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Abstract

One of the hottest topics in the nanoparticles research right now is carbon dots(CDs).

In order to be used in applications like medical imaging and diagnostics, pharmaceutics,

optoelectronics, and photocatalysis, CDs must be synthesized with carefully controlled

properties. This is often a tedious task due to the fact that nanoparticle syntheses

frequently involve multiple chemicals and are carried out under complex experimental

conditions. The emerging data-driven methods from artificial intelligence (AI) and

machine learning (ML) provide promising tools to go beyond time-consuming, and la-

borious trial-and-error approach. In this review, we focus on the recent uses of ML

accelerating exploration of CD chemical space. Future applications of these meth-

ods address current limitations in CD synthesis expanding the potential uses of these

intriguing nanoparticles.

Introduction

Due to their distinctive advantages, such as simple synthesis, long-term photo and colloidal

stability, biocompatibility, biodegradability, non/low toxicity, low cost, tunable photolu-
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minescence, and good dispersibility, carbon-based nanomaterials, particularly carbon dots

(CDs) have been one of the most studied materials in recent years.1–8 The favorable char-

acteristics make CDs susceptible of applications in biosensing and bioimaging,9–11 cancer

research,12 drug delivery,13 visible light communication,14,15 and optoelectronic devices.16–19

A base carbon core with chemical functional groups attached or modified on the surface

makes up the core-shell-like structure of CDs. The surface generally consists of some com-

mon functional groups, such as amino, epoxy, carbonyl, aldehyde, hydroxyl, and carboxylic

acid, while the carbon core structure consists of sp2 and sp3 carbon atoms.20–22 The additional

molecular structures which are essential to their features make CDs extremely complex.

CDs can be synthesized by utilizing bottom-up or top-down methods.16,23 In the top-down

methods, large carbon materials are cut into small carbon structures smaller than 10 nm. The

demanding physical procedures to break down the carbon materials (e.g., graphite, graphene

oxide, carbon nanotubes, activated carbon, soot) involve laser ablation, arc discharge and

nanolithography under unfavorable conditions such as strong oxidants, concentrated acids,

and high temperatures.24–33 The more adaptable and accessible bottom-up methods usually

includes ultrasound synthesis, chemical oxidation, room temparature method, hydrother-

mal and solvothermal processing of relatively small molecular precursors.34 Although these

methods may include high temperatures/pressures, long reaction times, or toxic solvents,

use of microwaves in solvothermal synthesis partially solves these issues by reducing the

reaction time and the amount of solvents.35–40 The room temperature method is another

advantageous technique because it does not require complicated machinery or harsh syn-

thesis conditions, making it environmentally friendly and sustainable.41–43 Hence, its simple

setup, low-cost and accessibility to wide variety of percursors makes bottom-up methods

more favorable over the top-down methods.

CDs can be divided into four main classes acccording to their carbon core structure,

surface functionalities, and performance features: (i) graphene quantum dots (GQDs), (ii)

carbon nanodots (CNDs), (iii) carbon quantum dots (CQDs), and (iv) carbonized polymer

2
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dots (CPDs).44,45 GQDs are usually synthesized by using top-down approach, while prepa-

ration of CNDs and CQDs are mainly done by using bottom-up methods.46–48 A variety

of models (e.g polycyclic aromatic hydrocarbons, molecular fluorophores, or sp2/sp3 hybrid

spherical structures) are used to explain different structures of CDs.49–52

Due to the necessary high temparatures during bottom-up sythesis of CDs, multiple re-

action pathways occur while forming considerable amount of by-products. Along with the

irregular mass transfer, low reproducibility is also common as reported in earlier studies.35,53

One solution to optimize the target properties is to scan large experimental synthesis condi-

tions including reaction temperature, the mass of precursor, ramp rate, and reaction time.

However, high complexity of the extracted data, repetitive experimental procedures, and the

lack of predictibility make this scan very time consuming to achieve ideal results. .For exam-

ple, it is still unclear how the CQDs emit their fluorescence because it is a very complicated

process. It is customary to analyze the pH-dependent photoluminescence (PL) spectra of

CQDs at a fixed excitation and ignore all other potential excitations; however, this method

only allows for the extraction of a portion of the available data.39,54–60 On the other hand,

the complexity of data analysis methods can rise along with the number of PL measure-

ments. Similarly, current CDs reported in the literature were frequently prepared optimally

by controlling one reaction parameter and fixing other reaction factors, while not considering

complex relationship between reaction parameters during CD synthesis.Therefore, there is a

need to employ methods which accelerate the screening of the necessary parameters in order

to create CDs with enhanced features and applications.

Quantum mechanics methods such as density functional theory (DFT) is a reliable com-

putational solution to search reasonably designed parameter space.61,62 These semi-empirical

approaches can be used to explore electronic structure and chemical reactivity of CDs.63–67

Density-functional-based tight binding (DFTB) is another semi parametric method which

approximates DFT in a tight binding framework.68–71 DFTB requires less empiriral param-

eters and computationally more efficient than DFT. Mechanism of graphene formation and

3
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single-walled carbon nanotube nucleation are examples studied using DFTB.72,73 However,

these semi-empirical methods are computationally too costly for a large search space. The

alternative approaches to reduce the entire search space include optimization and gradient

based algorithms. The accuracy and computational performance of these methods depend

on the initially determined parameters; hence, they might return different results from the

different initial values and potentially end up in local minima.

Data-driven approaches based on machine learning (ML) algorithms provide an alter-

native to the above mentioned computational methods for the description of structure and

properties of CDs. As a branch of artificial intelligence, ML employs statistical and prob-

abilistic methods to learn from a given dataset by optimizing a performance measures for

particular tasks.74,75 Certain methods have the ability to detect the relationship (corre-

lations/inference) between input variables and target variable. Instead of screening entire

parameter space, ML methods learn the hidden patterns using limited amount of data. These

trained algorithms are later generalized to predict the target variables from previously unseen

input variables. As a result of increasing amount of experimental data, and accessible com-

putational power; ML have successful applications in variety of fields including image/speech

recognition, cancer research, chemical synthesis, protein structure prediction.76–84

In material science, ML has attracted a lot of interest in applications such as material

discovery, material structure/property prediction, performance optimization, and accelera-

tion of the protocols for nanoparticle synthesis.85–95 Using ML, the reaction parameters and

their effects on the nanoparticle synthesis can be revealed objectively,96,97 and the synthesis

process can be made more efficient by choosing appropriate evaluation criteria including

shape, size, polydispersity, and surface chemistry.98 ML accelerates not only the experimen-

tal protocols but also search of new semiconductor, metal, carbon-based, and polymeric

nanoparticles with superior features requiring low computational cost.8 The large amount

of data needed for ML algorithms can be obtained using computational or experimental

methods. Numerous databases such as the Materials Project, Automatic Flow for Materials

4
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Discovery, Open Quantum Materials Database, Novel Materials Discovery make it possible

to access a lot of materials’ data in addition to using computer simulations to generate it.

In particular, the use of ML in the field of CD has generated a lot of interest in research in

recent years. The proper adjustment of a variety of variables, including precursors, tempera-

ture, and reaction time, is necessary for the successful preparation of CDs. It is simple to use

these elements as input parameters in ML, which is trained with the available experimental

data and generates accurate new predictions. Therefore, the addition of ML can aid in the

relationship between precursors and desired properties, which may result in the formation

of a design principle for further study and significantly shorten the synthesis cycle and lower

the cost of CDs.

Many outstanding reviews on the applications of computational and ML methods to the

nanoparticle synthesis have been written.98–106 Although some of them concentrates CD syn-

thesis, they partially cover the developments of ML methods along with the experimental

techniques.99 The more general reviews include CDs as a subcategory of nanoparticles,98,100

quantum dots,103,104 graphene-based101,105 or polymer-based106 materials. Theoretical meth-

ods such as quantum mechanics and/or molecular mechanics approaches applied to CDs is

also available in the literature.102 To the best of our knowledge, a thorough review of ML

applications specifically for CD synthesis is lacking. In this review, we outline the primary

ML algorithms in the context of CDs research, discuss recent studies on ML applications for

CD synthesis, and enumerate potential future directions for this rapidly expanding field of

study. The related papers are listed in Table 1.

Linear Regression

Numerous machine learning algorithms have been devised for diverse learning scenarios,

encompassing unsupervised, semi-supervised, and supervised learning. In scientific and en-

gineering contexts, supervised learning, also known as predictive modeling, is widely favored.

5
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Of all the supervised learning methods, linear regression is the most fundamental, having

been extensively studied and applied due to its simplicity and high interpretability. Given

input variables x = (x1, . . . , xp), the output variable y is predicted by

y = xTβ

. The most common objective function to determine the coefficients β is residual sum of

squares:

RSS(β) =
N∑
1

(yi − xT
i β),

where N is the number of data points. Basic expansions of input variables, such as x2 = x2
1,

x3 = x3
1 leads to polynomial regression. One can also further modify the linear regression

models by shrinking the estimated coefficients to zero. Using methods like ridge regression

and Least Absolute Shrinkage and Selection Operator (LASSO), shrinkage the coefficients

reduces the weight of irrelevant input variables to resulting in more interpretable and accurate

models.

Applying multiple linear regression(MLR), Armida et al. explored the relationship be-

tween the size, dimensionality, concentration, doping and other microstructural features of

carbon dots and their thermoelectric performance.107 The conversion efficiency of a thermo-

electric material is quantified by the thermoelectric figure of merit, ZT = S2σT/κ, where S

is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and

T is the absolute temperature. MLR is performed for each ZT , σ, T and κ using 10 input

variables characterizing size, dimensionality, concentration, doping and other features. The

results revealed a strong negative relationship between functionalization and S, as well as a

strong positive relationship between the type of carbon nanostructures and σ. Polynomial

regression highlighted significant impacts of six input parameters on the Seebeck coefficient,

electric conductivity σ and thermal conductivity κ, while no combination of parameters

significantly affected thermoelectricity ZT .
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Zhang et al. utilized linear and polynomial regression models to investigate core synthe-

sis process parameters of B,N-GQDs (synthesis temperature, H2O2 additional volume, and

synthesis time).108 The models are trained using optical properties of B,N-GQDs derived

from UV-visible and PL spectra (i.e. 675/500 peak intensity ratio and PLQY). While the

authors performed other complex models such as bagging regression, random forest regres-

sion, lasso regression, and ridge regression, the highest R2-score is obtained by polynomial

model of degree 7 (R2 = 0.9860). Polynomial and linear regression models pointed out that

high H2O2 additional volume, low synthesis temperature, and appropriate synthesis time in

the selected process conditions contribute to achieving a high 675/500 peak intensity ratio

(see Figure 1).

Tuchin et al. analysed a dataset on the synthesis parameters and optical character-

istics of carbon dots focusing on their optical behavior within the red and near-infrared

wavelengths.109 A predictive model using multiple linear regression has been developed to

forecast the spectral attributes of these carbon dots. This model’s validity was confirmed

by comparing its predictions with the actual optical properties observed in carbon dots

synthesized across three distinct laboratories.

Doring et al. applied a multiple linear regression model that combines steady-state and

time-resolved luminescence data from carbon dots to enhance temperature sensing accuracy

to 0.54 K.110 This research illustrates the significant advancements in temperature sensing

using optical probes through multidimensional machine learning techniques.

Several machine learning algorithms are dedicated to classification tasks. Logistic re-

gression considered under the umbrella of generalized linear model is specifically designed

for predicting probabilities associated with discrete (categorical) variables. The probability

p(x) of a sample belonging to a particular category is expressed as:

p(x) =
ex

T β

1 + exT β
.
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Figure 1: Machine learning-assisted evaluation of B,N-GQDs. (A) Schematic of machine
learning-assisted evaluation of optical properties of B,N-GQDs. Optical properties of B,N-
GQDs in varied synthesis conditions and corresponding predicted value sets with (B) linear
regression, (C) polynomials 1-30, (D) polynomial regression 7, (E) bagging regression, and
(F) random forest regression. The R2 scores of linear regression, polynomial regression
7, bagging regression, and random forest regression models are 0.6751, 0.9860, 0.9473, and
0.9469, respectively. Reprinted with permission from.108 Copyright 2022 American Chemical
Society.

Here, x represents the input variables and β denotes the coefficient vector, which is de-

termined through the optimization of an objective function. The training process for lo-

gistic regression involves minimizing objective functions such as LBFGS (Limited-memory

Broyden-Fletcher-Goldfarb-Shanno), Newton, and Stochastic Gradient Descent. Pandit et

al. presented a biomolecular sensor utilizing a CD array for the detection of proteins in both

buffer and human serum.112 They anticipated that introducing analytes to CDs featuring

diverse surface functionalities would induce a distinctive fluorescence change pattern. This

pattern could subsequently be examined using machine learning techniques including logistic

9
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regression. They trained their models with response of CD arrays of 48 examples from 8

classes of protein. Logistic regression, in conjunction with three distinct machine learning

algorithms (namely kNN, Gradient-Boosted trees, and Support Vector Machine), attained a

perfect accuracy of 100% on the test set comprising 24 unidentified samples. Hence, the effec-

tiveness of employing machine learning algorithms for the pattern recognition of fluorescence

signals from the array has been successfully demonstrated.

Artificial Neural Networks

Linear models excel when a linear connection exists between input and output variables;

however, their accuracy diminishes in the presence of nonlinear interactions between vari-

ables. Artificial neural networks (ANNs) are employed to surmount these constraints. ANNs

are characterized by multiple hidden layers, excluding input and output layers. Each hidden

layer consists of numerous neurons, employing linear regression with a nonlinear activation

function. Notably, the hidden layers feature complete connectivity between neurons of ad-

jacent layers. It is proven that any continous function can be approximated by ANNs with

one hidden layer. Convolutional neural networks (CNNs) stand as a prevalent architecture

within artificial neural networks (ANNs), finding particular application in the analysis of

images and videos. At the heart of the CNN lies the convolution layer, featuring multiple

convolution filters. Each filter undergoes convolution with the input from the preceding

layer, producing feature maps subsequently utilized as input for the following layer. The

streamlined interconnection between layers contributes to the computational efficiency of

CNNs, enabling them to outperform basic ANN models, particularly in tasks such as image

classification.

ANNs have found application in various carbon dots studies. Wang et al. have used a

convolutional neural network (CNN) model tailored for the predicting carbon dots’ optical

characteristics such as spectral properties and fluorescence (FL) colors under ultraviolet (UV)

10
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irradiation.113 The model is trained with CD synthesis features (precursor, mass, tempera-

ture, solvent, and reaction time) from 170 prototypical studies. The output layer is a feature

vector that indicates spectral properties and FL color under UV irradiation. Subsequently,

CDs with distinct emission properties were synthesized, and their experimental data was

compared with the predicted outcomes from the trained model. These synthesized CDs were

employed in cell imaging, demonstrating good performance. These findings suggest that the

implementation of CNN can assist researchers in achieving effective CD design without the

need for extensive manual processes.Within the same study, alternative classification models,

such as support vector machines, k-nearest neighbors, random forests, decision trees, and

extreme gradient boosting, demonstrated inferior performance compared to CNN. These

outcomes underscore the significant potential of CNNs in guiding the synthesis of CDs.

Senanayake et al. conducted a parallel study, employing ANN, to characterize the influ-

ence of synthesis parameters on and make predictions for the emission color and wavelength

of CDs.114 The machine analysis indicated that the selection of the reaction method, pu-

rification method, and solvent is more closely correlated with CD emission characteristics

compared to factors like reaction temperature or time, which are often adjusted in experi-

mental settings. A total of 407 data examples were gathered from the literature, with 379

of them constituting the training database. The remaining 28 data examples were reserved

as an external test set to validate the model. The color prediction from the classification

model, which does not include reaction temperature and time as features, attained a train-

ing accuracy value of 0.94. The accuracy of emission prediction is enhanced from MAE =

38.4 to 25.8 when a combination of both classification and regression methods is employed.

To overcome the limitations associated with a small dataset in a ANN model, the authors

used ANN k-ensemble model which outpeformed XGBoost,K-nearest neighbor (KNN), and

support vector machine (SVM). The hybrid models employed a two-step approach: initially,

a classification model was utilized to predict the color, and subsequently, this predicted color

(combined with the actual color during training) served as an input to predict the emission
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wavelength using a regression machine learning model.The tools developed in this study,

particularly the hybrid models, are expected to be valuable in predicting the emission of

novel carbon dots (CDs). This approach allows for the selection of promising reaction exam-

ples from the model, streamlining the synthesis of CDs with specific colors and significantly

reducing the effort required in the optimization process.

In another classification problem, Tuccito et al. employed CD fluorescence as a nanochemosen-

sors to detect different aminoacids.115 The modification of CD surfaces can alter fluores-

cence properties, including emission intensity, excitation, and emission wavelengths. In this

study, carboxyl groups on nanoparticle surfaces were activated and subsequently reacted

with various amino acids. The nanochemosensors demonstrated the ability to distinguish

among amino acids within a mixture, showcasing their potential in complex amino acid

analyses. ANN was trained with fluorescence variation maps of activated CDs to predict

if the aminoacid alanine (ALA) or not alanine. The resulting model had 0.8 sensitivity

and 0.91 specificity. These discoveries will contribute to the advancement of cost-effective

nanochemosensors for investigating specific diseases that are presently diagnosed through

basic amino acid detection methods.

In a regression task, Pudza et al. applied multilayer perceptron (MLP) to predict pho-

toluminescent quantum yield (PLQY) of fluorescent carbon dots synthesized from tapioca

powder.116 The training data (n = 30) was collected from the experiments. MLP trained

with temperature, time, dosage and solvent ratio predicted PLQY with high accuracy. The

optimization and prediction processes have yielded sustainable, efficient, and reliable fluo-

rescent carbon dots. This approach not only saves energy within a manageable timeframe

but also reduces the required dosage while maintaining an optimal quality output.

Doring et al. applied CNN and deep neural networks on emission/PL decay data of CDs

to improve ethanol content determination in ethanol/water mixtures (n = 578) as well as in

alcohol-containing beverages (n = 19).117 The models are trained by PL excitation/emission

maps, PL decay spectra, and extracted features (i.e. PL intensities, PL peak positions,
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and PL lifetimes) to predict the ethanol content. The utilization of time-resolved spectral

information (PL decays and lifetimes) as input for CNN enables more accurate prediction

of ethanol content compared to steady-state emission data. Using entire optical spectra,

namely PL decays and PL excitation/emission maps, advanced deep learning models were

demonstrated applicability in the analysis of beverages. In contrast to CNN models with only

a few predictor variables, which struggled due to autofluorescence of the beverages, advanced

deep learning models enabled better predictions of ethanol contents. Although CDs serve as

excellent candidates for showcasing deep learning in optical sensing, the methods outlined

in this study hold promise for enhancing chemical sensing across a range of luminescent

materials (see Figure 2).

Gradient Boosting

Traditional gradient boosting techniques have long served as stalwarts in the realm of ma-

chine learning, providing a robust framework for constructing powerful predictive models.

The foundational concept behind gradient boosting involves the sequential training of weak

learners, such as decision trees, with each subsequent learner aiming to correct errors made

by the ensemble of preceding ones. This iterative process enables the algorithm to progres-

sively refine its predictive accuracy, making gradient boosting a popular choice for regression

and classification tasks. Despite its success, traditional gradient boosting is not without its

limitations. The absence of explicit regularization mechanisms can lead to overfitting, espe-

cially in the presence of noisy or high-dimensional datasets. Recognizing these challenges,

the advent of Extreme Gradient Boosting (XGBoost) marked a significant evolution in the

field, addressing these limitations and introducing innovations that have propelled it to the

forefront of machine learning algorithms.126

Extreme Gradient Boosting (XGBoost), a powerful ensemble learning algorithm, has

emerged as a dominant force in the realm of machine learning, demonstrating remarkable
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success across various domains. Developed as an extension of traditional gradient boosting

techniques, XGBoost has garnered widespread popularity due to its efficiency, scalability,

and superior predictive performance. At its core, XGBoost operates by sequentially training

a series of weak learners, typically decision trees, and iteratively refining their predictive ca-

pabilities. Unlike traditional gradient boosting, XGBoost incorporates a regularization term

and employs a second-order Taylor expansion to optimize the objective function, enhancing

its ability to capture complex patterns within the data.

One of the defining features of XGBoost is its versatility, making it applicable to both

regression and classification tasks. The algorithm excels in handling large datasets and

high-dimensional feature spaces, showcasing robustness in the face of noisy or missing data.

Moreover, XGBoost provides a comprehensive set of hyperparameters that can be fine-tuned

to accommodate diverse modeling scenarios, fostering adaptability to different applications.

The algorithm’s success is further underscored by its ability to balance bias and variance,

mitigating overfitting and ensuring generalizability across unseen data. As a result, XGBoost

has become a method of choice in various fields, ranging from finance and healthcare to image

processing and natural language processing, showcasing its broad utility and effectiveness in

extracting meaningful patterns from complex datasets.

XGBoost has demonstrated considerable efficacy in numerous CD studies. Han et al.

reported a machine learning-assisted approach for synthesizing highly fluorescent CDs using

the hydrothermal route.82 XGBoost outperformed multilayer perceptron, support vector ma-

chine, and Gaussian process regressor in predicting the QY using five input variables: volume

of ethylenediamine, mass of precursor, reaction temperature, ramp rate and reaction time.

The data was collected from 391 experiments with different combinations of growth param-

eters, and respective QYs ranging from 0 to 1. XGBoost unveiled a noteworthy correlation

between outstanding optical properties and the mass of the precursor and the volume of the

alkaline catalyst. This observation aligns well with experimental findings. The methodology

introduced in this study serves as a foundational step toward the advancement of artificial
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intelligence techniques for the analysis and optimization of material preparation methods

(see Figure 3).

Tang et al. developed a regression model to improve the PLQY of carbon quantum

dots (CQDs) grown through hydrothermal methods.118 Six hydrothermal parameters were

identified as input features: pH value (pH), reaction temperature (T), reaction time (t), mass

of precursor A (M), ramp rate (Rr), and solution volume (V). A total of 467 experimental

records were used with different growth parameters and respective PLQY ranging from 0 to

1. In order to best infer PLQY from the features, several regression algorithms are evaluated

with nested cross validation, including XGBoost regressor, support vector machine regressor,

Gaussian process regressor. XGBoost demonstrates superior performance, surpassing the

other algorithms by a significant margin, as indicated by its R2 value of 0.8402. The most

critical factor influencing the PLQY is shown to be the pH value, with reaction temperature

and reaction time following closely in significance. The trained XGBoost model is then

employed to predict the PLQY for a vast array of 1,555,840 potential synthesis conditions

generated from various combinations. Eleven synthesis conditions are recommended by the

model attributed to their highest predicted PLQY. Subsequent experiments conducted in the

laboratory yielded a remarkably high photoluminescence quantum yield (PLQY) of 55.5%.

This achievement is particularly noteworthy given the ultra-low heteroatom doping precursor

ratio employed, making it one of the highest reported PLQY values under such conditions.

The findings support the promising potential of ML in optimizing and expediting the material

synthesis process. This endorsement suggests that ML has the capability to facilitate the

development of advanced inorganic materials, contributing to practical applications through

reduced processing time and enhanced material properties.

Hong et al. utilized the XGBoost model for predicting the maximum fluorescence (FL)

intensity and emission centers of CDs synthesized under room temperature conditions us-

ing p-benzoquinone (PBQ) and ethylenediamine (EDA) as starting materials.119 They suc-

cessfully synthesized a variety of CDs with tailored optical properties. These CDs were
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effectively employed for applications such as detecting Fe3+, facilitating sustained drug re-

lease, enabling whole-cell imaging, and contributing to the preparation of poly(vinyl alco-

hol) (PVA) films. The input dataset comprises four hundred types of CDs prepared under

different reaction conditions, encompassing the mass of p-benzoquinone(VEDA), volume of

ethylenediamine(VEDA), reaction duration, and solvent types. For output, the predicted tar-

get variables are the FL intensity and the location of emission centers. Principal Component

Analysis (PCA) was employed to create new variables characterized by relative indepen-

dence. Subsequently, PC1 and PC2 were utilized as novel input features for the training of

the model. XGBoost showed superior performance compared to K-nearest neighbor, decision

trees, random forest, support vector machine and convolutional neural network. Leveraging

the significant features and parameters (i.e.VEDA and MPBQ) extracted from the XGBoost

model, the authors successfully fabricated a series of novel carbon dots (CDs) with customiz-

able fluorescence (FL) intensity and emission center properties. This study demonstrates

that the XGBoost algorithm, as a machine learning approach, is effective in identifying cru-

cial factors in CD synthesis. It provides chemists with a rapid and reliable means to access

optimal reaction parameters for synthesizing desired CDs (see Figure 4).

Using ML, Wang et al. successfully predicted and synthesized metal-free CD homoge-

neous catalysts for the oxidation of C–H bonds.120 The dataset for cyclohexane oxidation was

compiled from literature sources and laboratory notebooks, comprising a total of 652 entries.

This dataset consists of 113 positive samples (17.3%) and 539 negative samples (82.7%). The

boundary between success and failure in this context is characterized by achieving a 10%

conversion of cyclohexane and a 70% selectivity towards the production of apidic acid(AA).

The input features are selected as O (content of oxygen), Mw (weight-average molecular

weight of the nonmetal catalyst), G (O2 or not), p (homogeneous catalysis or heterogeneous

catalysis), T (catalytic temperature), P (pressure), and t (reaction time). Out of the four

classical models considered (Multilayer Perceptron, Naive Bayes, SVM, and XGBoost), the

XGBoost model was chosen due to its high performance. The analysis of feature importance
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derived from the XGBoost indicates that molecular weight (Mw) takes precedence over other

features. The order of importance follows Mw, followed by O, T, P, and t. Subsequently,

the established XGBoost model is employed to apply the unexplored conditions, predicting

the probability of success or failure. All predictions align with actual outcomes of ”success”

in the conducted true experiments, affirming the accuracy of the model. This study dis-

tinctly illustrates a novel approach to C−H bond activation, employing metal-free CDs as

quasi-homogeneous catalysts.

Chen et al. explored the relationship between biochar preparation parameters and flu-

orescence quantum yield of CDs in biochar, employing six machine learning models in-

cluding decision trees (DT), random-forest (RF), gradient- boosting decision-trees (GBDT),

extra-trees(ET), K- nearest-neighbor regression (KNN), and XGBoost(XGBoost), where the

dataset consisted of 480 samples.121 The input parameters for the biochar production ex-

periment were determined, encompassing the type of farm waste, as well as characteristics

such as cellulose, hemicellulose, lignin, ash, moisture, nitrogen (N), carbon (C), and carbon-

to-nitrogen ratio (C/N) contents of the samples. Additionally, parameters related to the

pyrolysis process, including pyrolysis temperature (T) and residence time (t), were consid-

ered.The GBDT model had the best performance among the other models; as GBDT exhibit

resilience to missing values and outliers, are less susceptible to the impact of extreme values,

and demonstrate effectiveness in handling high-dimensional sparse data. It was identified

that four features pyrolysis temperature, residence time, nitrogen (N) content, and carbon-

to-nitrogen (C/N) ratio, had the most significant impact on enhancing the accuracy of QY

predictions. The methodology introduced in this study can serve as a foundation for the ad-

vancement of new techniques leveraging artificial intelligence for the analysis and prediction

of CDs generated in the process of biochar production.
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Random Forest

Random Forest (RF), a versatile and robust machine learning algorithm, has emerged as a

cornerstone in data-driven decision-making across diverse scientific and industrial domains.

Born out of the ensemble learning paradigm, this algorithm is particularly well-suited for

applications where the accuracy and reliability of predictions are paramount. The metaphor-

ical ”forest” comprises a multitude of decision trees, each contributing its unique insights

to the collective wisdom of the algorithm. As a result, Random Forest is known for its

resilience against overfitting and its ability to produce accurate and stable predictions. The

integration of Random Forest algorithms in the study of carbon dots opens up new avenues

for predicting and understanding their behavior.

Chen et al. explored the relationship between reaction parameters and the photolumi-

nescence characteristics of CDs, achieving controllable synthesis of multi-color CDs with the

aid of ML.111 Five input parameters are used, including varied precursor types and quan-

tities such as p-phenylenediamine with urea, p-phenylenediamine with citric acid, diverse

solvent types (anhydrous ethanol, water, N, N-dimethylformamide), along with reaction

time and temperature. 270 experiments with different parameter combinations is conducted

to feed the ML algorithms. The 3D fluorescence spectra (maximum emission wavelength,

stokes shift) and fluorescence quantum yield were used as output variables. The RF model

demonstrated superior predictive performance compared to other models, including Extreme

Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Ridge Regression

(Ridge), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector

Regression (SVR), specifically in predicting the maximum emission wavelength, the fluores-

cence quantum yield and stokes shift of multicolor CDs. The authors also implemented a

computer algorithm for ranking importance, utilizing a method to calculate the significance

of features. The outcomes revealed that the solvent was the primary factor influencing the

maximum emission wavelength of multicolor CDs. The key determinant influencing the flu-

orescence quantum yield was identified to be the precursor ratio and the precursor type was
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the main influencing factor of the stokes shift.

Xing et al. employed RF to facilitate the synthesis of CDs with predictable photolumi-

nescence (PL).122 In contrast to treating the precursors as constants, the variables in this

context involve randomly chosen 202 combinations of precursors, specifically three-precursor

combinations of 24 precursors. The wavelengths of the peaks with the strongest intensity

and the longest wavelength under excitation wavelengths of 365 and 532 nm were used as

output parameters. The other reaction parameters were fixed to 200◦C and 10 h . RF model

demonstrated the highest performance among the six models including KNN, AdaBoost,

Bagging, DT, RF and SVM. It is shown that utilizing prediction data that encompasses

the entire precursor combination space, the screening of CDs with specific PL wavelength

features can be conducted much more effectively than through random trials.

He et al. established RF regression model for corrosion inhibitors based on hydrother-

mally synthesized CDs to predict the inhibition efficiency.123 This model unveils the relation-

ship between different synthesis parameters and the inhibition efficiency of the CDs. The

dataset was created by combining 102 data points on CDs synthesis and inhibition efficiency,

drawing from reported studies and the authors’ own experimental findings. Typical input

parameters such as CDs concentration in HCl, precursor type and quantity, solvent type and

volume, and reaction time and temperature were selected. The inhibition efficiencies of CDs,

calculated through potentiodynamic polarization (PDP), served as the output variable in the

analysis. Utilizing the feature importance derived from the RF model, critical factors in the

synthesis of CDs-based corrosion inhibitors were identified. The concentration of CDs in HCl

emerges as the most influential factor affecting the inhibitory behaviors of the synthesized

CDs, followed by N atomic content and reaction time. Additionally, the synthesis route is

intelligently optimized using the Genetic Algorithm (GA), which is an optimization tech-

nique inspired by natural selection and genetics, utilizing a population-based approach with

genetic operators to iteratively evolve solutions for a given problem. Successful controlled

preparation of CDs-based corrosion inhibitors was achieved. By identifying and filtering
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out unsatisfactory synthesis conditions, this approach significantly enhances the synthetic

efficiency of CDs-based corrosion inhibitors (see Figure 5).

Other ML algorithms

Here we mention other ML algorithms used in CDs studies. Dager et al. detailed the

production of mono-dispersed carbon quantum dots (C-QDs) through a single-step thermal

decomposition procedure employing fennel seeds.124 They employed ML techniques such as

PCA (see127 for more details on PCA), multivariate curve resolution (MCR),128 and sparse

non-negative matrix factorization (NMF)129 to assess the PL of synthesized C-QDs with a

focus on addressing two key questions: (i) the ability of ML to classify pH-dependent PL

measurements, including spectra obtained at different pH levels and excitation wavelengths,

and its capacity to suggest optimal excitation wavelengths for a comprehensive pH-dependent

study; and (ii) whether ML can aid in identifying the source of the PL mechanism, consid-

ering that multiple PL measurements at varying pH levels and excitation wavelengths may

activate different types of surface states. PL data were obtained through excitations at

wavelengths of 200, 220, 240, 260, 280, 300, 320, and 340 nm, corresponding to pH values

of 3, 5, 7, 9, 11, and 13. A total of forty-eight (48) PL measurements were conducted, each

representing a single spectrum for 401 data points acquired in the spectral range 300-750 nm.

PCA, MCR, and NMF were employed to identify the underlying mechanisms contributing

to the PL behavior of the synthesized C-QDs.

Xu et al. used linear discriminant analysis (LDA)130 and support vector machine (SVM)131

to analyze multidimensional data of a CDs-based sensor array fabricated for the detection

and differentiation of four tetracyclines (TC), including including tetracycline (TC), oxyte-

tracycline (OTC), doxycycline (DOX), and metacycline (MTC).125 A training data set com-

prising a matrix of 2 CDs, 4 TCs, and 5 replicates was created through the utilization of I/I0

values. The reliability of the established fluorescence sensor array was confirmed by studying
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52 unknown samples. At a concentration of 1.0 µM , four different TCs can be effectively

clustered by SVM and LDA. Furthermore, the sensor array demonstrates the capability to

effectively differentiate between individual TCs as well as binary mixtures of TCs and DOXs.

The utilization of SVM presents an innovative option for array sensing systems in handling

diverse data sets. The research illustrates the potential of the fluorescence sensor array in

environmental monitoring and quantifying antibiotics (see Figure 6).

Summary and Future Perspectives

This comprehensive review explores the latest advancements in utilizing machine learning for

CDs. We provide a concise summary of prevalent ML algorithms and examine recent research

employing ML models for the prediction of CDs properties. ML models were employed to

investigate the parameter space of CDs experiments and generate optimal input parameters

for CDs. By leveraging the optimal parameters derived from ML for various CDs challenges,

one can explore design strategies aimed at achieving high-performing CDs. While ML models

are frequently perceived as ”black box” models, the identified strategies can offer novel

insights into enhancing the performance of CDs in various applications.

While artificial neural networks and gradient boosting algorithms have shown superior

performance in several studies, research indicates that the optimal machine learning model

can vary, even under identical input and target feature conditions. Hence, future research

is needed to understand the performance, either theoretically or numerically, of various ML

applications for CDs. Although achieving the true optimal experimental parameters remains

a challenge in the field, there is optimism that ML will play a promising role in addressing

this problem in the future. A promising avenue for enhancement involves establishing a

more comprehensive models that incorporates both synthesis process-related and chemistry-

related features.

The median of the sample size in the studies covered in this review is 357. For the
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gradient boosting algorithms, this number is 467. To enhance the accuracy and applicability

of ML approach, future endeavors should focus on collecting high-quality data for refining

and updating the currently employed models. This continual improvement is crucial for

advancing the development of more efficient CDs synthesis strategies.
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Figure 2: Multi-channel deep learning model: (a) structure of the PL decay channel. The
input layer takes 1024 intensity integers as input. After normalization, data are passed
through a dense layer (64 neurons), a dropout layer (dropout = 0.01), and a second dense
layer (16 neurons). (b) Structure of the PL map channel. The input layer takes a 16×217×1
matrix as input. It is passed through a series of convolution, maximum pooling, and dropout
layers before it is flattened and fed through another dropout layer and dense layer (32
neurons). (c) Example of a multi-channel model with 9 inputs. The respective input data
are passed through either a PL decay channel or a PL map channel. Those channels are
concatenated before being passed through a dense layer (32 neurons) and a dropout layer
(dropout = 0.3) to predict the ethanol concentration as the target variable.Reprinted with
permission from.117 Copyright 2022 American Chemical Society.
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Figure 3: Application of ML for guided synthesis of CDs. (a) Design framework for the
guided synthesis of CDs with a large QY based on ML and hydrothermal experiments. (b)
The heat map of the Pearson’s correlation coefficient matrix among the selected features
of hydrothermal-grown CDs. (c) Feature importance retrieved from XGBoost-R that learns
from the full data set. The most important features are EDA and M. (d) Predictions from
the trained model, which is represented by the matrix formed by the two most important
features. Reprinted with permission from.82 Copyright 2020 American Chemical Society.
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Figure 4: Schematic Illustration of Machine Learning Guiding the Synthesis of CDs.(a)
Synthetic process of CDs. (b) Prediction of CD optical properties using machine learning
models. Reprinted with permission from.119 Copyright 2022 American Chemical Society.

Figure 5: Application of ML for controlled synthesis of CDs-based corrosion inhibitors: (a)
establishment of the dataset; (b) modelling for inhibition efficiency prediction; (c) synthetic
optimization of CDs.Reprinted with permission from.123 Copyright 2023 Elsevier.
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Figure 6: Two-dimensional LDA score plot of the fluorescence sensor array for the discrim-
ination of the four TCs at different concentrations: (a) 1.0µM ; (b) 10µM ; (c) 25µM ; (d)
50µM ; (e)100µM ; (f)150µM . (QR-CDs, 13.3µg mL−1; CPC-CDs, 60µg mL−1.).Reprinted
with permission from.125Copyright 2020 Elsevier.
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