Issue 32, 2024

Alpha-metalated N,N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications

Abstract

This perspective summarizes our group's extensive research in the realm of organometallic lanthanide complexes, while also placing the catalytic reactions supported by these species within the context of known lanthanide catalysis worldwide, with a specific focus on phosphorus-based catalytic reactions such as intermolecular hydrophosphination and hydrophosphinylation. α-Metalated N,N-dimethylbenzylamine ligands have been utilized to generate homoleptic lanthanide complexes, which have subsequently proven to be highly active lanthanum-based catalysts. The main goal of our research program has been to enhance the catalytic efficiency of lanthanum-based complexes, which began with initial successes in the stoichiometric synthesis of organometallic lanthanide complexes and utilization of these species in catalytic hydrophosphination reactions. Not only have these species supported traditional lanthanide catalysis, such as the hydrophosphination of heterocumulenes like carbodiimides, isocyanates, and isothiocyanates, but they have also been effective for a plethora of catalytic reactions tested thus far, including the hydrophosphinylation and hydrophosphorylation of nitriles, hydrophosphination and hydrophosphinylation of alkynes and alkenes, and the heterodehydrocoupling of silanes and amines. Each of these catalytic transformations is meritorious in its own right, offering new synthetic routes to generate organic scaffolds with enhanced functionality while concurrently minimizing both waste generation and energy consumption. Objectives: We aim for the research summary presented herein to inspire and encourage other researchers to investigate f-element based stoichiometric and catalytic reactions. Our efforts in this field began with the recognition that potassium salts of benzyldimethylamine preferred deprotonation at the α-position, rather than the ortho-position, and we wondered if this regiochemistry would be retained in the formation of lanthanide complexes. The pursuit of this simple idea led first to a series of structurally fascinating homoleptic organometallic lanthanide complexes with surprisingly good stability. Fundamental studies of the protonolysis chemistry of these complexes ultimately revealed highly versatile lanthanide-based precatalysts that have propelled a catalytic investigation spanning more than a decade. We anticipate that this summative perspective will animate the synthetic as well as biological communities to consider La(DMBA)3-based catalytic methods in the synthesis of functionalized organic scaffolds as an atom-economic, convenient, and efficient methodology. Ultimately, we envision our work making a positive impact on the advancement of novel chemical transformations and contributing to progress in various fields of science and technology.

Graphical abstract: Alpha-metalated N,N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications

Article information

Article type
Perspective
Submitted
09 رمضان 1445
Accepted
06 ذو القعدة 1445
First published
06 ذو القعدة 1445

Dalton Trans., 2024,53, 13232-13247

Alpha-metalated N,N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications

Y. A. Rina and J. A. R. Schmidt, Dalton Trans., 2024, 53, 13232 DOI: 10.1039/D4DT00826J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements