprasad, R. Prediction of water
stability of metal-organic frameworks using machine learning. Nature Machine
Intelligence 2020, 2, 704-710.

Lee, I.; Lee, J.; Kim, M.; Park, J.; Kim, H.; Lee, S.; Min, K. Uncovering the Relationship
between Metal Elements and Mechanical Stability for Metal-Organic Frameworks. ACS
Applied Materials & Interfaces 2024, 16, 52162-52178.

Lee, J.; Lee, 1.; Park, J.; Kim, H.; Kim, M.; Min, K.; Lee, S. Optimal Surrogate Models
for Predicting the Elastic Moduli of Metal-Organic Frameworks via Multiscale Features.
Chemistry of Materials 2023, 35, 10457-10475.

Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.;
Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.;
Fairen-Jimenez, D. Structure-Mechanical Stability Relations of Metal-Organic
Frameworks via Machine Learning. Matter 2019, 7/, 219-234.

Nandy, A.; Duan, C.; Kulik, H. J. Using Machine Learning and Data Mining to Leverage
Community Knowledge for the Engineering of Stable Metal-Organic Frameworks.
Journal of the American Chemical Society 2021, 143, 17535-17547.

Terrones, G. G.; Huang, S.-P.; Rivera, M. P.; Yue, S.; Hernandez, A.; Kulik, H. J. Metal-
Organic Framework Stability in Water and Harsh Environments from Data-Driven

39


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

Journal of Materials Chemistry A

Page 40 of 43

View Article Online
DOI: 10.1039/D5TA08080K

Models Trained on the Diverse WS24 Data Set. Journal of the American Chemical
Society 2024, 146, 20333-20348.

Zhang, Z.; Pan, F.; Mohamed, S. A.; Ji, C.; Zhang, K.; Jiang, J.; Jiang, Z. Accelerating
Discovery of Water Stable Metal—-Organic Frameworks by Machine Learning. Smal/
2024, 20, 2405087.

Rosen, A. S.; Iyer, S. M.; Ray, D.; Yao, Z.; Aspuru-Guzik, A.; Gagliardi, L.; Notestein, J.
M.; Snurr, R. Q. Machine learning the quantum-chemical properties of metal-organic
frameworks for accelerated materials discovery. Matter2021, 4, 1578-1597.

Janet, J. P.; Kulik, H. J. Resolving Transition Metal Chemical Space: Feature Selection
for Machine Learning and Structure-Property Relationships. J Phys Chem A 2017, 121,
8939-8954.

Ioannidis, E. I.; Gani, T. Z.; Kulik, H. J. molSimplify: A toolkit for automating discovery
in inorganic chemistry. J Comput Chem 2016, 37, 2106-2117.

Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and
tools for high-throughput geometry-based analysis of crystalline porous materials.
Microporous and Mesoporous Materials 2012, 149, 134-141.

Moosavi, S. M.; Nandy, A.; Jablonka, K. M.; Ongari, D.; Janet, J. P.; Boyd, P. G.; Lee,
Y.; Smit, B.; Kulik, H. J. Understanding the diversity of the metal-organic framework
ecosystem. Nat Commun 2020, /1, 4068.

Adamji, H.; Nandy, A.; Kevlishvili, I.; Roman-Leshkov, Y.; Kulik, H. J. Computational
Discovery of Stable Metal-Organic Frameworks for Methane-to-Methanol Catalysis.
Journal of the American Chemical Society 2023, 145, 14365-14378.

Wells, A. F. Three-Dimensional Nets and Polyhedra (Pure and Applied Mathematics),
John Wiley & Sons, 1977.

Bucior, B. J.; Rosen, A. S.; Haranczyk, M.; Yao, Z.; Ziebel, M. E.; Farha, O. K.; Hupp, J.
T.; Siepmann, J. I.; Aspuru-Guzik, A.; Snurr, R. Q. Identification Schemes for Metal—
Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal
Growth & Design 2019, 19, 6682-6697.

Weininger, D. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of Chemical Information and Computer
Sciences 2002, 28, 31-36.

O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The Reticular Chemistry
Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Accounts of
Chemical Research2008, 41, 1782-1789.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research2011, 12, 2825-2830.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.;
Gimelshein, N.; Antiga, L. Pytorch: An imperative style, high-performance deep learning
library, Curran Associates, Inc., 2019.

40


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

Page 41 of 43

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

(71)

(72)

(73)

(74)

(75)

(76)

(717

(78)

(79)

(80)

(81)
(82)

(83)

(84)

(85)

Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08080K

Cao, Z.; Magar, R.; Wang, Y.; Barati Farimani, A. MOFormer: Self-Supervised
Transformer Model for Metal-Organic Framework Property Prediction. Journal of the
American Chemical Society 2023, 145, 2958-2967.

Bergstra, J.; Yamins, D.; Cox, D. D. Hyperopt: A Python Library for Optimizing the
Hyperparameters of Machine Learning Algorithms. SciPy 2013, 73, 20.

Lundberg, S.; Lee, S.-1. A Unified Approach to Interpreting Model Predictions, Curran
Associates, Inc., 2017.

Janet, J. P.; Duan, C.; Yang, T.; Nandy, A.; Kulik, H. J. A quantitative uncertainty metric
controls error in neural network-driven chemical discovery. Chemical Science 2019, 10,
7913-7922.

Mclnnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. arXiv preprint arXiv:1802.03426 2018.
Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.; Mehlhorn, K.; Borgwardt, K. M.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research2011, 12, 2539-
2561.

Hagberg, A.; Swart, P. J.; Schult, D. A.; Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), 2008.

Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.;
Crozier, P. S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.;
Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS - a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and continuum scales.
Computer Physics Communications 2022, 271, 108171.

Coupry, D. E.; Addicoat, M. A.; Heine, T. Extension of the Universal Force Field for
Metal-Organic Frameworks. Journal of Chemical Theory and Computation 2016, 12,
5215-5225.

Addicoat, M. A.; Vankova, N.; Akter, 1. F.; Heine, T. Extension of the Universal Force
Field to Metal-Organic Frameworks. Journal of Chemical Theory and Computation
2014, 70, 880-891.

Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various
crystal systems. Physical Review B 2014, 90, 224104.

Zou, S.; Li, Q.; Du, S. Efficient and tunable multi-color and white light Ln-MOFs with
high luminescence quantum yields. RSC Advances 2015, 5, 34936-34941.

Kuc, A.; Enyashin, A.; Seifert, G. Metal-Organic Frameworks: Structural, Energetic,
Electronic, and Mechanical Properties. The Journal of Physical Chemistry B 2007, 111,
8179-8186.

Wu, H.; Yildirim, T.; Zhou, W. Exceptional Mechanical Stability of Highly Porous
Zirconium Metal-Organic Framework UiO-66 and Its Important Implications. 7%e
Journal of Physical Chemistry Letters 2013, 4, 925-930.

Kruskal, W. H.; Wallis, W. A. Use of Ranks in One-Criterion Variance Analysis. Journal
of the American Statistical Association 1952, 47, 583-621.

41


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 16 1447. Downloaded on 18/07/47 11:16:36 .

(cc)

(86)

(87)

(88)

(89)

(90)

oD

92)

(93)

Journal of Materials Chemistry A

Janet, J. P.; Kulik, H. J. Resolving Transition Metal Chemical Space: Feature Selection
for Machine Learning and Structure—Property Relationships. 7he Journal of Physical
Chemistry A 2017, 121, 8939-8954.

Ball, A. K.; Oh, C.; Dovranova, G.; Kulik, H. J. Combining Chemical, Geometric, and
Novel Topological Features to Develop Generalizable Machine Learning Models for
Predicting Mechanically Stable MOFs. Zenodo, 2025.
https://doi.org/10.5281/zenodo.17850321.

Mann, H. B.; Whitney, D. R. On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. 7he Annals of Mathematical Statistics 1947, 18, 50-
60.

Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.;
Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Computation-Ready, Experimental
Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of
Nanoporous Crystals. Chemistry of Materials 2014, 26, 6185-6192.

Chen, T.; Manz, T. A. Identifying misbonded atoms in the 2019 CoRE metal—organic
framework database. RSC Advances 2020, 10, 26944-26951.

Jin, X.; Jablonka, K. M.; Moubarak, E.; Li, Y.; Smit, B. MOFChecker: a package for
validating and correcting metal—organic framework (MOF) structures. Digital Discovery
2025, 4, 1560-1569.

White, A. J.; Gibaldi, M.; Burner, J.; Mayo, R. A.; Woo, T. K. High Structural Error
Rates in “Computation-Ready” MOF Databases Discovered by Checking Metal
Oxidation States. Journal of the American Chemical Society 2025, 147, 17579-17583.
Zhao, G.; Zhao, P.; Chung, Y. G. MOFClassifier: A Machine Learning Approach for
Validating Computation-Ready Metal-Organic Frameworks. Journal of the American
Chemical Society 2025, 147, 33343-33349.

42

Page 42 of 43
View Article Online
DOI: 10.1039/D5TA08080K


https://doi.org/10.5281/zenodo.17850321
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08080k

Page 43 of 43 Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08080K

Data availability
The data supporting this article has been included as part of the Supplementary Information or in
a Zenodo repository described below.

Supplementary Information: details of revised autocorrelations (RACs); list of different types and
number of RACs; list of invariant RACs; list of geometric features; details of topological features
developed using net theory; list of MOF nets with missing topological features; details of MOFid
representation; list of recursive feature addition selected features; details of ML hyperparameter
optimization; list of top ten mechanically stable USMOFs; list of mean geometric properties of top
ten USMOFs; correlation between Kyry and geometric properties; structures of the exceptionally
stable USMOFs with high porosity; linkers and metals present in the top ten stable MOFs; metals
and nets, average metal coordination number (MCN) distribution in USMOFs; length of edges
present in USMOFs; details of Kruskal-Wallis test; list of most frequent building blocks in
USMOFs; convex hull of pore volume vs. diameter of the largest included sphere; convex hull of
Kyru vs. cavity diameter for linor-ledge, linor-lorg-ledge, and 2inor-ledge MOFs; test set
performance of ML models; structures of the most extreme outlier MOF; test set ML parity plots;
number of MOFs in hypothetical and experimental databases; mean geometric properties of MOFs
that were screened; details of uncertainty quantification; summary of MOF screening results; Kyry
and geometric properties of top screened MOFs; metal, MCN, and geometric properties of
hypothetical and experimental MOFs within ANN uncertainty.

Zenodo repository: The features and Kyry of our USMOF dataset, features of hypothetical and
experimental MOFs, Python scripts to train machine learning models, a Jupyter notebook for MOF
screening, Kygry of screened MOFs, a Jupyter notebook and associated files to construct USMOFs
from their building blocks, and LAMMPS scripts to determine MOF Kyry are available at an

online Zenodo repository (https://doi.org/10.5281/zenodo.17088767).
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