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Synthesis of atropisomeric phosphino-triazoles
and their corresponding gold(I) complexes†
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The synthesis of atropisomeric phoshino-triazoles is disclosed. It was found that the introduction of a

phosphine functionality onto the 5-position of a 1,2,3-triazole ring could be highly restrictive towards the

rotation around a triazole-aryl bond. VT NMR and chiral HPLC studies demonstrated that rotation was

restricted even at high temperatures. Gold(I) chloride complexes of single-enantiomer phosphines were

prepared and again demonstrated to be conformationally stable.

Atropisomerism is one of the fundamental families of chiral-
ity, where rotational restriction around a single bond in a
molecule creates two non-superimposable mirror images.1–3

Atropisomerism is present in many compounds with several
natural products, ligands and organocatalysts incorporating
restricted rotation.4–6 Phosphine ligands for transition metals
that rely on atropisomerism to engender chirality into products
are well established, with compounds such as BINAP and the
phosphoramidite family commonly being employed in a
variety of asymmetric catalytic applications (Fig. 1a).7–9 In
general heterocyclic-containing phosphines have seen a wide
variety of application and new scaffolds in this space have
great value.10

Whilst atropisomeric metal ligands are common, most are
built around a 1,1′-bi-2-naphthyl scaffold.11–14 Ligands built
around the 1,2,3-triazole core are in comparison extremely
sparse. Reports in this area are usually centred around a 5–5′
bistriazole architecture15–17 apart from a small number of
notable exceptions (Fig. 1b).18,19 In extension atropisomeric
1,2,3-triazole-phosphines to the best of our knowledge have
not been previously reported and there appears to be only
limited reports of atropisomeric 1,2,4-triazole-phosphines.20

This is particularly intriguing as accessing 1,2,3-triazoles can
be readily achieved through the ubiquitous copper-catalysed

azide–alkyne cycloaddition (CuAAC) which is part of the family
of commonly employed “click” reactions.14,21–23 Triazoles have
been widely employed in biorthogonal conjugation, which in

Fig. 1 (a) Atropisomeric phosphines commonly employed in asym-
metric catalysis (b) atropisomeric 1,2,3-triazoles (c) our previous work
on the synthesis of atropisomeric 1,2,3-triazoles (d) this work on the
synthesis of atropisomeric 1,2,3-triazole phosphines.
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part led to the awarding of the 2022 Nobel Prize in Chemistry
to Meldal, Sharpless and Bertozzi for their pioneering work in
the field.24–26 The CuAAC is well known as a reaction that can
be carried out under mild conditions with exquisite regio-
selectivity and up to quantitative yields.27–29

We have an ongoing interest into the utility of the CuAAC
reaction and how it can employed to generate chiral molecules.
Previously we have reported on the generation of point chiral
and axially chiral triazoles as well as utilising triazoles in a
range of linkage applications.30–34 Recently we have reported
on the synthesis of a range of phosphine-appended triazoles35,36

and on the establishment of how bi-aryl 1,2,3-triazoles can be
rendered atropisomeric (Fig. 1c).37 Therefore we wished to
expand on these concepts and investigate if we could readily
access atropisomeric and point chiral triazole-containing phos-
phines utilising the CuAAC reaction and in turn generate their
corresponding gold complexes (Fig. 1d).

To begin, we took inspiration from our previous studies on
the 2-methyl-1-naphthyl moiety which can be incorporated

into atropisomeric triazoles which are stable up to high temp-
eratures.37 The triazole 2 was successfully synthesised in two
steps from the commercially available 2-methyl-1-naphthyla-
mine. Phosphine incorporation was then conducted using a
lithiation followed by trapping with a range of chloropho-
sphines. This protocol led to the successful isolation of com-
pounds 3a–c incorporating tBu, Ph and iPr groups around
the phosphorus in 65%, 65% and 42% yields, respectively
(Fig. 2a). Immediately it was noticed in the 1H NMR spectrum
of 3a that the resonances corresponding to the tBu protons
were diastereotopic. This was encouraging as it suggested the
bi-aryl bond was no longer freely rotating. To confirm the

Fig. 2 (a) Synthesis of 1,2,3-triazole phosphines (b) molecules from the
crystal structure of rac-3a with ellipsoids drawn at the 50% probability
level. Symmetry codes used to generate the equivalent atoms: (i) x, y, z.
(ii) 1 − x, 1 − y, 1 − z. Hydrogen atoms omitted for clarity (c) single-
crystal X-ray diffraction structure of (R)-3a. Ellipsoids are drawn at the
50% probability level. Hydrogen atoms omitted for clarity.

Fig. 3 (a) Synthesis of a single enantiomer gold(I) chloride complex (b)
single-crystal X-ray diffraction structure of (S)-4a. Ellipsoids are drawn at
the 50% probability level. A molecule of DCM has been omitted for
clarity. Hydrogen atoms omitted for clarity. (c) Molecules from the
crystal structure of rac-3b with ellipsoids drawn at the 50% probability
level. Symmetry codes used to generate the equivalent atoms: (i) x, y, z.
(ii) 1 − x, 1 − y, 1 − z. Hydrogen atoms omitted for clarity. (d) Single-
crystal X-ray diffraction structure of homo-chiral complex 5. Ellipsoids
are drawn at the 50% probability level. A molecule of DCM has been
omitted for clarity. Hydrogen atoms have been omitted for clarity.
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stability of the observed atropisomers, a VT NMR study was
undertaken (see ESI†). In toluene-d8 at 105 °C no coalescence
of resonances was observed, pointing to a highly rotationally

restricted compound. In addition, a single-crystal X-ray struc-
ture was determined with both enantiomers of 3a being clearly
visible in the unit cell (Fig. 2b).

Compound 3b, in which two phenyl groups are attached to
the phosphorus was also successfully crystallised and again
two enantiomers were visible within the unit cell (Fig. 3c). The
isopropyl-substituted compound 3c was observed to display
characteristics of atropisomerism with diastereotopic protons
being clearly visible in the 1H NMR spectrum. In all, this
series of compounds was highly encouraging as all substi-
tutions around the phosphorous appeared to significantly
restrict the rotational freedom of the molecules.

The next step was to obtain single-enantiomer compounds.
Initially a Staudinger reaction was trialled to resolve the two
enantiomers. Unfortunately, this was unsuccessful and thus
led us to pursue chiral-prep HPLC to separate and isolate the
single-enantiomer triazoles. Separations for both compounds
(R)-3a and (S)-3a were successful (see ESI†) and the single
enantiomers of 3a were obtained in sufficient quantities for
characterisation and metal complexation.

X-ray crystallographic studies of (R)-3a were conducted and
the conformation around the restricted bi-aryl bond was deter-

Fig. 4 (a) Synthesis of 1,2,3-triazolephosphine rac-7 (b) synthesis and
single-crystal X-ray diffraction structure of gold(I) chloride complex (S)-
8. Ellipsoids are drawn at the 50% probability level (c) Synthesis of 1,2,3-
triazole phosphonite (S)-9a and subsequent complexation. Single-
crystal X-ray diffraction structure of (S)-10a. Ellipsoids are drawn at the
50% probability level.

Fig. 5 Attempted synthesis of phosphonite (S)-9b and subsequent
acquisition of the single-crystal X-ray diffraction structure 12. Ellipsoids
are drawn at the 50% probability level. Hydrogen atoms are omitted for
clarity.
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mined (Fig. 2c). This pure material (S)-3a was complexed with
DMSAuCl, leading to the formation of (S)-4a in 82% and a
corresponding crystal structure obtained (Fig. 3a and b). This
structure demonstrated no racemisation had occurred during
complexation and that a single-enantiomer complex had been
successfully prepared. The phenyl substituted compound 3b in
its racemic form was trialled in a gold complexation and the
homo-chiral complex 5 was obtained (Fig. 3c and d). We also
attempted to use chiral-prep HPLC to obtain a single-enantio-
mer sample of 3c, however after many attempts baseline
resolution was not achieved. This series of compounds clearly
demonstrated that the CuAAC reaction is a powerful tool to access
atropisomerically stable phosphines and gold complexes.

Next, we wished to explore the ability to generate P-chirogenic
triazole phosphines. This class of ligand was most famously
used by Knowles in his seminal synthesis of L-DOPA using
asymmetric hydrogenation.38,39 However, P-chirogenic phos-
phines have been underutilised mainly due to their synthetic
routes relying on phosphine oxide intermediates. We believed
that through trapping a lithiated triazole with a chloropho-
sphine with two different substituents, an atropisomeric
P-chirogenic ligand could be prepared. We have previously dis-
closed the preparation of triazole 6 which was utilised to
prepare a range of bulky triazole phosphines. Taking 6 and
treating it with n-BuLi followed by PPh(tBu)Cl gave the triazole

rac-7 in 74% yield (Fig. 4a). The 1H NMR spectrum of this
compound clearly showed diastereotopic protons with the
OMe groups giving two clearly defined singlets of integration
3. Preparative chiral HPLC was then employed to resolve the
enantiomers of 7. Both enantiomers were successfully isolated
(see ESI†) and the corresponding gold chloride complex (S)-8
was prepared in 94% yield. Single-crystal X-ray crystallography
was then used to unambiguously determine the chirality of the
gold complex (S)-8 (Fig. 4b). In addition a racemic crystal struc-
ture of 8 was also determined (see ESI†).

Finally, we wished to expand our study to investigate the
synthesis of a new class of ligand incorporating the phospho-
nite functional group in combination with a triazole. It was
decided that quenching the litathiated triazole 6 with PCl((S)-
BINOL) would give a highly unusual species which incorpor-
ated both BINOL and 1,2,3-triazole units. Using this approach
phosphonite triazole (S)-9a was successfully prepared in 26%
yield (Fig. 4c). Taking this triazole and treating it with
DMSAuCl furnished the gold complex (S)-10a with the stereo-
chemical configuration confirmed through single-crystal X-ray
analysis (Fig. 4c).

Interestingly whilst conducting the same reaction sequence
with the iPr substituted triazole 11, there was no observed for-
mation of the desired phosphonite (S)-9b; instead, a solid by-
product was formed. Single-crystal X-ray analysis led to the

Fig. 6 Single-crystal X-ray diffraction structures of (a) 4a, (b) 5, (c) 8 and (d) 10: (i) Ortep representation, ellipsoid probability 50% (rendered in
Spartan). (ii) Space-filling representation. (iii) Percentage buried volume determined from the crystal structures steric map of ligand depicted (right).
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identification of the multi-aryl species 12 (Fig. 5). Whilst this
was not the desired outcome this structure was highly unusual
both with multiple phosphorus atoms and multiple stereode-
fined bi-aryls. This compound could therefore be of use in
applications where highly sterically hindered phosphorus
ligands are required.

We and others have previously discussed the importance of
various parameters including steric effects of bulky phos-
phines relating to suitability and efficacy in catalysis (primarily
as ligands for metals in metal-mediated catalysis).35,36 The use
of the Tolman cone angle has been an effective descriptor of
ligand bulkiness for many years,40 more recently Nolan’s per-
centage buried volume parameter (%Vbur) has been widely
applied to various ligand types (eg NHC’s) to describe and cor-
relate ligand/catalyst activity to the environment surrounding
the metal catalyst. The use of %Vbur has undoubtedly been
accelerated through the use of the simple free web tool
SambVca developed by Cavallo and co-workers.41 So we set
about determining some steric parameters of our novel Au
phosphines using this tool.42–44 Utilising the X-ray crystal
structure CIF file data obtained for complexes 4a, 5, 8 and 10,
we were able to gain the %Vbur data utilising the Au–P bond
lengths observed (Fig. 6). Interestingly, the dimer complex 5
has a very significant buried volume surrounding the Au atom
(77.5% Vbur).

Conclusions

Overall, we have been able to demonstrate that the formation
of triazole-phosphines is a viable option for the generation of
stable atropisomeric species. This is the first time to the best
of our knowledge that a post CuAAC modification to a triazole
ring has been utilised to engender atropisomerism. This
approach offers added flexibility in being able to readily
change the other groups around the phosphorous atom.
We were also able to successfully access new classes of
P-chirogenic phosphines and phosphonites. Preparative chiral
HPLC was used to access enantiomerically pure samples of all
of these species. These ligand architectures in general were
readily amenable to the formation of gold(I) chloride com-
plexes. We believe that the strategies outlined in chiral ligand
design here may have an impact in catalysis and in particular
gold- and palladium-mediated reactions.
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