Ultrahigh energy storage capacities in high-entropy relaxor ferroelectrics†
Abstract
Realizing ultrahigh recoverable energy-storage density (Wrec) alongside giant efficiency (η) remains a significant challenge for the advancement of dielectrics in next-generation pulse power energy-storage (ES) devices. In this study, we introduce an entropy engineering approach, manipulating local polar fluctuations and tailoring microstructure evolution through a high-entropy design strategy, to effectively regulate the ES performance of lead-free (Bi0.5Na0.5)TiO3 (BNT)-based dielectrics. By intricately designing a high-entropy matrix, (Bi0.375Na0.3Sr0.25K0.075)TiO3 (BNSKT), and enhancing configurational entropy with the Bi(Mg0.5Sn0.5)O3 (BMS) end member, we developed multi-cation substituted BNT relaxor ceramics based on a viscous polymer process (VPP) method. Our findings reveal that modulating atomic configurational entropy yields favorable and stable microstructural characteristics, contributing to an improved breakdown electric field (E-field), reduced hysteresis and delayed polarization saturation. The VPP-synthesized high-entropy 0.85BNSKT-0.15BMS (BNT-H15VPP) ceramics achieved a significant ES density Wrec of 11.24 J cm−3, η of 88.3%, and responsivity (ξ, defined as Wrec/E) of 184 J kV−1 cm−2 under 610 kV cm−1. Additionally, pulse charging/discharging measurements indicated a large discharge energy density (Wdis) of 6.6 J cm−3, a short discharge time of 2.2 μs, and remarkable temperature stability over 20–120 °C. This work underscores the feasibility of the high-entropy strategy for designing robust dielectric ceramics, heralding promising advancements in advanced ES capacitors with comprehensive ES performance.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers