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The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(gsal-1),JNO=-2ROH
(gsal-1 = 4-iodo-2-[(8-quinolylimino)methyllphenolate; R = Me 1 or Et 2) which undergo abrupt and
gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS]
to [HS-LS] state occurs at 210 K in 1, while Ty, = 250 K for the EtOH solvate, where complete SCO
occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden
[LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase
transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after
irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and
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Introduction

The search for bistable molecular systems is driven by their
possible applications in molecular electronic devices."* Spin
crossover (SCO) complexes are one group of bistable materials
that have been utilised as functional components in a range of
devices.*” The interest lies in the appreciable changes in the
magnetic and physical properties upon transition between the
low spin (LS) and high spin (HS) state, induced by an external
perturbation (temperature, pressure, light irradiation or
magnetic field). In the majority of SCO complexes, these
changes are gradual making them less attractive for applica-
tions. However, SCO complexes with abrupt transitions result in
dramatic changes in their properties, and are excellent proto-
types for use in molecular sensors, switches, data storage or
spintronics.*” To achieve abrupt SCO, strong interactions

“Thammasat University Research Unit in Multifunctional Crystalline Materials and
Applications (TU-MCMA), Faculty of Science and Technology, Thammasat
University, Pathum Thani 12121, Thailand

bUniversité de Bordeaux, ICMCB, 87 Avenue du Dr A. Schweitzer, Pessac, F-33608,
France

‘Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000
Rennes, France

School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon
Ratchasima, 30000, Thailand. E-mail: david@g.sut.ac.th; phimphaka@g.sut.ac.th

T Electronic supplementary information (ESI) available: Experimental details,
X-ray crystallographic data, additional structural, magnetic and TGA figures.
CCDC 2220036-2220047. For ESI and crystallographic data in CIF or other
electronic format see DOI: https://doi.org/10.1039/d3sc01495a

i Previous address: Functional Materials and Nanotechnology Centre of
Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand

© 2023 The Author(s). Published by the Royal Society of Chemistry

subsequent symmetry-breaking from a [HS-LS] state in an iron(i) SCO material.

between the SCO centres, the so-called cooperativity, are
required with two different strategies employed: the polymeric
approach, where covalent bonds are used to directly connect the
spin sites,* and the supramolecular approach, where inter-
molecular interactions are employed (-7, hydrogen and
halogen bonds), which have the advantage of being more
elastic.** These interactions are responsible for transmitting
structural distortions along the crystal as the spin transition
occurs. In most cases, this results in a single-step spin transi-
tion, sometimes with hysteresis. However, multi-step transi-
tions can also occur*®' often due to the presence of
inequivalent spin centres that undergo SCO at different
temperatures. More rarely, previously equivalent sites become
inequivalent upon SCO in a process termed symmetry-breaking
(SB).***° The first example of SB in Fe'" was reported by Morgan
and co-workers® in [Fe™(3,5-OMe-sal,bapen)]ClO, {3,5-OMe-
sal,bapen =  N,N-bis(3,5-dimethoxysalicylidene)-1,5,8,12-
tetraazadodecane} where incomplete SCO occurs in three
steps from HS — [2HS-LS] — [HS-2LS]. Since then a number of
SB SCO systems have been discovered with [Fe™(H-5-Br-thsa)(5-
Br-thsa)]-H,0 (H,-5-Br-thsa = 5-bromo-2-hydroxy(benzylidene)
hydrazinecarbothioamide) exhibiting a remarkable 5-step
SCO.*

Quinolylsalicylaldiminate complexes are particularly prevalent
in iron(ur) SCO chemistry** with three SB examples now known.
[Fe(gsal-Br),]NO;-2MeOH (gsal-Br = 4-bromo-2-[(8-quinolyli-
mino)methyl]phenolate),* exhibits SB coupled to a complete two-
step SCO through HS (1 centre) — [HS-LS] (2 centres) — LS (1
centre), showing an intermediate phase (IP) [HS-LS] plateau of 96
K. [Fe(gsal),][(CeF515)I] also shows SB from HS (1 centre) — [HS-
LS] (2 centres), with the LS state thermally inaccessible.”” Lastly,
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[Fe(gsal-4-F),]NO;-0.91MeOH - 0.57H,0 (qgsal-4-F = 5-fluoro-2-[(8-
quinolylimino)methyl]phenolate) exhibits SCO in two steps, but
this time from HS — [HS-LS] — [LS-LS], with no re-entrant LS
phase.”® Recent studies suggest that symmetry-breaking and SCO
phenomena are coupled through volume strain.”»** This behav-
iour emerges through the appearance of competing short/long
range elastic interactions (e.g. H-bonds, 7— interactions) in the
crystal.*® In molecular systems, symmetry-breaking most often
occurs when previously equivalent sites become ordered into
patterns of HS and LS states driven in part by these elastic inter-
actions. However, a lack of systematic studies, especially for Fe',
that probe the influence of each factor on symmetry-breaking has
made it difficult to improve these systems.

Light-Induced Excited Spin-State Trapping or LIESST involves
light activation of a SCO material, typically from a LS to a HS state.
The vast majority of reports concern Fe' complexes,”** with
comparatively few known for Fe™.¥* The first Fe' complex
known to exhibit LIESST was [Fe(pap),]ClO,-H,O (pap = 2-{(pyrid-
2-yl)methyleneamino]phenolate) reported by Sato and co-
workers* in 2000. Subsequent work seems to indicate that large
distortions at the metal centre are key to the observation of LIESST
in Fe™ systems.* Interestingly, for both Fe" and Fe™ it is also
possible to use a different wavelength of light to switch from the
metastable HS state back to the LS state, a process known as
reverse-LIESST (Fig. 1a). Moreover, light irradiation sometimes
permits access to hidden spin states that are not accessible ther-
mally (Fig. 1b). While common in coordination polymers,*™*” we
are aware of only one mononuclear complex where this has been
observed.® In this work we present a study of [Fe(gsal-I),]NO;-
-2ROH (gsal-1 = 4-iodo-2-[(8-quinolylimino)methyl|phenolate; R
= Me 1, Et 2) where the different alcohols result in symmetry-
breaking SCO or non-symmetry breaking and gradual SCO,
respectively and compare it with bromo- analog [Fe(qsal-Br),]
NOj;-2MeOH (3).2° Remarkably, 1 exhibits bidirectional switching
from the low symmetry [HS-LS] state, allowing access to a hidden
LS state or a HS state, both of higher symmetry.

Results and discussion
Synthesis

Both compounds were prepared by layering a solution of
Fe(NO3);-9H,0 in MeOH (1) or EtOH (2) over a solution of
Hgsal-I in CH,Cl, in which NEt; had been added. Full

a) b)
1 [ LIESST 1 LIESST
Ths | ||Av Yus
reverse-LIESST
|
0 reverse-LIESST IE Hidden spin states
T/K T/K

Fig. 1 Visual representation of (a) LIESST and reverse-LIESST and (b)
light activation to access hidden (not easily accessible) spin states.
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spectroscopic and Experimental details can be found in the ESIf
and are consistent with the proposed formulae.

Structural descriptions

The crystal structure of 2 was collected at 300 and 150 K with the
asymmetric unit showing one [Fe(gsal-I),]" cation, a nitrate
anion and two ethanol molecules at both temperatures
(Fig. S1t). For 1, symmetry-breaking is observed, showing one
independent Fe' centre at high temperature (300, 240 K), and
two centres (Fel and Fe2) at low temperature (150 and 100 K;
Table S11). Both compounds crystallize in triclinic P1 with
a pseudo-octahedral Fe' metal centre and two meridionally
coordinated gsal-I ligands (Fig. 2). In 1, the Fe-N,, distances and
octahedral distortion parameters* indicate HS Fe'™" at 300 K (ca.
daFel-N = 2.132 A and O = 235, respectively),” while at 240 K
they shrink slightly to ca. d.,Fel = 2.082 A and ©® = 187,
consistent with ca. 80% HS. Further cooling to 150 K results in
doubling of the unit cell volume (V3go x = 1699 A%; V50 x = 3316
A®), indicating symmetry-breaking and resulting in two [Fe(qsal-
1),]" cations in the doubled asymmetric unit (Fig. 1). At this
temperature, the Fe-N,, distances are Fe1-N = 1.96 A and Fe2-N
= 2.13 A respectively, showing that Fel is LS while Fe2 is HS.*
This long-range ordering of HS and LS molecular states corre-
sponds to the formation of a spin-state concentration wave,
SSCW.* No significant changes are observed between 150 K and
100 K (Table S27).

Heating back to 300 K, reveals reversible spin conversion and
an increase in symmetry with a single Fe™" centre in the asym-
metric unit. The reversibility of symmetry-breaking SCO was
confirmed by recooling to 150 K with the structure again
showing two independent Fe' centres. This behaviour is
similar to [Fe(qsal-Br),]NO;-2MeOH 3,* but the iodo group
seems to prevent access to the full LS state, presumably because
of its steric bulk that favours stronger antiferroelastic interac-
tions between the Fe™™ centres stabilizing [HS-LS] order.>> There
are comparatively few Fe™ systems that undergo symmetry-
breaking SCO'#?*%** and this is only the third example from
a [HS] to an ordered [HS-LS] SSCW (Table S37).>*

The ethanol complex, 2 has simpler behaviour, with Fe-N/O
distances (Fe-N,, = 2.12, Fe-O,, = 1.90 A) and octahedral

:
! 150K
LS-HS

300 K
HS

Fig.2 Unit cellcomponents of 1 at 150 K (left) and 300 K (right). The a,
b and c axis at 300 K and 150 K correspond to different directions.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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parameters (X = 59 and ® = 204) at 300 K consistent with HS
Fe'™.* Cooling to 150 K, results in a decrease in the Fe-N/O
bond distances (AFe-N,, = 0.137 and AFe-O,, = 0.025) and
the octahedral parameters (AX = 15 and A® = 87) indicating
a HS to LS transition (Table S41). The lack of symmetry-
breaking in 2 suggests that the methanol solvent is primarily
responsible, modifying elastic interactions between the Fe™
centres, mirroring results reported for [Fe(1-bpp-SiPr),]
[BF,],-sol (1-bpp-SiPr = 1-bpp-SiPr = 2,6-di{pyrazol-1-yl}-4-
isopropylthiopyridine).*

Crystal packing

The packing in the structures consist of 1D chains along the ¢
axis (Fig. 3 and S21) where the Fe™ cations are connected via
two sets of perpendicular -7 interactions (Type A and Type B)
supported by C-H:--O interactions. In the case of 1 at 150 K,
symmetry-breaking does not alter the packing of the Fe™
cations with each Fe centre in separate 1D chains (Fe1-Fel and
Fe2-Fe2) as shown in Fig. 3. The m-7 distances in 1 and 2 are
similar, with Type B being slightly stronger (by about 0.12 A)
compared to Type A. One of the most significant differences
between 1 and 2 is the shorter Fe-Fe distance within the 1D
chain for 1, by about 0.3 A. This feature is also observed in the
P4AE (parallel fourfold aryl embraces)*® and C-H---I interac-
tions, that connect neighbouring 1D chains and form a 2D sheet
in the (ac) plane (Fig. 3 and S37). In both cases, the interactions
are much shorter for 1 (by about 0.3 A) compared to 2. The final
3D structure is formed by C-H---I interactions connecting the
2D planes along the b axis (Fig. 3). This higher dimensional
structure is also supported by halogen bonds (I---I) in the case
of 1 (Fig. S4 and S57).

=1

[~

3D structure
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The nitrate and solvent molecules (MeOH for 1 and EtOH for
2) are mainly located in the space between the chains (Fig. S67).
These molecules interact by C-H:--O, O-H---O and O--'I
contacts and aid in the formation of the 2D structure by con-
necting the gsal-I ligands from different chains. This results in
the formation of a supramolecular square (Fig. S61). In the case
of 2, the halogen bond (N-O---I) is slightly stronger (3.37 A) than
in 1 (3.51 A). In all cases, small changes are observed with
temperature.

The distance between the chains (termed d.pain) is affected
by the solvent's size, being shorter for 1 and 3 (12.0 A) compared
to 2 (12.3 A) at 300 K and consistent with the more compact
structure for 1 (Fig. 4, S7 and Table S57). In the case of 2, dchain
does not show any variation with temperature, while for 1 and 3,
after symmetry breaking, the distances become longer and
shorter by ca. 0.25 A for Fe1 HS and Fe2 LS chains, respectively.
Interestingly, in 3, dcnain in the LS state is slightly higher than
that in the HS state. In contrast, the distance between the planes
(termed dpjane) is slightly higher for 1, 12.5 A, compared to 12.3
A for 2 and 3. The similarity in dyjane in 2 and 3 is unexpected
but may be a factor in the thermal inaccessibility of the LS state
in 1, as the iodo substituents are located between the planes.
Overall, the shorter Fe-Fe distances within the chains and the
lower d.nain values that reflect the distance between the chains
indicate that the more compact structure in 1 enhances elastic
interactions between the Fe'" centres and the antiferroelastic
interactions that favour [HS-LS] ordering and long-range
ordered SSCW.>*3%%7

To better quantify the supramolecular interactions present
in 1-3 we undertook Hirshfeld analysis. This reveals no signif-
icant differences between the compounds. The contributions,
as well as their strength, are broadly similar in all systems

interactions |

P, . LSFe1 chain
1D chain

2D sheet

Fig.3 Schematic illustration of the packing from the asymmetric unit to the final supramolecular 3D structure for 1 at 150 K (blue Fel centres, red

Fe2 centres). This figure is intended as a guide to the discussion only.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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m 100K-LS
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'
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£ 123 a uls
- (|
© -0.25 4 -0.204
12.24 -0.25 A
=
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Fig.4 Plots of the variation of the dcpain (top) and dgjane (bottom) for 1,
2, and 3 at different temperatures. The changes in these values are
indicated by the grey bars. *indicates irradiated samples.

(Table S8, Fig. S8 and S97). The one exception is the O---H/H:--O
interactions, which are significantly stronger for the MeOH
complexes (1.7 and 2.0 A, for 1 and 3, respectively) compared to
2 (2.5 A) at 300 K. The reason for this difference is that in 2 at
300 K one of the ethanol molecules is disordered. However,
upon cooling, the hydrogen bonds in 2 become much stronger
(2.05 A), whereas for 1 weaker hydrogen bonding is observed
(2.25 A). The fact that this change is not observed in 3, where the
values remain almost unchanged, strongly suggests that the SB
process is unlikely to be related to these changes in the
hydrogen bonding contacts.

Magnetic studies

Magnetic susceptibility data recorded on polycrystalline
samples of 1 and 2 between 5-300 K, are shown in Fig. 5 and
S$10-S13.7 At 300 K, the x\T values for 1 and 2 are ca. 3.90-4.10
em?® K mol ™" consistent with the HS state.* Cooling of 1 shows
a moderately abrupt SCO (ATg, = 70 K; defined as the temper-
ature range over which the SCO is 80% complete)®® with Ty, =
210 K. At 150 K, T = 2.40 cm® K mol ! and consistent with the

7188 | Chem. Sci, 2023, 14, 7185-7191
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[HS-LS] state observed crystallographically. Interestingly,
a further decrease in x\7T is observed around 80 K reaching
a value of 2.15 cm® K mol ™. It is important to note that this
behaviour is repeatable over several measurements and the
additional step at 80 K does not depend on kinetics (see
Fig. S10T). Moreover, a structure collected at 10 K shows no
changes in the Fe-N/O bond lengths despite this small decrease
in xuT (Table S27). For 2, cooling results in a more gradual
change (AT, = 88 K) in ymT, reaching a value of 0.60 cm® K
mol " at 150 K, indicative of the full LS state (Fig. 5 and S111). In
this case T, is around 250 K, 40 K higher than in 1 suggesting
that the slight differences in the packing in the EtOH solvate
modifies the ligand field thereby favouring the LS state in 2. At
high temperatures, the SCO profiles change markedly due to
desolvation (Fig. S12-S14t), in agreement with TGA analysis
(Fig. S157). After heating to 350 K, both samples exhibit slightly
different profiles (Fig. S14t), probably due to differing degrees
of incomplete desolvation. However, in both cases a much more
gradual SCO (ATg, = 178 K) than either of the solvates are
observed. The trapping of 1 in the [HS-LS] state contrasts with
[Fe(gsal-Br),]NO; - 2MeOH where the full LS state is accessible.*®
It would appear that the small increase in the van der Waal
radius between the bromo (1.86 A) and iodo atoms (2.04 A) is
sufficient to make the LS state thermally inaccessible.*

Photomagnetic studies

Photomagnetic studies on 1 reveal that at 10 K irradiation at
980 nm causes an increase in T reaching 3.38 cm® K mol " at
20 K and indicative of LIESST. The photoconversion efficiency is
ca. 67% and one of the most efficient yet reported for Fe'™ (Table
S6 in the ESIt). The derivative of T vs. T reveals that T(LIESST)
is 38 K. Interestingly, above 60 K the x\T values dip below the
thermal SCO profile with an additional decrease of x\T at the
same temperature then a small jump in the SCO curve. The
reason for this remains unclear, but similar observations have

4.0 —o—1 Thermal SCO
—o— 1 LIESST
‘_¥ 3.5 —o— 1 Reverse-LIESST
© 3.0
£ s §
E o253
o | g——
: 2.0 4 gl "
= 3V,

N 1543

1.0 - —@— 2 Thermal SCO

0.5+

B T T T T T
0 50 100 150 200 250 300
T/K

Fig. 5 xmT versus T plot (recorded at 0.5 K min™) of 1 showing the
thermal behaviour in the dark without any previous light irradiation
(blue), after LIESST effect at 980 nm (red) and after reverse-LIESST
effect at 650 nm (black) and thermal behaviour of 2 (green).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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been noted in [Fe(gsal),][(CsF;13)I].”” One possible explanation
is that relaxation from the high-symmetry HS state proceeds
initially to a metastable LS state of the same symmetry, before
further warming results in SB to the long-range ordered [HS-LS]
SSCW state. No LIESST effect was observed in 2, mirroring the
results found in 3. Given how similar the supramolecular
contacts are in 1 and 2 (see Hirshfeld analysis above) it seems
likely that the SB that occurs in 1, but not in 2 is responsible.
Symmetry-breaking is also not required in 3 as the LS state is of
high symmetry and may explain the lack of LIESST in this
system. This is consistent with the surprisingly different
T(LIESST) values in the MeCN and MeNO, solvates of [Fe(1-bpp-
SiPr),][BF,4],-sol.>> The MeCN solvate shows no SB and is
observed on the normal T(LIESST) line for this class of
compound. In contrast, the MeNO, solvate exhibits SB from
a LS (P24/c, Z = 12) phase to a HS (P2,, Z = 4) phase, upon light
irradiation, and a lower than expected T(LIESST) value. In the
case of Fe', where relaxation is generally more rapid,*”*
perhaps SB permits observation of LIESST in compounds where
it is not normally observed. The presence of efficient LIESST in
[Fe'"(psalpm-Cl),]PTFB (psalpm-Cl = 4-chloro-(R,S)-((phenyl(2-
pyridyl)methylimino)methyl)phenolate; PTFB = phenyl-
trifluoroborate)* and [Fe(gsal),][(CeF3l3)I].”” would seem to
support this hypothesis. However, no structural data is available
for either compound in the photoinduced HS state and further
examples will be needed to see if this is a more general trend.
Overall, these observations support the fact that the lifetime of
the photo-induced state does not depend exclusively on the
coordination sphere parameters but is also influenced by all the
additional energies associated with symmetry changes, such as
SB and order-disorder transitions.

The strong reverse-LIESST exhibited by [Fe(naphBzen),|I*®
encouraged us to irradiate 1 with 650 nm light. While the
reverse-LIESST is far from complete, there is a clear drop in 7,
which reaches 1.60 cm® K mol ™" at 10 K. This value is main-
tained until 45 K, after which it increases gradually, before
a more rapid rise to rejoin the thermal SCO profile at 90 K. The
presence of significant LIESST and reverse-LIESST from a [HS-
LS] state, formed upon symmetry-breaking, is to the best of
our knowledge unique in Fe™ SCO chemistry. Interestingly,
[Fe(gsal),][(CeF3I3)I] when irradiated at 650 nm shows relaxa-
tion from the meta-stable HS state to the [HS-LS] state with no
evidence of a hidden LS state.>” Moreover, it appears that the
multistep character of the thermal SCO is maintained in the
curves recorded after LIESST and reverse-LIESST effects.

Photocrystallographic studies

Photocrystallographic studies were conducted on 1 at 10 K by
irradiating a crystal at 980 and 660 nm. In both cases, the
structures retain triclinic symmetry but now contain a single
Fe"' centre with the same lattice periodicity as the high
temperature HS phase, as the initially different [HS-LS] sites
become equivalent in the fully [HS] or [LS] states. It is likely that
this high symmetry recovery, which corresponds to a photoin-
duced re-entrant phenomena, is responsible for the relatively
strong LIESST and reverse-LIESST that is observed in 1,** due to

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the elastic coupling between the spin state and symmetry
changes.” In the 980 nm structure, the bond lengths are
indicative of HS Fe'™, while the Fe-N,,. distances in the 660 nm
structure are 1.98 A and typical for LS Fe', Fig. 6. This is sup-
ported by the octahedral distortion parameters which are ¥ =
61 and ® = 228 (HS-980 nm) and ¥ = 41 and ® = 118 (LS-660
nm). We note that dchain and dpjane in the photoinduced HS
and LS structures show relatively small changes upon SCO by
0.09 and 0.08 A, respectively (Table S5+ and Fig. 4). As observed
in 3, dcpain is shorter in the HS structure, while djjapc is shorter
in the LS structure. However, 3 (HS and LS structures only)
shows a smaller change in depain (0.06 A), but a much larger
change in dpjane (0.21 A). The complete SCO observed in the
single crystal contrasts with the incomplete LIESST and reverse-
LIESST observed in the magnetic studies and probably reflects
the extremely dark colour of the crystals which limits light
penetration in the bulk.*****> The HS structure at 300 K and that
of the photoinduced HS structure at 10 K are almost identical.
Moreover, the packing in the photoinduced HS and LS struc-
tures closely mirrors that at 300 K but with much shorter
supramolecular contacts (see ESI Table S7t). An interesting
difference is that the O(nitrate)---I halogen bond is lost in the LS
structure (Fig. S167).

Comparing 1 with existing SCO systems it is important to
note that the thermal SCO and SB are clearly coupled. This is
not the case in previously studied examples where a ‘hidden’ LS
state is present.’®*>%* Hence, in 1 at 10 K where there are two
distinct Fe'" centres, one HS and the other LS, a change in both
symmetry (2 Fe'™ centres to 1 Fe' centre) and spin state is
required to access the LS state. In this case the phase transition
is reconstructive as the fully LS phase is of higher symmetry
than the [HS-LS] phase and therefore the phase transition is
discontinuous and associated with latent heat. Recalling that
the low symmetry [HS-LS] state is stabilized through the elastic
coupling of the SB to the volume strain,* there is an elastic cost
to reach the high symmetry fully LS state, which makes it

O Fetlcentre  [] Fe2 centre

2.15
[ ] ° )
2.10
—
< HS state
=
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Fig. 6 Plot of the Fe-N,, distance for 1 at 300 K (orange), 240 K
(yellow), 150 K (green), 100 K (light blue), 10 K (blue), 10 K (980 nm)
(purple) and 10 K (660 nm) (red). Circles represent the Fel centre and
squares the Fe2 centre.
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inaccessible at low temperature following a thermal equilib-
rium path. However, in the case of relaxation from the LIESST
HS state, a relaxation towards the fully LS state is made easier
because there is no symmetry change between these states, and
therefore no elastic cost related to symmetry-breaking.

Conclusions

In summary, we have explored the impact of two alcohol solvents
on SCO behaviour in an Fe™ SCO complex. While the EtOH
solvate exhibits a gradual, complete and single step SCO, the
MeOH solvate shows a rare symmetry-breaking spin transition to
a long-range ordered [HS-LS] SSCW state combined with a re-
entrant photoinduced phase transition towards HS or hidden
LS states under irradiation with visible or near-IR light. The
results demonstrate how solvent subtly alters the packing in the
structure, allowing for chemical tuning of the supramolecular
interactions between the active SCO centres and favouring here
incomplete symmetry-breaking SCO in 1, which in turn permits
bidirectional switching in an Fe'™ SCO material. Moreover, the
results suggest that SB seems to favour LIESST in Fe™™, although
further structural studies will be needed to determine how

applicable the observations in 1 are to other Fe™ complexes.
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