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Designing solvent systems is key to achieving the facile synthesis and separation of desired products from

chemical processes, so many machine learning models have been developed to predict solubilities.

However, breakthroughs are needed to address deficiencies in the model's predictive accuracy and

generalizability; this can be addressed by expanding and integrating experimental and computational

solubility databases. To maximize predictive accuracy, these two databases should not be trained

separately, and they should not be simply combined without reconciling the discrepancies from different

magnitudes of errors and uncertainties. Here, we introduce self-evolving solubility databases and graph

neural networks developed through semi-supervised self-training approaches. Solubilities from

quantum-mechanical calculations are referred to during semi-supervised learning, but they are not

directly added to the experimental database. Dataset augmentation is performed from 11 637

experimental solubilities to >900 000 data points in the integrated database, while correcting for the

discrepancies between experiment and computation. Our model was successfully applied to study

solvent selection in organic reactions and separation processes. The accuracy (mean absolute error

around 0.2 kcal mol−1 for the test set) is quantitatively useful in exploring Linear Free Energy

Relationships between reaction rates and solvation free energies for 11 organic reactions. Our model

also accurately predicted the partition coefficients of lignin-derived monomers and drug-like molecules.

While there is room for expanding solubility predictions to transition states, radicals, charged species,

and organometallic complexes, this approach will be attractive to predictive chemistry areas where

experimental, computational, and other heterogeneous data should be combined.
Introduction

Solubility is a key molecular property that controls reactivity,
catalytic activity, separation ability, and other molecular prop-
erties. In chemical synthesis, solvent selection inuences the
solubilities of reactants, intermediates, and products and
impacts catalytic activity and product selectivity. It is crucial in
designing catalytic reactions pertinent to pharmaceutical
synthesis in solutions, such as functionalization through C–H
activation.1–6 In this regard, linear relationships have been
elucidated between solvent properties (permittivity, polarity,
etc.) and reaction rates for various organic reactions in different
solvents.7–9 Such linear solvation energy relationships (LSERs)
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inform solvent selection, leading to the maximal yield of target
products.

In the pharmaceutical industry, solubilities in water and
organic solvents are essential properties to consider during the
screening and synthesis of drug candidates.10,11 Candidates
having sufficient water solubility should be identied for high
bioavailability in oral administration.12 Water solubility is also
relevant to the toxicity of drugs and pesticides on human health
and the environment.13–15 Solubilities in organic solvents matter
as well, especially for assessing the in vivo efficacy and safety of
intravenous drugs dissolved in non-toxic organic solvents.11,16,17

Specically, solubilities of drug-like molecules in chloroform
and diethyl ether have been investigated for the simplied
modeling of the polar environment around proteins, and
membranes.18,19 In addition, solubility plays a critical role in
emerging research areas such as sustainable chemistry and
renewable energy. For instance, solvent selection is conducted
in biomass upgrading to biofuels and renewable polymers to
maximize catalytic activity.20–23 The optimal water-organic
solvent systems enhance not only the conversion to target
products but also their extraction from separation processes.20,21

Meanwhile, developing organic redox ow batteries is another
Chem. Sci., 2024, 15, 923–939 | 923
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promising research area for renewable energy storage, and it is
important to design electrolytes highly soluble in water or
organic solvents for high charge densities.24–26

To date, solubilities of various solutes in water and organic
solvents have been measured experimentally, and databases of
experimental solubilities have been released. The available
databases include AqSolDB,27 Open Notebook Scientic Chal-
lenge,28 Minnesota Solvation Database,29–31 FreeSolv,32 Comp-
Sol,33 and the Journal of Chemical Information and Modeling's
solubility challenge database.12,34–36 Many computational
methods have also been developed to predict solubilities in
silico. Such methods include quantum mechanics (QM) or
density functional theory (DFT) with implicit solvation models
(e.g., Solvation Model based on Density – SMD),37 molecular
dynamics (MD) simulations, or QM-based thermodynamic
equilibrium methods, e.g., the Conductor-like Screening Model
(COSMO).38–40 Amodied version of the COSMOmodel, COSMO
for real solvents (COSMO-RS), incorporates statistical thermo-
dynamics to treat bulk properties such as solubility more
accurately.41

For rapid and accurate solubility predictions, various
predictive models have been developed by analyzing quantita-
tive structure–property relationships (QSPRs)35,42–47 or via
machine learning (ML) techniques.35,45,48–59 Current advanced
ML models used graph neural networks (GNNs) combined with
interaction layers,50,56,60 recurrent neural networks with atten-
tion layers,48 and Natural Language Processing (NLP)-based
transformers.59 These models have achieved accuracies close
to experimental uncertainties. Furthermore, the development of
ML models has been expanded to predicting solubility limits at
different temperatures,55 solvation enthalpy, LSERs, and solute
parameters,54 and generative models for designing molecules
having optimal aqueous solubility.57

The databases and models described above deal with either
molar solubility (log S) or Gibbs solvation free energy (DGsolv).
Log S is commonly used for solubility, but henceforth, this
paper focuses on DGsolv, since DGsolv as well as log S quanties
solubility:

DGsolv ¼ �RT ln Keq ¼ �RT ln
Csolute

C 0
solute

; (1)

where Csoluts and C0
solute are the solute's concentration in the

solvent and initial phase (before the solvation), respectively.
DGsolv can also represent the solubility regardless of the solute's
initial phase (solid, liquid, or gas):40

DGsolv ¼ DGsolid/gas þ DGgas/solution

¼ DGsolid/liquid þ DGliquid/solution:
(2)

Moreover, log S and DGsolv are related to each other:29

DGsolv ¼ �2:303RT logðSVmÞ

¼ �2:303RT logðSÞ þ log

�
Pvap

P0

�
;

(3)

where Vm and Pvap are the molar volume and vapor pressure of
a solute in the solid and liquid phases, respectively. P0 is the
pressure of ideal gas at 1 M and room temperature. While log S
924 | Chem. Sci., 2024, 15, 923–939
directly quanties the amount of solutes, the signicance of
DGsolv lies in its ability to represent the thermodynamic stability
of a solute in a solvent.

Further improvements are needed for accurate predictions
of DGsolv for broad solvents and solutes. There are currently
around 10 000 experimentally determined DGsolv in the most
extensive database (e.g., CombiSolv-Exp in literature56), but
more data points (around >100 000) are desirable for reliable
GNNs, due to their data-hungry nature.56,61 Moreover, there is
a tradeoff between the size and reliability of available solubility
data. For example, a strictly curated dataset of reliable aqueous
solubilities contains only hundreds of compounds.62 Due to the
scarcity of reliable experimental data, there have been attempts
to pre-train against huge computational databases, followed by
re-training against the experimental data.56,63 Such transfer
learning can lose the information gained from the computa-
tional database aer the model is re-trained against the small
experimental database. In addition, QM solubilities systemati-
cally deviate from experimental values. The absolute errors of
DGsolv for neutral solutes and solvents are 0.0–3.0 kcal mol−1 or
higher for COSMO-RS, SMD, and other implicit solvation
models.37,64–70 Therefore, developing a database seamlessly
integrating theoretical and experimental values is a challenging
but essential step.

Discrepancies between theoretical and experimental solu-
bilities should be reconciled to build an integrated database. In
other words, computational solubilities should have a delity as
high as experimental ones despite the dependence of compu-
tational methods' accuracies on molecule size, constituent
elements, functional groups, solvent properties, etc. Therefore,
it is not feasible to merely combine experimental and compu-
tational databases. Each database has a different source and
magnitude of errors and uncertainties,30,71–73 which would
deteriorate the accuracy of predictive models. To overcome this
limitation, a recent study added Gaussian-distributed random
errors to the experimental datasets at different levels according
to their uncertainties, leading to more accurate predictions
than the models without Gaussian error distributions.74 Data
augmentation and self-training techniques have also been
employed, such as semi-supervised distillation (SSD)75–82 for the
reliable integration of databases from heterogeneous sources.
These techniques have been successfully applied to various ML
predictive models for image classication,77,78 natural language
processing,79 reaction classication,80 and protein structures.81

In this contribution, our own implementation of SSD was
developed for our GNNs for solubilities. For reliable data inte-
gration, we rened the DGsolv values from COSMO-RS and SMD-
DFT through the SSD, instead of directly adding values from
these methods. Our approach dramatically amplied the data-
base while correcting the discrepancies of different data sour-
ces. The resulting augmented database covers a much broader
chemical space (11 213/1445/932 509 solutes/solvents/data
points) than that covered by experimental measurements
(2275/1443/11 637 solutes/solvents/data points). Adopting the
augmented database is powerful in enhancing GNNs' predictive
accuracy, demonstrating the effectiveness of our approach.
Moreover, we successfully applied our model to practical
© 2024 The Author(s). Published by the Royal Society of Chemistry
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examples of solvent system design in reaction kinetics and
separation. These examples demonstrate the potential of our
ML approaches in enabling the chemistry-informed design of
solvent systems.

Results and discussion
Semi-supervised distillation scheme for developing solubility
prediction models

We propose the following SSD scheme for solubility (Scheme 1);
rst, the ‘Teacher’MLmodel is trained against an experimental
database of DGsolv (Step I). Second, DGsolv is predicted using the
trained Teacher for the new solute–solvent pairs whose experi-
mental DGsolv is unknown, resulting in DGsolv,pred (Step II).
Meanwhile, QM-calculated DGsolv values are also obtained
(DGsolv,QM) for these new solute–solvent pairs (Step III).
DGsolv,QM is referenced to determine which DGsolv,pred are used
for the data augmentation. If the absolute difference between
these two (jDGsolv,pred − DGsolv,QMj) is below a certain cutoff, the
corresponding DGsolv,pred are added to the database (Step IV).
This cutoff is to avoid the introduction of unreliable prediction
data points from the Teacher. Notably, DGsolv,pred is added
instead of DGsolv,QM, enabling the data augmentation based on
the inductive bias the ML model gained from the starting
experimental database. Next, the ‘Student’ model is trained
Scheme 1 The semi-supervised distillation (SSD) scheme for the
predictive models of solubility.

Fig. 1 (A) The three databases for evaluating theoretical methods against
andQM-DB for the data points overlapping with Exp-DB. (C) Architecture
TPSA: topological polar surface area.

© 2024 The Author(s). Published by the Royal Society of Chemistry
using the database combining the initial database and that
from Teacher's predictions. This procedure is repeated to add
reliable data points to the integrated database gradually.

The SSD process described in Scheme 1 was applied to the
GNNs for solubilities, constituting a one-of-a-kind approach in
solubility predictions that consolidate deep learning and
heterogeneous data sources from experiments and QM calcu-
lations. The following sections describe the databases, QM
methods, and architecture of the GNNs in detail.
Evaluation of quantum-mechanical methods and solubility
databases

To accomplish data augmentation, rst, we evaluated the QM
methods used to provide reference DGsolv,QM during the SSD. 11
637 experimental DGsolv were collected and curated, resulting in
Exp-DB (Fig. 1A). Most data points in Exp-DB overlap with those
in CombiSolv-Exp,56 but our Exp-DB has additional 1419 data
points with the identical solute and solvent.

COSMO-RS and SMD-M06-2X/def2-TZVP were then bench-
marked against Exp-DB. To assess COSMO-RS, we adopted
CombiSolv-QM, the most extensive DGsolv database consisting
of one million data points.56 QM-DB (220 332 data points) was
built to evaluate SMD-M06-2X/def2-TZVP which was elected
among many SMD-DFT methods since it provided reliable
results from calculating solubility-related properties (redox
potentials of 174 organic molecules in water and acetonitrile).26

2413 DGsolv values are available for all three databases (Region
I), and 3195 overlapped data points between Exp-DB and QM-
DB (Region II). 841 solubilities in Exp-DB are available only in
CombiSolv-QM (Region III) due to the unavailability of some
solvents in SMD calculations.

Accuracies of the two theoretical methods were analyzed for
I–III. In Region I, COSMO-RS is more accurate than SMD-M06-
2X. Nonetheless, SMD-M06-2X shows notably high accuracy
for the 3195 data points in Region II, with an MAE and RMSE of
0.41 and 0.25 kcal mol−1, respectively. Meanwhile, COSMO-RS
showed a decent accuracy in Region III. These results show
experimental solubilities. (B) Accuracy comparisons of CombiSolv-QM
of the graph neural network for solubility. ASA: accessible surface area,

Chem. Sci., 2024, 15, 923–939 | 925
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that each theoretical method has strengths and weaknesses
regarding the scope of molecules and accuracies, and do not
necessarily indicate the superiority of one method. Although
QM-DB is less extensive than CombiSolv-QM, SMD-M06-2X can
be used as a complementary method to COSMO-RS for
explaining the errors of QM methods and ML models aer
model development.

With regards to computational cost, COSMO-RS is typically
a more cost-efficient option for high-throughput calculations
than SMD-DFT because COSMO-RS needs DFT calculations of
a charge density prole only once per one solute/solvent. In
contrast, SMD-DFT methods (e.g., SMD-M06-2X/def2-TZVP)
need multiple geometry optimizations and thermochemistry
calculations for the same solute when a solvent changes. SMD
parameters are tabulated for 179 solvents, limiting the molec-
ular scope for estimating DGsolv. However, SMD-M06-2X/def2-
TZVP can show higher accuracies than COSMO-RS for certain
functional groups. These multiple theoretical methods would
lead to more reliable evaluation of databases and predictive
models than only one method.

Development of graph neural networks for solubility
prediction

The GNNs for predicting solubility were constructed, as shown
in Fig. 1C. The model takes 2D molecular structures (SMILES
strings) of solvent and solute as inputs, and each undergoes
separate message passing. The overall architecture of two GNNs
(GNN-solvent and GNN-solute) is inspired and modied from
our previously implemented GNNs for predicting bond disso-
ciation enthalpy and cetane number (reactivity of fuel
compounds).61,83 It consists of three blocks representing
a molecule's atom, bond, and global state. Initial atom, bond,
and global features are embedded as 128-dimensional vectors
and pass through ve message-passing layers. This work did not
consider stereochemical information as the atom features since
DGsolv values of stereoisomers are scarce in the existing exper-
imental databases (114 out of 11 637). In each layer, mathe-
matical operations among feature vectors lead to mutual
updates, such that the model captures the inuence of local
atom/bond environments and global molecular structures on
solubility. Each GNN outputs a 128-dimensional latent vector
for solvent and solute, respectively. These two vectors are
concatenated and undergo additional dense layers to account
for solute–solvent interactions, and nally, DGsolv is predicted.

Our model is unique compared to other GNNs recently
developed for solubilities.56 First, we minimized the number of
atom features from 11 to ve. Second, the dimensions of hidden
layers were also minimized. Our model has hidden layers with
128 and 256 nodes before and aer concatenation, respectively,
whereas 200 and 500-dimensional hidden layers were used in
the literature56 (See Methods for the details about the hyper-
parameter tuning). Third, a separate global state block of our
model participates in feature updates during the message
passing, whereas the literature concatenates global features
aer the message-passing layers.56 Both approaches show
comparable accuracies (details in the Analysis of solubility
926 | Chem. Sci., 2024, 15, 923–939
model performance section), but the global updates within
message-passing layers can incorporate the effects of long-range
interactions on DGsolv into atom and bond features.84 This leads
to the reliable chemical explanation of atom-wise contributions
to DGsolv using the modied version of Shapley additive expla-
nation (SHAP) analysis85 (vide infra). Meanwhile, other opera-
tions besides concatenation have also been reported in previous
studies to consider molecular interactions, such as global
convolution among molecules and graph-of-graphs neural
networks.86,87 However, concatenating latent vectors was suffi-
cient to achieve the accuracy close to experimental uncertainty
(mean absolute error of the test set around 0.2 kcal mol−1,
details in the next section).

We selected four global features aer testing various
molecular descriptors. Two are surface area descriptors: topo-
logical polar surface area (TPSA) and Labute accessible surface
area (ASA). Each descriptor indicates different underlying
chemistry of solutes/solvents. TPSA accounts for the molecule's
viability to dipole–dipole interactions by quantifying the surface
area of polar atoms, whereas Labute ASA is relevant to van der
Waals radii of atoms and encodes long-range dispersion inter-
actions.88 The Pearson correlation coefficients r between DGsolv

in Exp-DB and the descriptors are −0.56 and −0.73 for solute's
TPSA and Labute ASA, respectively (close to ±1 indicates
stronger correlation). In contrast, r between TPSA and Labute
ASA is only 0.28, indicating that these two descriptors can
independently explain DGsolv well and it is necessary to consider
both descriptors for global features. Two additional descriptors
were adopted: number of hydrogen bond donors and acceptors.
They were also used in our predictive model for cetane
number,83 leading to the model with higher accuracy than that
without these descriptors.

Semi-supervised distillation for self-evolving databases and
graph neural networks

Building the GNNmodel and databases (Fig. 1) was followed by
training the model based on SSD (Fig. 2A). The SSD was initi-
ated by training the Teacher model using Exp-DB (Cycle 0). The
trained model was then used for augmenting the database;
new solute–solvent pairs were gathered from CombiSolv-QM,
and their DGsolv was predicted using the Teacher model. The
predicted values were compared with COSMO-RS solubilities
stored in CombiSolv-QM. If the absolute difference between
these two is below 0.2 kcal mol−1, the corresponding data
points were held in the augmented database (Aug-DB-1) with
Teacher-predicted solubility values. It should be emphasized
that the ML-predicted values are saved instead of DGsolv from
COSMO-RS. This is for rening data points based on the
solubility trends learned from Exp-DB while maintaining the
reliability gained via labeled QM solubility values. The
threshold value was set to 0.2 as the uncertainty of experi-
mental measurements of DGsolv is typically up to
0.2 kcal mol−1.30,71–73 If the deviation between ML and QM is
below 0.2, it can be assumed that the difference is mainly from
experimental uncertainty and the prediction from the Teacher
is credible.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) Semi-supervised distillation (SSD) for self-evolving solubility databases and graph neural networks. (B) Control for comparing the
accuracies of models with and without SSD. (C) A schematic description of evaluation, application, and error analysis of themodel obtained from
SSD.
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Next, Student 1 was trained using the database combining
Aug-DB-1 and Exp-DB (Cycle 1), and the same procedure was
carried out for the solute–solvent pairs that remained aer
extracting Aug-DB-1. Student 1 predicted DGsolv for the
remaining pairs, and the predicted values were subject to the
0.2 kcal mol−1 cutoff, resulting in Aug-DB-2. These cycles were
repeated multiple times, enabling the self-training of ML
models. The database is grown gradually, and subsequent
student models learn larger databases that contain DGsolv

values rened based on the guidance from previous Students
and COSMO-RS solubilities. Such gradual integration leads to
better accuracy than combining the whole CombiSolv-QM with
Exp-DB and re-training simultaneously (details in the next
section).

No trained weights of the GNN model are transferred from
the previous cycle when training the Student model in the
current cycle. Only the databases (Aug-DBs and Exp-DB) are
carried over, and each Student is trained from scratch at each
cycle. In other words, the current Student is totally blind to the
training results of previous Students. Therefore, at each cycle,
the model learns new relationships between chemical structure
and solubility that are not biased by previous cycles but are
comprehensively applicable to all molecules from the previous
and current cycles. This SSD scheme ensures that the new Aug-
DB-i at the i-th cycle is integrated well with the databases
accumulated from earlier cycles, and it shows no signicant
discrepancies and anomalies during the training. Recent
studies expanded the databases using computational methods,
but the model was trained sequentially or independently for the
experimental and computational databases due to the discrep-
ancies from heterogeneous data sources.55,56,61,84 Meanwhile,
a few studies attempted the ‘D-learning’ approach, where
© 2024 The Author(s). Published by the Royal Society of Chemistry
theory-experiment differences are trained and predicted.89,90 It
should be emphasized that our approach is the rst achieve-
ment of training the whole integrated database while carrying
out the data augmentation and discrepancy corrections
concurrently.

Ultimately, the Nth cycle yields the ‘Student N’model and the
integrated database containing Exp-DB and N Aug-DBs. The
cycle was terminated when the errors of the Exp-DB test set did
not show any more signicant improvement. This stopping
criterion nds the cycle when the remaining data points in
CombiSolv-QM no longer synchronize well with the large Aug-
DBs cumulated during previous cycles. The solute–solvent pairs
not included in Aug-DBs were stored in the so-called Leover-
DB. As a result, the Student 35 model obtained aer 35 SSD
cycles led to an optimal accuracy, with a total of 932 509 DGsolv

in the integrated database (Details in Fig. 3, vide infra).

Analysis of solubility model performance

Accuracies of the Student models from SSD were compared with
those trained by the databases simply combining DGsolv values
from experiments and COSMO-RS (Control, Fig. 2B). The anal-
ysis on Control was performed at every SSD cycle to compare the
increasing/decreasing trends of MAEs and RMSEs when the
models are trained without/with SSD. All Control models are
examined to demonstrate that the SSD approach in Fig. 2A is
feasible for maximizing the database size while minimizing the
discrepancy between experimental and computational DGsolv

and achieving the best accuracy.
The resulting model was then subject to subsequent evalu-

ation, error analysis, and applications (Fig. 2C). To evaluate the
model's accuracy, mean absolute errors (MAEs), root-mean-
square errors (RMSEs), and distributions of errors were
Chem. Sci., 2024, 15, 923–939 | 927
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Fig. 3 Mean absolute errors (MAEs) and root-mean-square errors (RMSEs) of test sets of Aug-DBs and Exp-DB during the SSD and the sizes of
Aug-DBs.
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investigated. For additional error analysis, we obtained the
solute–solvent pairs in QM-DB that overlap with those in other
databases (Aug-DBs, Exp-DB, Leover-DB). Next, we compared
their DGsolv values acquired from four different sources: exper-
iments (if available), predictions from Student N, SMD-M06-2X/
def2-TZVP, and COSMO-RS calculations. Outliers were identi-
ed from this comparison, and their chemical structures were
analyzed to assess the strengths and weaknesses of each QM
method or ML model.

Fig. 3 illustrates the results from the SSD training (Fig. 2A) of
the GNNs shown in Fig. 1C. The initial training to obtain the
Teacher model resulted in the MAE of 0.27 kcal mol−1 for the
test set of Exp-DB. As the SSD cycles proceeded, Aug-DBs grad-
ually increased. Interestingly, the MAE for the Exp-DB test set
reached a minimum at Student 13 (0.22 kcal mol−1), while the
database grew from 11 637 to 639 925 data points. This indi-
cates that the SSD scheme works appropriately in the data
augmentation while the model still captures experimental
solubility trends. On the contrary, the MAEs did not decrease in
Control models (0.27 kcal mol−1 for both Teacher and Control-
13), demonstrating that simply merging solubilities from
experiments and COSMO-RS is not advantageous for accurate
predictions of experimental solubilities. Moreover, Control at
the 13th SSD cycle shows a discrepancy of 0.23 kcal mol−1

between test set MAEs of Exp-DB and Aug-DBs (0.27 vs. 0.04),
whereas that from SSD is only 0.11 kcal mol−1 (0.22 vs. 0.11). In
other words, more severe overtting to Aug-DBs occurred in
Control than in SSD.

It is hard to guarantee that 13 SSD cycles are sufficient to
obtain the best model since the MAE is not the only metric for
evaluating the accuracy. We analyzed RMSEs of Student models
that show more irregular trends than MAEs. The initial Teacher
training resulted in the RMSE of 0.66 kcal mol−1 for the test set
928 | Chem. Sci., 2024, 15, 923–939
of Exp-DB. As the SSD proceeds, the Exp-DB test set RMSE
gradually decreases in general, while it uctuates intermittently
until Student 22. The accuracy of SSD models begins to surpass
Control models in terms of RMSEs aer Student 22. The best
accuracy was achieved in Student 35 with an RMSE of
0.50 kcal mol−1, whereas the RMSE of the 35th Control model is
0.59 kcal mol−1. Although the MAE slightly increased from
Student 13 to Student 35 (0.22–0.25 kcal mol−1), the RMSE
reaches a minimum with the more extensive database (932 509
data points) compared to Student 13 (639 925 data points). The
SSD cycles aer Student 35 did not effectively improve the
accuracy. RMSE is a good metric for penalizing large errors of
outliers,91 indicating that Student 35 effectively alleviates
prediction errors of Exp-DB outliers while maintaining reliable
accuracy for other data points. It should be emphasized that
MAE was used for the loss function (details in the Methods
section), but RMSE was also minimized during the later stages
of SSD. This result implies the importance of including a large
amount of data to reduce high prediction errors of outliers by
iterating the SSD loop multiple times. Moreover, the best
accuracy was obtained in Student 35 when the prediction
accuracy was assessed against the ‘external data set’ of 371
experimental partition coefficients (details in the Application 2
section).

Aug-DBs grow slower as SSD cycles proceed (details in
Section S1, ESI†). The leover solute–solvent pairs in the late
SSD cycles are mostly problematic cases (details in Error anal-
ysis of solubility prediction) whose true DGsolv are dubious;
therefore, fewer solute–solvent pairs satisfy the cutoff. Different
functional group distributions of Aug-DBs also inuence the
RMSE trends shown in Fig. 3; there is the tradeoff between
‘over-generalization’ to existing functional groups and newly
introduced ones (details in Section S1, ESI†).92,93
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (A) Box plots of absolute error distributions for the test set of
Exp-DB, for the four representative models from SSD and one Control
model (yellow box: interquartile range, blue line: mean, blue dotted
line: median, lower/upper bound of the error bar: 5th/95th percentile,
gray dots: outliers beyond the 95th percentile). (B) Parity plot of
solubility values in the databases vs. those from the predictions of the
best-case Student 35 model.
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The box plot in Fig. 4A demonstrates that the SSD up to 35
cycles is benecial to obtain an optimal model. We chose
Students 13, 29, and 35, which resulted in the local minima of
RMSEs during the SSD (Fig. 3), in addition to Teacher. For the
test set of Exp-DB, Student 13 shows more signicant outliers
(gray dots) with higher errors than the Teacher. The error of the
rst outlier becomes even higher in Student 29 than in Student
13. However, such errors of outliers become lowest in Student
35, which indicates the mitigation of overtting through SSD.
The outlying behavior is remedied in Student 35 while main-
taining a lower MAE and similar interquartile range (yellow box)
compared to the Teacher. In contrast, the accuracy of Control 35
is even worse than Teacher, and their outliers also show higher
errors. Fig. 4B illustrates the parity plot of the solubility values
from the databases vs. those from the predictions of Student 35.
For the whole integrated database (Exp-DB + 35 Aug-DBs),
Student 35 achieved balanced accuracies among the training,
validation, and test sets, with MAEs of 0.18, 0.19, and
0.19 kcal mol−1, respectively.
© 2024 The Author(s). Published by the Royal Society of Chemistry
This model also showed comparable accuracies with the
GNN models in the literature56 for the Exp-DB test set, and
higher accuracies than computational methods. Table 1
summarizes the accuracies of GNNs from the literature,56 our
GNNs (Student 35), COSMO-RS and SMD-M06-2X in predicting
DGsolv values in Exp-DB. Student 35 showed comparable MAEs/
RMSEs with the model in the literature (MAE: 0.20/
0.22 kcal mol−1, RMSE: 0.44/0.50 kcal mol−1 for ours/literature)
with 150 more data points in the test set. Although a fair
comparison was not possible due to the different test sets, the
MAE and RMSE differences of only 0.02 and 0.06 kcal mol−1

demonstrate the high reliability of our model and feasibility of
SSD. In addition, Student 35 surpasses the accuracies of
COSMO-RS and SMD-M06-2X. The MAEs and RMSEs of Student
35 are lower than those of COSMO-RS for the 3254 and 5608
data points in CombiSolv-QM and QM-DB overlapping with
Exp-DB, respectively. Student 35 is still more accurate than
COSMO-RS and SMD-M06-2X/def2-TZVP in all cases when these
data points are categorized into training, validation, and test
sets. It should be emphasized that our model predicts DGsolv

more accurately while being computationally much less
demanding (<1 second for GNNs vs. several hours or days for
QM methods).

To verify that themodel is not prone to overtting, we carried
out 10-fold cross-validation as depicted in Fig. 5. Fig. 5A shows
how the databases (Exp-DB and Aug-DBs) are split into 11 data
subsets (subsets A–K, each corresponding to either training/
validation/held-out test set) to carry out the 10-fold cross-
validation. This data set split was performed separately for
Aug-DBs and Exp-DB to balance the ratio of the data points from
data augmentation and experiments. The constituent solutes/
solvents in each subset can vary depending on the sampling
methods. The solute–solvent combinations can be sampled
randomly, as shown in Fig. 5B. Meanwhile, solvent/solute-wise
data splits are also possible with the stratied sampling
(details in Section S2, ESI†).

Fig. 6 displays the Exp-DB test set RMSEs obtained from the
10-fold cross-validation of Teacher, three Students, and one
Control model with the random solute–solvent sampling
(Fig. 5B). Means and standard deviations of 10 RMSEs were
evaluated for each model. The mean of RMSEs decreases
signicantly from 0.679 to 0.577 kcal mol−1 when SSD proceeds
from Teacher to Student 13 and is reduced further at Student 29
(0.549 kcal mol−1). The accuracy of Student 35 (mean of RMSEs:
0.546 kcal mol−1) is slightly higher than that of Student 29, with
a lower standard deviation among ten folds (0.023 and
0.021 kcal mol−1 for Student 29 and 35, respectively). The held-
out test set from Aug-DBs was not considered for the evaluation
since the sizes of Aug-DBs are different for all Student models.
We also carried out the 10-fold cross-validation with the solvent-
wise and solute-wise data splits. As a result, comparable accu-
racies were still obtained from these different methods of 10-
fold cross-validation (details in Section S2, ESI†).

All the above results demonstrate the effectiveness of SSD in
improving the accuracy of the ground-truth experimental solu-
bilities while augmenting the database. Our empirical results
are consistent with mathematical proofs that several rounds of
Chem. Sci., 2024, 15, 923–939 | 929

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc03468b


T
ab

le
1

A
cc

u
ra
ci
e
s
o
f
th
e
G
N
N
s
in

th
e
lit
e
ra
tu
re
,o

u
r
G
N
N
s,
C
O
SM

O
-R

S,
an

d
SM

D
-M

0
6
-2

X
in

p
re
d
ic
ti
n
g
D
G
so

lv
in

E
xp

-D
B
,w

it
h
th
e
si
ze

o
f
th
e
d
at
ab

as
e
s
u
se
d
fo
r
e
va
lu
at
in
g
ac

cu
ra
ci
e
s

C
om

pa
ri
so
n
w
it
h
th
e
G
N
N
s
in

th
e
li
te
ra
tu
re

(t
h
e
be

st
-c
as
e
m
od

el
)a
,b

G
N
N
s
in

th
e
li
te
ra
tu
re

St
ud

en
t
35

#
of

da
ta

po
in
ts

(E
xp

-D
B
)

T
es
t
se
t
M
A
E
(k
ca
l
m
ol

−1
)

T
es
t
se
t
R
M
SE

(k
ca
l
m
ol

−1
)

#
of

da
ta

po
in
ts

(E
xp

-D
B
)

T
es
t
se
t
M
A
E
(k
ca
l
m
ol

−1
)

T
es
t
se
t
R
M
SE

(k
ca
l
m
ol

−1
)

10
14

5a
[1
01

4a
,c
]

0.
20

a
0.
44

a
11

63
7
[1
16

4c
]

0.
22

0.
50

E
xp

-D
B
ov
er
la
pp

in
g
w
it
h
C
om

bi
So

lv
-Q
M

#
of

da
ta

po
in
ts

C
O
SM

O
-R
S

St
ud

en
t
35

M
A
E
(k
ca
l
m
ol

−1
)

R
M
SE

(k
ca
l
m
ol

−1
)

T
ra
in
in
g/
va
li
da

ti
on

/t
es
t

#
of

da
ta

po
in
ts

M
A
E
(k
ca
l
m
ol

−1
)

R
M
SE

(k
ca
l
m
ol

−1
)

32
54

a
0.
40

a
0.
67

a
T
ra
in
in
g

26
51

0.
13

0.
23

V
al
id
at
io
n

28
6

0.
26

0.
59

T
es
t

31
7

0.
22

0.
39

A
ll

32
54

0.
15

0.
30

E
xp

-D
B
ov
er
la
pp

in
g
w
it
h
Q
M
-D
B

#
of

d
at
a
po

in
ts

SM
D
-M

06
-2
X
/d
ef
2-
T
ZV

P
St
ud

en
t
35

M
A
E
(k
ca
l
m
ol

−1
)

R
M
SE

(k
ca
l
m
ol

−1
)

T
ra
in
in
g/
va
li
da

ti
on

/t
es
t

#
of

da
ta

po
in
ts

M
A
E
(k
ca
l
m
ol

−1
)

R
M
SE

(k
ca
l
m
ol

−1
)

56
08

0.
62

0.
88

T
ra
in
in
g

45
34

0.
13

0.
20

V
al
id
at
io
n

49
8

0.
21

0.
42

T
es
t

57
6

0.
22

0.
39

A
ll

56
08

0.
14

0.
25

a
Fr
om

th
e
li
te
ra
tu
re
.5
6
b
O
f
n
ot
e,

th
e
ex
pe

ri
m
en

ta
l
da

ta
ba

se
s
an

d
te
st

se
ts

ar
e
n
ot

th
e
sa
m
e,

an
d
it
is

an
in
di
re
ct

co
m
pa

ri
so
n
.c

T
es
t
se
t
si
ze
s.

930 | Chem. Sci., 2024, 15, 923–939 © 2024 The Author(s). Published by the Royal Society of Chemistry

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
  1

44
5.

 D
ow

nl
oa

de
d 

on
 2

7/
01

/4
6 

07
:3

0:
43

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc03468b


Fig. 5 (A) Schematic illustration of the 10-fold cross-validation with data splits for Exp-DB and Aug-DBs. (B) Data subsets obtained from random
solute–solvent sampling.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
  1

44
5.

 D
ow

nl
oa

de
d 

on
 2

7/
01

/4
6 

07
:3

0:
43

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
SSD enhance the accuracy of the held-out data and reduce
overtting.92,93 It has been veried that self-distillation amplies
the regularization of the space of trainable parameters if the
model architectures for Teacher and Students are identical
(Fig. 1C).92 When Students are trained using an extensive
distilled database with a limited parameter space, their variance
is reduced without signicantly increasing its bias. In other
words, the models' trainable parameters are neither overly
sensitive to different training set batches nor biased to specic
batches, and therefore overtting is reduced. Meanwhile, too
many rounds of SSD may over-regularize the model, leading to
undertting. These mathematical ndings align with our SSD
results shown in Fig. 3. In addition, adding noises to the SSD
model parameters showed minor output perturbations,93 and
the ablation analysis with removing the augmented data
signicantly degraded themodel performance.77 These previous
studies further support the robustness of SSD with augmented
datasets.

Other variants of SSD were also attempted using QM-DB, or
both CombiSolv-QM and QM-DB (Section S3 in the ESI†), but
the SSD shown in Fig. 2A showed the best accuracy. We also
tested other variants of semi-supervised learningmethods, such
as noisy student self-distillation (NSSD); however, this led to
higher prediction errors (see Section S4, ESI† for detailed
discussion).
Fig. 6 Model accuracies from the 10-fold cross-validation with the
random solute–solvent sampling. RMSEs of the Exp-DB test set were
evaluated for each of the 10 folds. The data points and error bars
indicate the mean and standard deviation of 10 RMSEs, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Next, we carried out a clustering analysis of t-distributed
stochastic neighbor embeddings (t-SNEs) of latent vectors for
1447 solvents included in all the databases shown in Fig. 1A.
This analysis is to further verify the chemical feasibility of
Student 35. 2D t-SNE coordinates were obtained for these
solvents. Each solvent was categorized according to the priority
of categories listed in the legend of Fig. 7. For example, if
a solvent contains both O and S, it is classied as ‘O,N-con-
taining’ because O has higher priority than S. We identied
certain clustering patterns among several categories: O,N-
containing (upper side), halogen (X)-containing (mainly lower
right), and hydrocarbon solvents (mainly lower le). O,N-
Containing solvents exclusively occupy a specic region,
possibly because they are solvents that can participate in
hydrogen bonds and show characteristic solubility trends.

However, some O,N-containing solvents are located near
other molecular groups, such as aromatics, hydrocarbons, and
X-containing ones. These solvents contain oxygen or nitrogen,
with the other atoms corresponding to the molecular groups
they are close to. For instance, trioctylamine is in the cluster of
hydrocarbons since it has three alkyl chains having eight
carbons per each. Pentauorodimethyl ether was found adja-
cent to the X-containing cluster. Ethers, amines, and pyrroles
with aromatic rings are placed around the group of aromatic
Fig. 7 2D plot of t-distributed stochastic neighbor embeddings (t-
SNEs) for the latent vectors of 1447 solvents obtained from Student 35
model.

Chem. Sci., 2024, 15, 923–939 | 931
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solvents. Meanwhile, an ether with two thiol groups (2-mer-
captoethyl ether) was found near S-containing solvents rather
than O,N-containing ones, indicating that their behavior as
a solvent is close to S-containing solvents rather than O,N-
containing ones. Conversely, some suldes (diethyl sulde,
ethyl methyl sulde) are near their ether analogs, implying that
their chemical behavior could be analogous to ethers.

Error analysis of solubility prediction

The error analysis was performed by comparing the QM-DB
solubilities calculated in the SMD-M06-2X/def2-TZVP level of
theory with those from COSMO-RS, experiments, and the
Student 35 model. First, we analyzed Exp-DB solute–solvent
pairs where SMD-M06-2X outperforms COSMO-RS and vice
versa to identify the advantages and disadvantages of each
theoretical method (Fig. 8A). The le side of Fig. 8A illustrates
the ve cases whose absolute error between DGsolv from exper-
iment and SMD-M06-2X does not exceed 0.2 kcal mol−1,
whereas COSMO-RS shows the worst performance. All these ve
cases correspond to polar solutes and solvents with halogen
atoms, hydrogen bond donors and acceptors. SMD-M06-2X
better reproduces the experimental solubilities of these mole-
cules than COSMO-RS, which may be in part attributed to the
halogenicity, hydrogen bond acidity, and basicity parameters
used by SMD. For these ve cases, the predictions of Student 35
are showing the values close to experimental values, although
COSMO-RS DGsolv were referred during the SSD. 2 and 4 show
the jeopardy of the predicted value biased to COSMO-RS.
However, for 1, 3, and 5, Student 35's predictions are closer to
the Exp-DB solubilities than those from COSMO-RS. Moreover,
Student 35 showed the outliers with the lowest errors among
other Students (Fig. 4A). This indicates that the distillation
process (Fig. 2A) effectively corrected the discrepancy between
experiment and theory.

We also analyzed ve different solute–solvent pairs for which
COSMO-RS outperforms SMD-M06-2X (right side of Fig. 8A).
Fig. 8 (A) Top 5 solute–solvent pairs in Exp-DB where the SMD-M06-2
vice versa. (B) Top 5 outliers of the Student 35 model when comparing th
DB, the disagreement of DGsolv among Student 35, SMD-M06-2X and CO
DB.

932 | Chem. Sci., 2024, 15, 923–939
They are solutes and solvents with low or no polarity or mole-
cules with special moieties such as ozone. Investigating the two
extreme cases shown in Fig. 8A demonstrates the importance of
accounting for multiple theoretical methods in assessing the
results from SSD.

The analysis on SMD-M06-2X and COSMO-RS was then fol-
lowed by the outlier analysis of Student 35 (Fig. 8B). The outliers
correspond to the gray dots in Fig. 4A; their extraordinary
chemical structures indicate that they do not meaningfully
deteriorate the model's accuracy. The top ve outliers include
solutes with multiple complex rings, ve hydroxy groups, and
heteroatoms (P and B) that rarely appear in the whole database
(932 509 data points). For example, the solutes with a P]O
double bond and aromatic substituents appear only in 808 data
points, and only 69 data points have solutes/solvents with B–O
single bonds. These outliers occurred not because of the over-
tting to Aug-DBs but due to the chemical moieties rarely seen
in the databases.

Further analysis was performed for Leover-DB consisting of
57 721 solute–solvent pairs in CombiSolv-QM that were not
included in the Aug-DBs but remained aer 35 SSD cycles. Since
Leover-DB does not have experimental values, we compared
their DGsolv values from Student 35, SMD-M06-2X and COSMO-
RS for 14 053 out of 57 721 data points whose DGsolv from all the
three models or methods are available. As a result, signicant
discrepancies were observed for 1381 data points having zwit-
terionic solutes. Ten extreme cases are shown in Fig. 8C. SMD-
M06-2X relatively overestimates DGsolv compared to the other
two for the above ve cases, whereas the DGsolv from COSMO-RS
shows disagreement with Student 35 and SMD-M06-2X for the
below ve ones. It should be emphasized that no zwitterions are
available in Exp-DB. However, 5446 zwitterions were already
included in Aug-DBs during the SSD; these species have no
experimental ground-truth DGsolv values. Such a lack of data
availability for zwitterions necessitates experimental measure-
ments for their solubility values or additional reliable
X/Def2-TZVP level outperforms COSMO-RS in calculating DGsolv, and
e predicted DGsolv with those in the test set of Exp-DB. (C) In Leftover-
SMO-RSmainly occurs for zwitterion solutes which do not exist in Exp-

© 2024 The Author(s). Published by the Royal Society of Chemistry
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theoretical methods, possibly leading to a more extensive
database from SSD, including zwitterions.

Although the above error analysis suggests room for
improving our model, it is sufficiently reliable to be utilized in
the practical design of solvent systems in various chemical
processes such as catalysis and separation. The following
sections demonstrate the application of our model to practical
examples.

Application 1 – linear solvation energy relationships (LSERs)
between solvation free energy and reaction rates

LSERs inform solvent selection to maximize the reaction rates
in designing organic reactions.7–9 Here, we demonstrate the
application of our ML model to discover LSERs in 11 organic
reactions. Gibbs solvation free energies of the product(s) and
reactant(s) (DGsolv(P) and DGsolv(R), respectively) were predicted
using Student 35. If a reaction has two or more reactants or
products, the sum of their DGsolv values was used as DGsolv(R) or
DGsolv(P). These values and their differences [DGsolv(P) −
DGsolv(R)] were used as the descriptors to nd highly positive or
negative Pearson correlation coefficients r (i.e., close to 1 or −1)
with experimental reaction rates in different solvents. Accord-
ing to the Hammond postulate,94 at least one of these three
descriptors should show a high correlation (details in Section
Fig. 9 The linear relationships between DGsolv of reactants/products p
organic reactions from the literature. Pearson correlation coefficients (r)
upper-right table.

© 2024 The Author(s). Published by the Royal Society of Chemistry
S5, ESI†). The reaction rates were collected from the
literature.2,95–97

Fig. 9 depicts the correlation for 11 organic reactions with
varying solvents. For each reaction, we chose one descriptor that
shows the strongest correlation with experimental reaction
rates. DGsolv(P) is the best descriptor for the reactions I, II, and
III, with Pearson r values of −0.95, −0.90, and −0.68, respec-
tively, whereas DGsolv(R) was chosen for IV–VII (r = 0.80–0.99).
The rest four reactions (VIII–XI) can be explained by DGsolv(P) −
DGsolv(R) as a descriptor (r from −0.99 to−0.80). Our ML model
also showed reliable results (r = −0.80) in the complex reaction
example, such as the epoxidation of b-caryophyllene investi-
gated in 10 different solvents (X). These correlations are also
chemically explainable (Section S5, ESI†). While Fig. 9 shows
only the best-case descriptor, r values for all three descriptors
are available for each reaction (Section S5, ESI†), with the
reason for selecting a particular descriptor. Of note, some of the
above 11 reactions were not performed at room temperature,
whereas our GNN gives DGsolv at room temperature. Consid-
ering the temperature dependence of solubility would improve
GNNs and LSERs, although the results in Fig. 9 already show
decent correlations.

The DGsolv difference of only around 1 kcal mol−1 can
signicantly affect reactivity predictions (Fig. 9), demanding
redicted by our GNN model versus experimental reaction rates for 11
between DGsolv and logarithms of relative reaction rates are listed in the
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a fast and accurate ML model. Designing solvent systems using
our GNN is advantageous because it is fast compared to
expensive QM calculations while being accurate. Solvents that
maximize reaction rates can be designed by predicting DGsolv(R)
and DGsolv(P), nding LSERs, and extrapolating the relationship
for the new solvents in which experiments have not been per-
formed. Although DGsolv of transition states is not considered
here, our model enables rapid solvent screening before inves-
tigating the transition states.
Application 2 – prediction of partition coefficients for lignin-
derived monomers and drug-like molecules

As the second application example, we examined our GNN
model by predicting 363 water-organic partition coefficients
(log P) of depolymerized lignin derivatives and drug-like
compounds (Sets A and B, Table 2). Their experimental log P
values are available from the literature.98 Predicting log P would
Table 2 Comparison of prediction accuracies of 363 partition coeffi
description

Description of the log P dataset

Set A 300 data points (30 depolymerized lignin derivatives, 10 orga

Set B 63 data points (17 drug-like compounds, 4 organic solvents)

Fig. 10 (A) Prediction accuracies of log P for Teacher and Student mod
metrics (red: Set A, green: Set B). (B) A parity plot showing the experiment
contribution values obtained using the Shapley additive explanation (SHA
analysis was conducted to chemically explain different log P values in tw

934 | Chem. Sci., 2024, 15, 923–939
enable the design of solvents that effectively extract useful
biomass-derived compounds and drug molecules with high
yields. Here, we predicted the DGsolv values in water and organic
solvents for Sets A and B and evaluated log P values using the
formula: log P = (DGsolv,water − DGsolv,org)/2.303RT. Two metrics
were used to assess accuracies: RMSE and Kendall rank corre-
lation coefficient (s). A s value closer to 1 indicates a stronger
rank correlation (i.e., higher accuracy). These metrics were
chosen because the literature98 used the same metrics in
assessing COSMO-RS.

To further verify the feasibility of SSD, we compared the
accuracies of our Teacher and Students from SSD with the
COSMO-RS method (Fig. 10A). For both Sets, the latter Students
show lower RMSEs than the earlier ones and Teacher, and their
RMSEs become comparable to that of COSMO-RS, demon-
strating the effectiveness of the SSD. Regarding Kendall s of Set
A, our GNN models even exceed the accuracy of COSMO-RS. For
Set B, the s values of Students are lower than that of COSMO-RS.
cients (log P) for COSMO-RS and GNN for two datasets with their

Prediction methods Kendall s RMSE

nic solvents) GNN (Student 35) 0.87 0.51
COSMO-RS 0.77 0.50
GNN (Student 35) 0.70 1.15
COSMO-RS 0.77 1.00

els when RMSE and Kendall rank correlation coefficient (s) are used as
al vs. predicted log P values for a total of 363 data points. (C) Atom-wise
P) method, for DGsolv of estradiol in three different solvents. The SHAP
o organic solvents.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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However, it displays an increasing trend for latter Students,
indicating the strength of SSD.

Table 2 compares s and RMSEs for COSMO-RS and our nal
GNNmodel, Student 35. For Set A, our model showed a higher s
than COSMO-RS (0.87 vs. 0.77), whereas s from Student 35 and
COSMO-RS is 0.70 and 0.77, respectively, for Set B. Our GNN
resulted in a better correlation for Set A than COSMO-RS, while
COSMO-RS performed slightly better in Set B. In terms of RMSE,
our model achieved an RMSE almost identical to that from
COSMO-RS for Set A. COSMO-RS showed better accuracy in Set
B. Notably, Set B has fewer data points (63) than Set A (300), so
Set A can assess model accuracies better than Set B; we achieve
better rank correlation than COSMO-RS in Set A. Fig. 10B
depicts the parity plot of ML-predicted log P vs. experimental
ones. Overall, the model shows predictions close to experi-
mental ones. Log P of some cases in Set B is overestimated, but
similar outliers were also found from the COSMO-RS results.98

Accuracies for these data points can be improved by considering
DGsolv of ionic species for predicting distribution coefficients
(logD) for acidic/basic solute molecules.

Another merit of our GNNs is chemical interpretability,
which is possible by quantifying and analyzing atom-wise
contributions based on the procedure described in our recent
work.83 This analysis was inspired by the Shapley additive
explanation (SHAP) method.85 The summation of quantied
atom-wise contribution values equals the predicted DGsolv. We
examined our SHAP method for GNNs for estradiol (Fig. 10C) in
two different organic solvents and water to explain a higher
experimental log P value in butanol–water (3.05) than in
toluene–water (2.02). The aromatic moiety decreases the solu-
bility in water because it is a polar solvent. The same moiety
shows solvation stabilization in toluene, presumably due to
non-covalent interactions between toluene and estradiol,
whereas the methyl and hydroxyl groups in the aliphatic ring
display unfavorable interactions with toluene. Estradiol in 1-
butanol shows overall stabilization since either alkyl or hydroxy
group in 1-butanol can stabilize aliphatic, aromatic, and
hydroxy groups through dispersion interaction and hydrogen
bonds. Such difference in atom-wise contributions and chem-
ical interactions leads to higher solvation stabilization in 1-
butanol than in toluene, and thus a higher log P. The quantied
contribution values are consistent with chemical knowledge,
enabling the chemistry-informed design of solvent systems.

All these results indicate that our GNNs reliably capture
solubility trends and accurately predict log P values in different
organic solvents. It should be emphasized that GNN predictions
of log P take less than one second and are as accurate as
COSMO-RS, whereas QM and COSMO-RS calculations are
expensive (usually several hours or days per one molecule).
Rapid and reliable log P predictions would lead to the compu-
tational solvent design for separation processes in organic,
pharmaceutical synthesis, and renewable energy industries.

Conclusions

Solubility is a critical molecular property when designing chem-
ical processes such as synthesis and separation in organic,
© 2024 The Author(s). Published by the Royal Society of Chemistry
pharmaceutical, and sustainable chemistry. Many ML models
have been developed but lack reliable integrations of experimental
and computational solubility databases to maximize the database
size and, thus, prediction accuracy. To reduce the discrepancies
among different data sources, semi-supervised self-training
methodologies were adopted in solubility predictions, leading to
self-evolving solubility databases and GNN predictive models. The
resulting model showed reliable accuracy and was subsequently
applied to practical examples of solvent selection in chemical
reactions and separation processes. All these results demonstrate
the practical applicability of the developed model to the design of
solvent systems in chemical processes.

Such approaches can be potentially improved by employing
multiple QM methods during data augmentation. Additional
QM calculations can be performed for transition states, radi-
cals, ions, and other charged species in solution phase using
reliable methods. Accuracies of predicting solubilities of zwit-
terions can also be improved. In terms of the molecular scope,
the database adopted for model training can be expanded to
organometallic complexes in addition to the organic molecules
in the current database. Meanwhile, considering temperature
effects on solubility in ML models should be pursued in the
future to achieve the application of the model to a broader
scope of chemistry. Lastly, predicting solubilities in multicom-
ponent solvents is another challenge in developing future ML
models, which would lead to the realistic modeling of mixtures
utilized in various chemical reactions and separation processes.

Methods
Computational details for calculating DGsolv

The AQME Python package99 was used throughout the overall
process for calculating DGsolv values of given solute–solvent
pairs. First, the canonicalized SMILES strings of solutes were
converted into 3D geometries, and conformational searches
were carried out by employing the MMFF94s force eld100

implemented in the RDKit cheminformatics library.101 The
number of generated conformers was determined based on the
number of rotatable bonds. The lowest-energy conformer was
then chosen and subject to further geometry optimizations
using DFT with the SMD implicit solvation model, per a recent
study reporting that considering only themost stable conformer
is sufficient to obtain energy values close to the Boltzmann-
weighted ensemble average of multiple conformers for
organic molecules.61 The subsequent geometry optimizations
were performed using the M06-2X/def2-TZVP method with the
SMD. Of note, only 3D structures of solutes were optimized, and
solvents were specied by their name in the input le. While the
SMD is available for any solvents whose descriptor values are
available (dielectric constant, refractive index, surface tension,
etc.), calculations were performed for only the solvents available
in the Gaussian 16 package.102

The optimized structures were conrmed as valid if no
imaginary frequencies and no decomposition into disconnected
molecules were observed. If the structure is not valid or the self-
consistent eld calculation does not converge, we assumed that
the SMD-DFT could not correctly simulate the corresponding
Chem. Sci., 2024, 15, 923–939 | 935
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solute–solvent pair, and it was discarded. To calculate DGsolv

from the optimized geometry, the external iteration method in
Gaussian 16 was utilized, which considers the self-consistent
solvent reaction eld to calculate the solute's electrostatic
potential. These calculations were carried out in the same level
of theory, with specifying the keywords ‘Externaliteration’ and
‘1stVac’ in the Gaussian 16 input le.

COSMO-RS is another computational method adopted to
obtain DGsolv. We used the database of COSMO-RS-calculated
DGsolv values from the literature (CombiSolv-QM database).
They were obtained using the DFT-calculated COSMO surfaces
for each solute/solvent (BP/def2-TZVPD//BP/TZVPD level of
theory103) with a FINE cavity for the surface segments.56 More
details of COSMO-RS calculations are available in the literature.56
Development of graph neural networks with SSD

The GNNmodels were developed using Python 3.7 (ref. 104) with
TensorFlow 2.4,105 Keras 2.9,106 and Neural Fingerprint (NFP)107

0.3.0 libraries. The NFP library provides the framework for deep
learning usingmessage-passing GNN108with the atom, bond, and
global features (Fig. 1C) generated through the RDKit chem-
informatics package.101 The stochastic depth method was
implemented by employing TensorFlow-Addons 0.14 to examine
the effect of introducing noises to message-passing layers,
although the SSD without added noise showed the best predic-
tion accuracy. The optimal GNN structure shown in Fig. 1C was
determined by hyperparameter tuning. We carried out an itera-
tive grid search of possible combinations of different hyper-
parameters. These hyperparameters are the number of message-
passing layers (3–6), dimension of hidden layer vectors (64, 128,
and 256), learning rate (a$10−b; a = 1, 5, and b = 3–5), batch size
(2n, n = 7–10), and activation functions (Rectied linear unit –
ReLU, and LeakyReLU). We trained the models against Exp-DB
with different hyperparameters and identied the one that shows
the best compromise between accuracy and computational cost,
resulting in the model shown in Fig. 1C. During the SSD process,
all Teacher and Student models were trained for 1000 epochs
with a learning rate of 1 × 10−4, followed by 200 epochs with
a learning rate of 5× 10−5, using a batch size of 1024. The ADAM
optimizer with the MAE loss function was employed.

MAE and RMSE loss functions have their own pros and cons.
The RMSE loss function contains a quadratic L2 norm facili-
tates the minimization and convergence of prediction errors.
However, using the MAE loss function in deep neural networks
can also be advantageous in terms of generalizability to big data
with a broad scope of molecules. MAE is reportedly Lipschitz
continuous;109 the rst derivative of MAE is a bounded function.
Such boundedness prevents exploding gradients and thus
outliers. In contrast, RMSE or MSE loss functions are not Lip-
schitz continuous. Moreover, it should be emphasized that
RMSE was also minimized during the SSD (Fig. 3) although the
MAE loss function was used, indicating the effectiveness of MAE
in mitigating the overtting. Mathematical proofs also showed
that MAE as well as RMSE can minimize outlier errors, i.e.,
prevent overtting, instead of maximizing the correctness of
predictions that are already accurate.110
936 | Chem. Sci., 2024, 15, 923–939
Exp-DB and all Aug-DBs were split into the training, valida-
tion, and test sets with a ratio of 72 : 8 : 9. We adopted this ratio
instead of the typical 8 : 1 : 1 ratio to perform 10-fold cross-
validation with varying the training and validation sets. The
training/validation set, and training/test set ratios are 9 : 1 and
8 : 1, respectively, enabling the 10-fold partitioning while
maintaining the held-out test set. The validation loss value was
monitored at each epoch throughout the training to archive the
best model with the lowest validation set error. It was sufficient
to identify the best model when trained for 1200 epochs with
two different learning rates mentioned above. Due to the high
computational costs of cross-validation, only one of the 10 folds
was utilized for the model training and data augmentation
(Fig. 2A). However, the full 10-fold cross-validation was per-
formed for Teacher, Students 13, 29, and 35 models (Fig. 5).
This is to verify that the models are not prone to overtting and
the SSD scheme effectively reduces the deviation of prediction
errors among different data splits. The model was trained using
one GV100 GPU; the time taken for training ranges from 50
minutes (Exp-DB, 11 637 data points) to 1.7 days (Exp-DB + Aug-
DBs, 932 509 data points).

Data availability

The code, trained models, and databases are available via GitHub
(https://github.com/BioE-KimLab/Solv_GNN_SSD). The
CombiSolv-Exp and CombiSolv-QMdatasets are available in ref. 56.
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