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Network dynamics: a computational framework
for the simulation of the glassy state

Georgios G. Vogiatzis, *abc Lambèrt C. A. van Breemen, b

Markus Hütter b and Doros N. Theodorou a

An out-of-equilibrium simulation method for tracking the time evolution of glassy systems (or any other

systems that can be described by hopping dynamics over a network of discrete states) is presented. Graph

theory and complexity concepts are utilised, alongside the method of the dynamical integration of a

Markovian web (G. C. Boulougouris and D. N. Theodorou, J. Chem. Phys., 2007, 127, 084903) in order to

provide a unified framework for dealing with the long time-scales of non-ergodic systems. Within the

developed formalism, the network of states accessible to the system is considered a finite part of the

overall universe, communicating with it through well-defined boundary states. The analytical solution of

the probability balance equation proceeds without the need for assuming the existence of an equilibrium

distribution among the states of the network and the corresponding survival and escape probabilities (as

functions of time) are defined. More importantly, the study of the probability flux through the dividing

surface separating the system and its environment reveals the relaxation mechanisms of the system. We

apply our approach to the network of states obtained by exploring the energy landscape of an atomistically

detailed glassy specimen of atactic polystyrene. The rate constants connecting different basins of the

landscape are evaluated by multi-dimensional transition-state-theory. We are able to accurately probe the

appearance of the δ- and γ-subglass relaxation mechanisms and their relevant time-scales, out of atomistic

simulations. The proposed approach can fill a gap in the rational molecular design toolbox, by providing an

alternative to molecular dynamics for structural relaxation in glasses and/or other slow molecular processes

(e.g., adsorption or desorption) that involve very distant time-scales.

1 Introduction

Simulating the slow dynamics of the glassy state at an
atomistic scale remains a mostly unsolved problem; the time-

scales of structural relaxation processes in the glassy state are
out of reach (and will continue to be) for the modern
computer hardware and software. The glassy state is not in
thermodynamic equilibrium, unlike the two states between
which it is often considered intermediate: the crystalline (if it
exists) and the liquid. It is often speculated in the literature
that there exists an ideal glassy state.1,2 The existence of an
ideal glassy state, if that were to be under true
thermodynamic equilibrium, would probably alleviate part of
the methodological and computational burden to simulate
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Design, System, Application

We report on the development of a rigorous out-of-equilibrium framework for simulating, at a molecular level, the time evolution of glassy systems (or any
other systems that can be described by hopping dynamics in a network of discrete states). Network dynamics offers a computationally efficient alternative
to standard molecular dynamics for simulating systems evolving through infrequent transitions, thus extending the molecular design toolbox. A system
represented by a finite set of explored states communicates with its environment in state space through a well-defined dividing surface consisting of
boundary states; this communication, in the form of the probability efflux, reveals the relaxation mechanisms of the system. As a proof of concept, we study
the elementary structural relaxation events of long-chain glassy atactic polystyrene below its glass transition temperature. The appearance of the δ- and
γ-subglass relaxation mechanisms and their relevant time-scales are probed at three different temperatures based on atomistic calculations and compared
to experimental data obtained by dielectric spectroscopy and NMR experiments. The methodology developed can serve as a starting point for the molecular
engineering design of materials (e.g., glassy polymers) with tailored relaxation processes in the frequency–temperature domain, hence with controlled
plasticity, toughness and permeability to small molecules.
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the time-evolution of a glassy system. However, the fact that
many physical properties of glasses depend on their history
of formation and change (slowly) with time cannot fit into
the picture of an ideal glassy state. Thus, a molecular
simulation approach for studying (organic/inorganic; low/
high molecular-weight) glasses should eventually deal with
the out-of-equilibrium evolution of the system.

While the lack of fundamental understanding has not
hindered the technological exploitation of glassy polymers
(most engineering plastics are amorphous solids), a bottom-
up understanding of the ageing and relaxation mechanisms
in the glassy state will enable the rational design of materials
for extreme applications based on thoughtful molecular
modelling. Molecular dynamics (MD) is widely employed as
the standard method of molecular simulations of liquids.
Nevertheless, it is of limited assistance in the amorphous
glassy state,3 where the times of e.g. volume or enthalpy
relaxation are comparable to or exceed the universally
accepted 100 s-mark for the relaxation time close to the glass
transition temperature.4,5 In order to keep the atomistic
description of the system, within the framework of classical
mechanics, its time evolution should be coarse-grained at the
level of infrequent hopping events between different
microscopic states, i.e., one should be able to discern
between fast equilibration of the system within a constrained
neighbourhood of its configuration space and slower
diffusion to different neighbourhoods.

As postulated long ago by Goldstein,6 and observed by MD
simulations,7 glassy polymer systems evolve by discrete
transitions among basins of their potential energy landscape
(PEL). This view provides a convenient framework for
developing a method that will track the infrequent
transitions governing the long time-scale evolution of the
system. According to Stillinger and Weber,8,9 the glassy
system spends most of its time fluctuating in the vicinity of
local potential energy minima (i.e., “inherent structures”,
ISs). For an ergodic system at equilibrium, a macroscopic
observable could be rigorously cast as the sum of the
Boltzmann-weighted properties calculated at the individual
basins of the PEL. For an out-of-equilibrium system, such as
a polymer glass, the occupancy probability of every basin
becomes time-dependent. Moreover, there is a well-defined
formation history that led a glassy specimen to get trapped in
a single initial basin (e.g., by quenching from the melt state).
Thus, the physical ageing process is envisioned as the time-
dependent progression of traversing several basins.

Within the PEL framework, the dynamics (at long time-
scales) is governed by hops from one basin to another.
Transitions between basins, defined by individual ISs on the
PEL, are hindered by energy barriers separating the basins.
We assume that the elementary structural relaxation events
(from basin to basin) are governed by the first-order saddle
points of the energy with respect to atomic coordinates, i.e.,
transition states as defined by Munro and Wales.10 Starting
out of the basin in which the system found itself after
quenching into the glassy state, we can discover transition

states in its vicinity by a combination of eigenmode-following
and activation relaxation techniques, either on its potential
energy surface,11 or on a free energy surface dictated by any
combination of external stress/strain conditions.12 Full
transition paths are constructed off of the saddle points by
probing the steepest descent trajectories leading to the
connected basins, and rate constants for the elementary
structural transitions are obtained using multidimensional
transition-state theory. All relevant thermodynamic
properties, e.g., the free energy of the system at the minima
and saddle points, are calculated from the potential energy
and the vibrational frequencies, invoking a quasi-harmonic
approximation (with analytical derivatives of the potential
energy).13 The complete knowledge of the (potential or free)
energy landscape is clearly out of reach. There will always be
concerns that estimates of the out-of-equilibrium time-
dependent properties are inadequate. By employing a
random sampling procedure for exploring the energy
landscape,11 we mitigated the problem and managed to
achieve sampling of a very wide range of barrier heights and
the corresponding transition rate constants.

A particularly attractive method for addressing the long
time-scales of the glassy state is a variant of the
metadynamics framework14,15 developed by Yip and his co-
workers.16,17 Within metadynamics the system is repelled by
the minimum in which it resides by adding a smooth energy
penalty function. Its free energy is then minimised until a
new minimum is found which is not directly affected by the
penalty function. By repeating the combination of “lifting”
(i.e., repulsion out of an energy minimum) and “relaxation”
steps, a random walk on the PEL is effectively created. In
essence, the memory of all previous penalties should be
conserved during the simulation, but the complexity of the
landscape is such that even a memory of a few steps is
sufficient for an efficient sampling.

The tessellation of the PEL into basins of attraction, each
one represented by the relevant IS located at its bottom,
provides a rigorous way of coarse-graining the time evolution
of the system as a hopping process over a network of discrete
states. This idea was brought forward by Boulougouris and
Theodorou,18 who devised a procedure for analytically solving
the master equation over a Markovian network of states.
Their method starts from a single state and progressively
augments the network of states on-the-fly, invoking concepts
of mean first-passage time (MFPT). Later, Boulougouris and
Theodorou19 developed an elegant geometric approach for
analysing the observables in terms of eigenvectors of the rate
constant matrix. More recently, Boulougouris20 extended this
approach to mapping the equilibrium thermodynamic states
on Euclidean vectors, thus providing a geometric
representation of equilibrium (and near equilibrium)
classical statistical mechanics.

Mathematical techniques for dealing with processes
involving mean first passage times were developed several
decades ago within the framework of non-equilibrium
physical chemistry and chemical physics.21–23 These concepts
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have since flourished in a very diverse spectrum of
applications, ranging from reactions involving fluorescent
trap states24–26 to cellular response out of biochemical
reaction networks.27,28 Since the MFPT expresses an average
timescale for a stochastic event to occur for the first time, it
provides a rigorous coarse-graining scheme for mapping a
multi-step (multi-stage) kinetic process to a single timescale,
i.e., the time needed for the system to arrive at a final state,
having started at some other state of the network.

We have been building a framework for understanding
and predicting the glassy dynamics which gets unified by the
present work. In the process, we first studied the networks of
states visited by an ageing specimen by means of MD
simulation in the glassy state,7 revealing the topological
features of the network that we should reproduce by a
systematic exploration of the energy landscape. We then
developed efficient algorithms for locating minima and
saddle points on the free energy landscape of a classical
system described by molecular forcefields.11–13

In this work, we present an out-of-equilibrium molecular
simulation approach capable of accessing the long-
timescales of the glassy state by coarse-graining the time
evolution of glassy systems as a traversal of a network of
discrete states. First, we present the fundamental aspects of
our formulation in a thorough and pedagogical way. The
solution of the master equation is a well-known procedure.
However, our formulation improves aspects of previous
attempts and unveils new facets of the solution of the
master equation in a network where absorbing states are
present. Then, we discuss the significance of studying and
analysing the probability flux towards the boundary states,
which, to the best of our knowledge, has not been studied
earlier. Finally, we introduce a measure of the ability of the
developed network to faithfully represent the long-time
dynamics of the simulated system, allowing us to judge the
quality of the finite-sized network representation developed.
By combining the exploration of the energy landscape
around local minima with the description of dynamics by
means of a master equation over an expanding network of
states, we have managed to simulate ageing atactic
polystyrene (aPS) specimens for times up to ms under
realistic conditions of temperature and pressure. We can
then identify the time-scales of the δ- and γ-subglass
relaxations of atactic polystyrene by studying the boundary
enclosing our finite-sized networks of states. Our findings
complement the long-held, but somewhat neglected belief
that structural relaxation in glasses can occur via secondary
relaxation processes.29,30

2 Method
2.1 Coarse-graining dynamics in a network of transitions

In this work we consider the example of a polymer glass
formed by quenching an equilibrium melt configuration. By
subjecting the melt configuration to a prescribed cooling
protocol, T(t) at constant pressure, we progressively lock (at

temperatures lower than the glass transition temperature)
the configuration in a specific basin of its potential-energy
hypersurface. The tessellation of the energy hypersurface in
basins surrounding its local minima, as proposed by
Stillinger and Weber,8 provides a rigorous way of introducing
the idea of discrete states, which is central to our
formulation. By repeating the vitrification procedure with a
different initial configuration, we may end up in a different
basin, simply because the melt was in a different
configuration at the beginning of the process. From an
experimental point of view, changing the quenching rate (e.g.
by cooling with liquid nitrogen) dramatically changes the
dynamical behaviour of the glass. The properties of glasses
depend on their formation history; the memory of the
processes involved in the formation of the glass fades slowly
with time. The effect of the history of formation on the
dynamical properties of the produced glasses has been
extensively studied by Grigoriadi et al.31,32 who have
employed different quenching and ageing protocols,
exploiting a state-of-the-art liquid-nitrogen cooling device for
vitrifying polystyrene specimens before subjecting them to
dielectric spectroscopy measurements.

We can define a probability PformI = PI (t = 0) that the
considered formation history leads to the basin around a
specific inherent structure that has been labelled with I.
Calculation of the exact formation probability is a tedious
task. In lieu of the exact, process-dependent, PformI , we will
use PI(0) = 1 as the initial condition for the time evolution of
the specimen in the glassy state.

Despite the fact that the initial basin (where we arrived by
quenching) is surrounded by energy barriers, the specimen
will slowly move out of it to other parts of its configuration
space. In order to emulate this process we explore the energy
landscape by forcing the system to discover first-order saddle
points in the vicinity of the initial basin. Detailed discussions
of the methods developed for scanning the potential and the
free energy landscape of aPS can be found in ref. 11 and 12,
respectively.

While our approach is not limited to ageing glassy
polymer specimens, we have to restrict ourselves to processes
for which the transition rates depend only on the
instantaneous state of the system, and not on the entirety of
its history. Such memory-less processes are known as
Markovian and are applicable to a wide range of systems. MD
trajectories of the same glassy system7 have shown that a
separation of time-scales holds, i.e., the system equilibrates
within a basin quickly, while going out of that to a
neighbouring one is an infrequent event. Moreover, a
hierarchy of topological organisation of the basins of the PEL
has been observed, with fast-communicating basins forming
local neighbourhoods (i.e., “metabasins”) over longer time-
scales. When the rate constant distribution for elementary
transition events is very broad,11 a kinetic Monte Carlo (kMC)
simulation may become trapped within clusters of states
communicating via fast transitions, prohibiting the sampling
of the more infrequent transitions out of the clusters, which

MSDE Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
 1

44
4.

 D
ow

nl
oa

de
d 

on
 1

9/
07

/4
7 

04
:3

1:
39

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00256f


1016 | Mol. Syst. Des. Eng., 2023, 8, 1013–1029 This journal is © The Royal Society of Chemistry and IChemE 2023

govern the long-time evolution of the system (e.g., a glass or
biomolecule27).

2.2 Graph representation of the network of transitions

As elaborated in ref. 7, we envision the network of basins
(and corresponding ISs) as a directed graph, whose vertices
are the ISs and whose edges are the transitions between ISs
(probed by exploring the PEL11). Our edges are directed: the
edge eij ≡ ei→j is inherently different from the reverse edge,
eji (different free energy barrier and therefore different rate
constants for the pair of transitions). A two-dimensional view
of an indicative network (graph) is presented in Fig. 1. Laying
down the graph of the network on a plane allows for easy
visual inspection and provides immediate insight into the
basic features of its topology. However, the effectiveness of
the visual representation strongly depends on the artistic
taste of the drawing. An insightful planar view should
contain as little edge crossing as possible and should evenly
fill the available area with vertices. This problem has been
addressed in the literature33 and many approaches have been
proposed. We choose the solution suggested by Hu,34 i.e.,
producing the layout by modelling the graph-drawing
problem through a physical system of bodies with forces
(harmonic springs) acting between them on the plane (“force-
directed” algorithm). The algorithm finds a good placement
of the bodies in two dimensions by minimising the energy of
the system and is equivalent to our approach to a completely
different problem, that of randomly dispersing grafting
points for polymer chains on the surface of a nanoparticle.35

Our graph-theoretic calculations rely on the LEMON C++

library36 and the “graph-tool” python library developed by
Tiago P. Peixoto.37

2.3 Analytical solution of the master equation

We consider the solution of the master equation in a finite
network of states. The network, which can be built up by
following any procedure, is considered as an exact
representation of the “universe” within which the system can
find itself. The representation becomes increasingly accurate
by considering more states. It is divided into two subsets, the
first one being the set of explored states, E, for which there is
enough knowledge of their local environment, and the subset
of boundary states, B, for which there is no knowledge of
their surroundings (see Fig. 1). In other words, following the
concept of thermodynamics, universe = system +
surroundings, if the system would escape out of the set E, it
could only visit one of the states belonging in B. Thus, the
set B represents the immediate environment of the set E. We
will denote with |E| and |B| the cardinalities (numbers of
elements) of sets E and B, respectively.

Our starting point is to restrict the original master
equation to the subset E of states, where the states on its
boundary, B, are turned into artificial absorbing states in
order to keep track of the probability that flows out of E.

Following Boulougouris and Theodorou,18 we consider the
conditional probability Qi(t; B) of observing the system
visiting one of the explored states, viz., state i at time t
starting from an initial distribution, given the additional
constraint that the system has not visited any state out of the
set B of predefined states (which does not contain i). Once
states and inter-state rate constants are known, the system
evolution at the state level can be tracked by solving the
following master equation for Qi(t; B), where the boundary
states are treated as absorbing:

∂Qi t;Bð Þ
∂t ¼

X
m∈E

Qm t;Bð Þkm→i −Qi t;Bð Þ
X

n∈E∪B

ki→n: (1)

or in the matrix notation:

∂Q t;Bð Þ
∂t ¼ KQ t;Bð Þ: (2)

Assuming that time-scale separation renders the
transitions infrequent events,38 the transition rate constants
ki→j are independent of time and the evolution of the system
is a Poisson process. Qi(t; B) is the probability of occupancy
of state i at time t, under the constraint that the system gets
absorbed by any of the states of its current boundary, B. The
time-dependent Q(t; B) in the matrix representation of eqn
(2) has all the Qi(t; B) as elements (the dimensionality of the
probability vector Q is equal to the number of explored
states, |E|). According to eqn (1) this changes as a result of
influx of probability from all other explored states, and efflux
of probability to both explored and boundary states.

The off-diagonal elements of K contain contributions from
transitions connecting explored states, i.e., Kji = ki→j with i, j

Fig. 1 Graph representation of a network of inherent structures of a
glassy atactic polystyrene specimen at room temperature (T = 300K)
and atmospheric pressure. Red nodes denote “explored” while blue
ones denote “boundary” states. The snapshot has been created at the
very early stages of the network expansion.
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∈ E. The diagonal elements, Kii ¼ − P
j∈E∪B

ki→j, contain

contributions from within the set of explored states as well as
outgoing (from E to B) contributions that cross the
boundaries of the system, i ∈ E, j ∈ E ∪ B. There is no influx
from B to E. In other words, the use of absorbing boundary
conditions implies that all kj→i need not be considered for all
j ∈ B and i ∈ E; they are calculated during the exploration of
the energy landscape but they are not needed in the
definition of K. The rate constant matrix K, as defined by eqn
(1), is not symmetric, nor stochastic. Our formulation differs
from the one of Wei and Prater39 because our network is not
finite; the diagonal of K contains “leakage” terms out of the
explored set E and into the boundary set B.

We can construct a negative definite matrix, K̃, out of K
with the same eigenvalues, by following the standard
procedure of scaling the rate constants with equilibrium
probabilities.40 This is usually done by assuming the
existence of an equilibrium distribution, i.e., the existence of
a single zero eigenvalue for K. Then, by the application of the
detailed balance condition, i.e., Pi(∞) ki→j = Pj(∞) kj→i, a
symmetric reduced rate constant matrix, K̃, is obtained. The
diagonalization of a symmetric matrix is faster and more
robust, since its symmetry ensures that eigenvalues are real
and there is no need to perform computations involving
complex numbers.41 However, in our formulation, there is no
equilibrium distribution for the conditional probabilities Q;
the system is continuously leaking to its boundary. Within
our non-equilibrium framework, in order to make K
symmetric, we consider the evolution of the system within
the set of explored states E only, ignoring any connections to
the boundaries. If the description of the system were
complete within the current set of explored states, the
solution below would fully describe the dynamics of the
network. Let us consider the probabilities, PEi (t), of occupancy
of every explored state, i ∈ E, as a function of time. Within
the set E, the detailed balance condition holds, leading to an
equilibrium distribution among states at infinite time:

Pi
E(∞)ki→j = Pi

E(∞)kj→i (3)

with both i, j belonging to the set of explored states, i.e., i, j
∈ E. We can calculate the equilibrium probabilities PEi (∞)
either by imposing a stationary condition on the evolution of
vector PE or by applying a shortest-path substitution
technique which is presented in Appendix A.

Given the equilibrium probabilities of the explored
states, PEi (∞), the solution of eqn (1) can be developed
analytically, with inspiration from the early work of Wei and
Prater on the kinetics of a network of reversible chemical
reactions.39 First, we transform the state probability vector
Q(t; B) into a reduced state probability vector Q̃(t; B) with
elements:

Q̃i t;Bð Þ ¼ Qi t;Bð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi

E ∞ð Þ
q

(4)

Q(t; B) satisfies the reduced master equation

∂Q̃ t;Bð Þ
∂t ¼ K̃Q̃ t;Bð Þ (5)

with

K̃ij ¼ Kij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj

E ∞ð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi

E ∞ð Þp (6)

The matrix K̃ is symmetric by virtue of the microscopic
reversibility condition, eqn (3). The matrix is negative
definite; it is proven that all eigenvalues of K, λm, with 1 ≤
m ≤ |E| are real negative numbers (see Appendix B). K̃ has
the same eigenvalues as K, i.e., all eigenvalues of K are
negative, indicating that all conditional probabilities decay
to zero for long times, i.e., Qi(∞; B) = 0. The conditional
probability of the system occupying any i in the explored set
(without having hit any boundary state) fades to zero at
infinite time, since the set E is an open system.

Finally, the solution to the reduced master equation can
be written as:39,40

Q̃ t;Bð Þ ¼
XEj j

m¼1

ũm·Q̃ 0;Bð Þ� �
exp λmtð Þũm (7)

with λm and ũm being the eigenvalues and the corresponding
eigenvectors of K̃, respectively. Once Q̃(t) has been
determined, the state probabilities Q(t) can be calculated via

Qi t;Bð Þ ¼ Q̃i t;Bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi

E ∞ð Þ
p

.

2.4 Probability flux towards the boundary states

A key ingredient of our formulation is the probability flux out
of the set of explored states, E towards the set of boundary
states B. We define the rate of reaching a specific boundary
state j ∈ B between t and t + dt as:27,40

f j t;Bð Þ ¼
X
i∈E

Qi t;Bð Þki→j; (8)

and the total flux to the boundary can be obtained by
summing over all boundary states:

F t;Bð Þ ¼
X
j∈B

f j t;Bð Þ ¼
X
j∈B

X
i∈E

Qi t;Bð Þki→j: (9)

As we will discuss later, the probability flux reveals the
principal modes (relaxations) of the system out of the set of
explored states and towards the set of boundary states.

2.5 Escape and survival probabilities

Since by definition, the rate of reaching an absorbing state j
∈ B in a time interval [τ, τ + dτ] is fj(τ)dτ, the probability of
having reached j ∈ B by time t is:

Pj
escape t;Bð Þ ¼

ð t

0
f j τ;Bð Þdτ; (10)

where we used the designation “escape” in order to indicate
that the system is escaping from the current set of explored
states E to its surrounding states of B, by visiting state j. It is
clear that the escape probability changes in time with a rate
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equal to the probability current, fj(t), into the absorbing state
j. We have not dropped the use of “B” in the arguments of
the probability functions, since the exact composition of set
B shapes the conditional probabilities Qi and thus all
probability currents.

There are many escape routes from E to B, each one going
via a particular state j ∈ B. Thus, we can define the total
escape probability, i.e., the probability that the system has
escaped to B by time t:

Pescape t;Bð Þ ¼
X
j∈B

Pj
escape t;Bð Þ ¼

ð t

0
F τ;Bð Þdτ

¼
X
i∈E

X
j∈B

ki→j

ð t

0
Qi τ;Bð Þdτ:

(11)

The integral of the conditional probabilities in the right-hand
side of eqn (11) can be analytically evaluated by employing
the solution of eqn (7). It is trivial to see that, when no
boundary states are present in the network, the escape
probability at all times is zero, since the system has no
pathways to escape. The escape probability at t = 0 is also
zero, since the integral vanishes.

Apart from the escape probability, there is the
complementary probability of the system having survived
(“being alive”) after time t, i.e., that the system has not
reached any of the boundary states (of B) up to time t,

Palive(t; B) = 1 − Pescape(t; B). (12)

Intuitively, the survival probability Palive(t; B) decreases with
time, with the rate being equal to the probability current into
the set of boundary states:

F t;Bð Þ ¼ −∂P
alive t;Bð Þ
∂t : (13)

The probability that the first passage time is smaller than t0,
considering the current set of boundary states B, is Pescape(t0;
B), and therefore Pescape(t; B) is the cumulative distribution of
F(t; B). This provides a prescription for obtaining the first
passage time distribution, F(t; B) by solving the master
equation, which yields the probability flux into the absorbing
set of boundary states, B. The mean first passage time (MFPT)
into the set of boundary states may then be evaluated as

tE→Bh i ¼
ð∞

0
tF t;Bð Þdt (14)

In the limit of t → ∞, the escape probability defined by
eqn (11) takes the form:

Pescape ∞;Bð Þ ¼
X
i∈E

X
j∈B

ki→j

ð∞

0
Qi τ;Bð Þdτ ¼

X
i∈E

X
j∈B

ki→j tires Bð Þ

(15)

where we have introduced the residence time tresi (B) of the
system in the explored state i under the condition that the
network is constrained by the current boundary B. The

residence time can also be obtained analytically as:

tresi Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PE
i ∞ð Þ

q XEj j

m¼1

u ̃m·Q ̃ 0;Bð Þ½ � − 1
λm

� �
ũm ¼ −K−1Q 0;Bð Þ� �

i

(16)

where the subscript i in the last equality indicates the ith
element of the formed vector. Since the “leaking” rate
constant matrix K is negative definite, eqn (16) will yield a
positive value. The definition in eqn (16) parallels the
calculation of the residence time in state i at equilibrium,
i.e., |B| = 0:42

tres;eqi ¼ 1P
j
ki→j

(17)

which is not dependent on the existence and composition
of the set B.

The summation of the residence times defines a mean exit
time in the spirit of van Kampen40

texith i ¼
X
i∈E

tresi Bð Þ ¼
X
i∈E

−K−1Q 0;Bð Þ� �
i; (18)

that could serve as a mean first passage time if every state in
B was assumed as the only absorbing state present in the
network. For more than one absorbing state, the conditional
mean first passage time defined by eqn (14) is preferred,
which assumes that the system arrives at the boundary state j
∈ B under the condition that it has not traversed any other
boundary state before. The condition of avoiding any other
absorbing state before getting absorbed by a specific state in
B justifies the fact that the MFPT 〈tE→B〉 defined by eqn (14)
is always smaller than the exit time 〈texit〉 defined by eqn (18).

An intriguing feature of eqn (15) is that Pescape approaches
unity as t → ∞, but it can have a limiting value that is smaller
than one. By focusing on the boundary states, rather than on
explored states, eqn (15) takes the following form:

Pescape ∞;Bð Þ ¼
X
j∈B

X
i∈E

ki→j tresi ¼
X
j∈B

ηj (19)

where ηj stands for the “absorbing efficiency” of the
boundary state j. It is calculated by the residence times of all
states i ∈ E that transition directly to j ∈ B. Within that
framework, Pescape(∞; B) provides a quantitative estimate of
the efficiency of the set B to absorb the system. Ideally, we
would like to decrease the efficiency of the B set, thus
increasing the probability of finding the system “alive” within
the network of explored states at t → ∞. This can be done by
employing the dynamic importance sampling approach of
the following section. In essence, we are going to incorporate
more and more states in the set of explored states E, thus
reducing both the number and the magnitude of the ki→j

connections with i ∈ E and j ∈ B. Slower outgoing
connections from E to B will increase the probability of the
system being trapped within the explored network of states at
long timescales, thus providing a faithful description of long-
time dynamics. Interestingly, the definition of ηj parallels the
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definition of the quantum yield of photochemical reaction
centres introduced for the study of excitation migration in
photosynthetic networks of purple bacteria.26

Please note that the sum of the conditional probabilities
Qi(t; B) at time t does not provide an estimate of the
probability of the system being “alive” at time t. By
construction, if there is at least one state in B, all Qis decay
to zero, irrespective of the size of the set of explored states
(since K in eqn (2) is negative definite). Instead, the survival
probability introduced by eqn (12) has an asymptotic finite
value Palive(∞; B) for the system trapped within the set of
explored states at long time-scales, even for finite-sized sets
E, as seen by analysing Pescape(∞; B).

2.6 Expanding the network of states

The key to our approach is to build up the network of
explored states by adding each time a new as yet unexplored
state, i.e., a state jselect ∈ B is chosen to be included in E by
means of dynamical sampling, aiming at increasing the
probability of finding the system trapped within the network
of explored states, E. The basin of this state is then explored
in order to find neighbouring transition states (saddle point
search) and the local minima at the other end of the
transition are added as B-states. To this end we follow the
selection proposed by Boulougouris and Theodorou18 which
we briefly describe below.

A time tselect is selected from the distribution of first
passage times:

P tselectð Þ ¼ F t;Bð ÞÐ ∞
0 F t;Bð Þdt ; (20)

and one of the states in B is selected, jselect, for removal from
B and addition to E with probability:

P jselect
� � ¼ f jselect tselect;Bð Þ

F tselect;Bð Þ (21)

To summarise, in order to calculate the probability density
of the first passage times (FPT) to the set B, from a state i ∈
E, one needs to solve the master equation for the evolution of
the system with the absorbing boundary conditions at every j
∈ B, to obtain the probability current fj(t; B) into the
absorbing state j, which then provides the FPT distribution
through the aforementioned relations. Once jselect is selected,
all states connected to it must be determined. The
determination of all neighbours is performed by locating
transition states in its vicinity which are then linked to new
local minima through the creation of reaction paths.11

For a realistic description of the dynamics of the system,
it is crucial that the full range of the relevant energy barriers
is sampled, since the relevant rate constants will be included
in the rate constant matrix of the network of states. As we
pointed out and thoroughly discussed in our previous work11

the sampling of the transition states on the energy landscape
(by directing the search along randomly chosen eigenvectors

of the Hessian) is as unbiased as possible. The combination
of methods employed therein allows for a very wide spectrum
of possible transitions to be sampled. The signatures of the
relaxation mechanisms are already present in the
distributions of transition rate constants. The peaks of the
distributions, indicating elementary structural relaxation
events, are then translated, through the dynamic importance
sampling, eqn (20) and (21) to distinct peaks of the efflux
current, as we will see in the following section. Thus,
accumulating realistic distributions of rate constants for the
elementary structural transitions is of ultimate importance
for reproducing the actual dynamics of the system under
consideration.

3 Systems studied

The results presented in the following have been obtained
from networks of states of a single 300-mer atactic PS system
generated at temperatures of 300, 250 and 200 K. The
generation of the initial configurations in the glassy state
followed the same procedure as described in ref. 11 and 12:
proper equilibration through coarse-grained connectivity
altering Monte Carlo in the melt state, reverse mapping of
the equilibrated configuration to the united-atom
representation43 and finally molecular dynamics simulation
in the melt state and quenching to the glassy state. Five
independent melt configurations were used for obtaining an
equal number of glassy configurations at each of the three
temperatures of interest. The relevant results have been
averaged by arithmetic (not equilibrium-Boltzmann)
averaging.13,44 We have extensively employed the molecular
model of Lyulin and Michels45 in the past and we use it for
the present study, too.

Rate constants for basin-to-basin transitions are calculated
under the imposition of atmospheric pressure, as elaborated
in ref. 12, i.e., by locating stationary points on the Gibbs
energy landscape (restricted thermodynamic equilibrium
imposed on both local minima and transition states). Under
the imposition of the Gibbs energy, the i → j transition is
inhibited by the barrier:

Δ‡G ¼ G‡ −Gi ¼ A‡ − Ai
� �þ V ‡

X
ζ ξ

σζ ξεζ ξ;i (22)

where A is the Helmholtz energy, σζξ is the ζξ component of
the Cauchy stress tensor and V‡ is the volume of the system
at the transition state. The strain tensor components, εζξ,i, of
configuration i are defined with respect to the transition
state.12 All states of the triplet (i, j and ‡) have the same
pressure; their volumes differ from each other, and that
difference gives rise to the last term of the right-hand side of
eqn (22). The pV term included in the definition of the
Gibbs energy in our previous studies (cf. Lempesis et al.46

and Vogiatzis et al.12) vanishes since for both states i and j
one should employ the volume of the reference configuration
( = ‡) that is shared by all states of the triplet. The relevant
discussion can be found in ref. 12. Finally, we should note
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that by using the configuration at the saddle point as the
reference configuration for defining the strain tensor, the last
term on the right-hand side of eqn (22) appears with a
positive sign. The interested reader is referred to ref. 12 and
13 for the details of the thermodynamic derivation.
Eventually, the transition rate constant from state i to state j,
through the transition state ‡ becomes

ki→j ¼ κBT
h

exp
−Δ‡G
κBT

� �
; (23)

with κB being the Boltzmann constant.

4 Results
4.1 Topological features of the generated networks

Before studying the dynamics of the system over the network
of discrete states, we characterise its topology, that is, the
connectivity between PEL basins at different scales of the
underlying network of inherent structures. In our previous
work7 we showed that the time trajectories of an ageing
glassy polymer specimen of the same characteristics (atactic
polystyrene of 30 kg mol−1 at T = 300 K), simulated by
molecular dynamics, generate a structured walk on its PEL
landscape. The network of states visited in the course of the
time resembled the class of “small-world” (SW) networks that
are frequently encountered in real-life problems and ignited
the revolution of complexity science. Watts and Strogatz47,48

discovered that many networks behave like “small worlds”
(SW), i.e., the neighbours of a specific vertex are very likely to
be neighbours themselves, like in social networks (the
common saying of “six degrees of separation”). The
observation takes into account the mere connectivity of the
network, without referring to the existence of any kind of
physical distance between the vertices. The SW networks are
in many ways different from randomly-connected networks,
where no emerging patterns can be identified.

In Table 1 we report the global and local clustering
coefficients for networks of different sizes (in terms of the
count of total states), generated by our network dynamics
approach. Watts, Newman and Strogatz48–50 defined a
clustering coefficient, which in the present study we are
going to call “global” as:

C ¼ 3 × # triangles in the graphð Þ
# connected triplets of verticesð Þ (24)

where the “number of triangles” appearing in the numerator
refers to the number of triplets of states each of which is
connected to both of the others, and the “number of triplets”

in the denominator refers to triplets in which at least one is
connected to both the others (the factor 3 in the numerator
takes care of the fact that each triangle contributes to three
connected triplets, one for each of its three vertices). At a
local level, i.e., per state (or vertex of the network), a local
clustering coefficient, ci, of a vertex vi is also defined51 by
dividing the number of connections (edges), |ejk|, between
the neighbours of vi, by the total number of possible
connections (edges) between them:48,50

ci ¼
ejk

	 
�� ��
kouti kouti − 1

� � (25)

where kouti is the number of outgoing connections (outgoing
degree) of state (vertex) i and ejk is the connection (edge)
formed by a pair of vertices vj and vk which are both neighbours
of vertex i, i.e. vj, vk ∈ Ni with Ni being the set of neighbours of
i, Ni = {vj: eij is an edge of the graph}. For a directed graph, ejk is
distinct from ekj, and the degree of outgoing connections is
used in the denominator (in our network dynamics approach
both ejk and ekj are present in the network by construction).
Both clustering coefficients are normalised by definition.50

They become unity for a fully connected graph (every vertex is
connected to any other vertex) and have typical values ranging
from 0.1 to 0.5 in many small-world real-life networks.52

All networks considered in Table 1 exhibit the clustering
characteristics of small-world networks, i.e., clustering
coefficients on the order of 0.1. We have studied the
clustering at several stages of the expansion of the network
(from 100 to 2000 states). In all cases both clustering
coefficients are at least an order of magnitude higher than
the average clustering coefficient of a random network, which
can be analytically estimated48 as C ≃ 〈ci〉 ≃ k/n where k is the
average vertex degree of the network and n the number of
vertices. Initially, the local clustering coefficient deviates
from the global one since it is very sensitive to the
environment encompassing every state (vertex) of the
network. We have already seen that the local clustering
coefficient exhibits fluctuations for small networks.7 As the
network expands they both converge to the same value. The
asymptotic value obtained by the larger networks is close to
0.15 that is remarkably close to the value calculated for
networks formed by tracking the states visited in the course
of a MD trajectory in the glassy state, of the same system
under the same conditions (temperature and pressure).7 The
connectivity of the network has an inherent fractal nature,
i.e., despite the fact that the MD trajectories could not go
over many of the higher-lying transitions (which we are able

Table 1 Clustering coefficients of the generated networks of states for different sizes of the network

Size of the
network (states)

Global clustering
coefficient

Local clustering
coefficient

Equivalent random
network (global clustering coefficient)

100 0.158983 0.333333 0.0286007
1000 0.1466336 0.1614005 0.00302781
2000 0.1429022 0.152981 0.00236507
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to probe by saddle point search), the relative number of
connections with respect to the total number of possible
connections follows the same scaling rule. Finally, the
topological features of the network of states do not depend
on the temperature applied for the exploration. The
temperature does not affect the underlying connectivity of
the energy landscape; it only affects the magnitude of the
rate constants.

4.2 Rate constants of the transitions of the network

We have thoroughly analysed the distribution of rate
constants of elementary relaxation events on the (free) energy
landscape of glassy atactic polystyrene in our previous
studies.11,12 In this work we are interested in elucidating the
connection between the spectrum of individual rate
constants of elementary relaxation events on the Gibbs
energy landscape and the appearance of ageing phenomena
as the result of collective relaxation, i.e., involving all
individual elementary relaxation events.

The application of the saddle-point searching algorithms
developed in our earlier studies11,12 allowed us to sample
4280 transitions on the energy landscape of our aPS system.
The relevant distribution of transition-rate constants is
depicted in Fig. 2. It is very broad, spanning thirty orders of
magnitude on the inverse-time scale, necessitating the use
of bins of equal width in a logarithmic scale, with the
proper mapping for the density distribution. For the system
studied, whose mean first-passage time is on the order of
10−5 s, we can split the distribution into additive
contributions emanating from connections within the set of
explored states, i.e., ki→j with i, j ∈ E, presented in
subfigure (a), outgoing connections from the set of explored
states and into the set of boundary states, ki→j with i ∈ E
and j ∈ B, included in subfigure (b), and incoming

connections from the set of the boundary states, i.e., ki→j

with i ∈ B and j ∈ E. We should note that the latter class
of transitions is not utilised during the exploration and
augmentation of the network, since the boundary states are
treated as absorbing (i.e., no connections from the B set to
the E set of states). The overall distribution, marked in a
dashed black line in all figures, can be compared with Fig.
10 of ref. 11 where we have thoroughly analysed its main
features. In that work, it has been shown that the peaks of
the distribution are located close to the macroscopically
estimated (inverse) time-scales of the relaxation processes of
aPS. However, the distribution is fuzzy and discerning its
peaks is not easy.

The removal of a boundary state from the set B and its
addition to the set of explored states is a time-dependent
process. At the beginning of the augmentation of the network,
states that can be reached via fast connections with their
neighbours in the set of explored states are preferred for the
expansion of the network. As the network grows larger,
progressively slower connections are explored. This is evident
in Fig. 2, where most transitions in the range [1010, 1015] s−1

have been explored by the system. The blue bars in Fig. 2(b) in
this range are significantly lower than the overall distribution,
almost exhausted. These connections are now present in
Fig. 2(a), i.e., they are now found in the set of explored states.
As the augmentation of the network proceeds, more
connections (independent of their time-scale) are added to the
network, but only those whose time-scale is commensurate to
the mean first passage time of the network are preferred to be
explored at later steps, e.g., a connection with 1/ki→j ∼ 104 s will
be more probable to be chosen for exploration by a network
with a mean first-passage time of 103 s, compared to a faster
transition with ki→j ≃ 1012 s−1. Moreover, extremely slow
connections (e.g., ki→j ∼ 10−15 s−1) are included in the network
but they will most likely not be sampled.

Fig. 2 Rate constant distributions, p(ki→j), for transitions connecting (a) explored to explored states, (b) explored to boundary states, and (c)
boundary to explored states. The bins are equally spaced on the logarithmic axis and the distributions are normalised such that

R
p(ki→j)d log10 (ki→j/

s−1)= 1 is ensured for all transitions, i.e., the integral under the common black dashed line in all figures is unity, while the integrals of the coloured
bars in (a), (b) and (c) yield the fraction of the relevant transitions (namely, 0.38 for the explored-to-explored transitions, 0.31 for the explored-to-
boundary and 0.31 for the boundary-to-explored transitions). For a thorough analysis of the rate constant distribution the interested reader is
referred to ref. 11.
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In Fig. 3 we plot the rate constant kj→i versus the rate
constant ki→j, where i and j are ordered in such way that i
corresponds to the state closer to the initial state (where the
system arrived by quenching) of the network. In other words,
if the explored state at t = 0 is found in the middle of our
planar graph representation, an arrow i → j will always point
outwards, towards the set of boundary states, B. The black
points, corresponding to all transitions sampled during the
expansion of the network, are clearly arranged on two
horizontal bands, one around 1012 s−1 and another one
around 105 s−1. This is consistent with the positions of the
peaks in Fig. 2 and reflects the physical processes of
relaxation. A peculiar pattern is observed consisting of two
discrete groups of data points. The first one of them
represents the “symmetric” transitions, where the barrier
faced by the system in its forward and backward moves is
comparable, i.e., ki→j ≃ kj→i; this is the straight line running
along the diagonal of the figure. Then, there is a second but
less pronounced group of transitions, where kj→i > ki→j

mostly and is manifested by the cloud of points which are
concentrated in the upper left triangle defined by the
diagonal. These transitions have a backward rate constant on
the order of 105 and 1012 s−1, while the forward rate constants
are up to 15 orders of magnitude smaller.

The red points in Fig. 3 correspond to the rate constants
of the transitions incorporated in the network of the explored
states E. They form a remarkably symmetric sub-pattern, i.e.,
there is no bias in our calculations within the explored set
depending on closeness of the initial state. On the contrary,
there seem to be many explored-to-boundary and boundary-
to-explored connections that are slower on the way out (away

from the initial state) than on the way in. This probably
means that our exploration accesses basins of higher free
energy, from which the system would tend to go quickly back
to the explored set. A boundary formed by slow outgoing
transitions (and fast incoming) was anticipated by the
distribution of rate constants in Fig. 2(b) and (c). It is a
desirable feature indicating that the system is allowed to
climb steep slopes surrounding it, from where it can easily
fall back to the explored set. Moreover, slower transitions to
the outside world increase the probability of the system
remaining alive as t → ∞ (see eqn (15)); this is also desirable,
since it provides a faithful description of long-time dynamics.

4.3 Rate constant matrix of the network

Diagonalization of the rate constant matrix of eqn (2) at a
sufficiently large expansion of the network (i.e., long enough
time-scales) provides a set of (inverse) time-scales that
correspond to the collective redistribution of the system
among states. While the distribution of the rate constants of
individual transitions, Fig. 2, provides insight into the
spectrum of time-scales for elementary transitions to occur,
the eigenvalues of the rate constant matrix provide insight
into the spectrum of time-scales governing the collective
“flow” of the system within a specific network of states (both
within E and its flow through B). According to eqn (16), the
inverse of the eigenvalues of K (for given set of boundary
states B and initial conditions, Q(0; B)) provides estimates of
the residence time spent by the system at every state. The
residence time is the result of the incoming and outgoing
fluxes in that state, and thus an observable of the collective
re-distribution in the network.

The spectrum of eigenvalues, λm, with 1 ≤ m ≤ |E|, of K
for a network of mean first passage time on the order of 10−6

s is presented in Fig. 4. As elaborated above, all eigenvalues
of the K matrix are negative, by virtue of the “openness” of
the system, since there is a continuous efflux of probability
towards the set of the boundary states (cf. proof in Appendix
B). They are ordered such that λ1 ≥ λ2 ≥ … ≥ λ|E|, i.e., the
absolutely smallest is denoted by λ1 while the absolutely
largest by λ|E|. We choose to make the histogram of their
additive inverse, −λm, that will yield a distribution similar in
form to the one depicted in Fig. 2(a). We can see that the
(inverse) eigenvalues of the matrix governing the dynamical
evolution of the network (for times commensurate to the
mean first-passage time) extend from −1/λ|E| = 10−15 s up to
−1/λ1 = 3.5 × 10−6 s. The system presented in Fig. 4 is a
specimen at T = 300 K whose time evolution has been tracked
up to a mean first passage time of 〈tE→B〉 = 3.18 × 10−6 s. It is
observed that the MFP time is nearly identical to the negative
inverse of the absolutely smallest eigenvalue of the rate
constant matrix. This is not at all surprising. The MPFT is
close to the exit time, 〈tE→B〉 ≃ 〈texit〉 = 3.21 × 10−6 s, and
slightly smaller as expected based on the discussion in the
Methodology section. In the calculation of the 〈texit〉, the
absolutely smallest eigenvalue, λ1, of the rate constant matrix

Fig. 3 Correlation between the forward and backward rate constants,
ki→j and kj→i, respectively. Transitions are sorted so that i is closer to
the initial state than j, i.e., the arrow i → j points always away from the
set of the explored states, as the network is augmented. Transitions
between explored states are marked in red.
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K becomes the dominant term in the summation of the right-
hand side of eqn (18), since the matrix −K−1 is employed.

The eigenvalues of the rate constant matrix provide the full
knowledge of the time evolution of the system, under given
sets of explored, E, and boundary, B, states. However, they do
not suffice to provide us with a direct connection with the
macroscopically observed relaxation processes. Boulougouris
and Theodorou18 speculated that the inverted eigenvalues of
the rate constant matrix K (that drives the system to escape
from the set of explored states at infinite time) are connected
to the set of first-order relaxation processes of the system
under consideration. We should note here again that the
matrix K has only negative eigenvalues; there is no
equilibrium distribution. While there should be some relation
between the eigenvalues of the rate constant matrix and the
time-scales of the macroscopically observed relaxation
processes, there is no direct connection between them. We
have already seen that the MFP time appears as the negative
inverse of the absolutely smallest eigenvalue of K, and by
assigning one relaxation mechanism for every eigenvalue of K
we end up with |E| different relaxation processes, i.e., by
considering a larger network more first-order relaxations
emerge. Intuitively, this cannot hold and we provide a method
to translate the dynamics through the boundary of the system
to discrete relaxation processes in the following section.

4.4 Significance of the flux to the boundary states

Having seen that not all elementary processes (eigenvalues of
the rate constant matrix) translate to macroscopic
relaxations, we can identify time-signatures of the latter in a

different way. As the system explores its phase space (and the
corresponding network of states grows), it is always
surrounded by boundary states, that form its “local
environment”. By studying the efflux of probability from the
current set of explored states, E, to the current set of
boundary states, B, relaxation mechanisms will appear as
peaks of the efflux current, i.e., as modes of exiting the set E.
We can imagine the escaping process of the system as an
ensemble of travellers departing from the initial state and
facing a multitude of different routes. The diffusion of the
system out and away of its initial state is governed by the
structure of the network of the explored states. For extremely
short times, all travellers will commute within the set of the
set of explored states without touching its bounding edge.
When our travellers reach the boundaries between E and B
they are presented with a spectrum of different “exit
highways”, each one characterised by a speed limit
proportional to the rate constant of the corresponding
transition. Escaping through fast exit lanes will be
manifested at short time-scales, whereas escaping through
slower exit lanes will manifest itself at longer time-scales. If
the exploration of the energy landscape has not introduced
any bias in the discovery of (free) energy barriers (as
elaborated in our previous studies11,12), the distribution of
rate constants, whose part is the distribution of rate
constants connecting the sets E and B, is an inherent
characteristic of the energy landscape. Eventually, at infinite
time, some of the travellers will still wander within the
network of explored states (we will elaborate on that below).

The total efflux out of the set of explored states as a
function of time for networks of different sizes is presented
in Fig. 5. For a single explored state (red curve), the efflux to
the set of boundary states initially exhibits a plateau. During

Fig. 4 Histogram of the characteristic rates (negative eigenvalues) of
the rate constant matrix, K, governing the dynamical evolution of a
network of states (eqn (2)) of aPS at T = 300 K. The bins are equally
spaced on the logarithmic axis and the distribution is normalised such
that

R
ρ(−λ)d log10(−λ/s−1) = 1 holds.

Fig. 5 Probability efflux to the set of boundary states, F(t; B), as a
function of time for different sizes of the network of explored states.
The aPS system is simulated at T = 300 K.
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that time the system escapes from its initial state utilising
the available connections to B; the mixture of exit options is
weighted by the rate constants of the individual connections
and a dynamic equilibrium between the states in E and the
states in B is established. Once the observation time exceeds
the time-scale of the slowest connection out of the initial
state, the system cannot be contained within E and the efflux
drops to zero (i.e., the system has already escaped). By
augmenting the set of explored states, specific patterns
emerge in the total efflux profile. Collective escape
phenomena manifest their existence as peaks in the total
efflux; in the case of Fig. 5, a first peak appears at a timescale
of 10−10 s, and a second peak at the time-scale of 10−6 s. The
position of the peaks stabilises for larger networks; their
height changes as a result of the probability efflux
distribution extending to longer time-scales. The position of
the peaks in the time axis is crucial; they correspond to
macroscopically observed transitions, i.e., they mark the
modes by which the system escapes collectively its current
extent. That was the missing link in the previous attempts to
extract the relaxation time-scales from network dynamics
simulations. The escape pattern of the system is a
combination of two different aspects: redistribution within
the current set of explored states (governed by the explored-
to-explored transitions) and escaping out of the set of
explored states (governed by the explored-to-boundary
transitions). All possible combinations of routes within E and
exits from E to B are considered; their relative contributions
and significance depend on time. For a sufficiently large set
E, the form of the probability efflux converges into a certain
form with well-defined maxima, which reflect specific
molecular processes occurring within the glassy specimen.
Remarkably, the asymptotic positions of the peaks observed
in Fig. 5, one peak around 10−10 s and another one at 10−6 s,
are comparable with the time-scales of the δ- and the
γ-relaxations of atactic PS at T = 300K (cf. Fig. 7 below).

It is interesting that structural evolution deep into the
glassy state takes place by means of well-defined relaxation
processes, whose relevant timescales are associated with
distinct ranges of barrier heights. Initially Greiner and
Schwarzl29 and later Eulate and Cangialosi30 brought up the
discussion on the existence of a fast mechanism of
equilibrium recovery, beyond the standard (slow) one in the
proximity of Tg identified as the α-relaxation. Their
observations lie in contrast to the standard picture of
physical ageing which is based on a continuous evolution of
the thermodynamic state of the material towards equilibrium
governed by the single timescale of the α-relaxation; the latter
is usually adequate to describe physical ageing in the
proximity of Tg. Based on our observations, and the previous
work by Boulougouris and Theodorou18 we can support the
hypothesis that the system is driven to lower free-energy
states by means of secondary processes. However, the
connection of the microscopic observations to the
macroscopic long-term (one year and beyond) enthalpy loss
measurements is still elusive. The interested reader is

referred to a recent study by Jin and McKenna53 on the
interpretation of the different experimental findings
concerning the long-term relaxation of glasses below their Tg.

Fig. 6 Survival probability, Palive(t; B), as a function of time for
different sizes of the network of explored states. Points represent the
estimates defined by eqn (12), while solid lines the sum of the
conditional probabilities over all states, i.e.,

P
i∈E

Qi t; Bð Þ. In the inset to

the figure the long-time behaviour of the two measures is depicted.

Fig. 7 Relaxation map of atactic PS. Experimental measurements (by
dielectric spectroscopy31 and neutron scattering54) and molecular
simulation results (MD in the melt state and network dynamics in the
glassy state) are presented. The dotted lines are the best-fit Arrhenius
equations to the computationally and experimentally obtained
relaxation times of the δ- and γ-relaxations; the corresponding
activation energies are 12 kJ mol−1 and 20 kJ mol−1, respectively.
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Monitoring the efflux to the boundary states is an integral
part of analysing the networks generated by the method. The
analysis of the dividing surface enclosing the system can
reveal the way it interacts with its environment, i.e., the way
of relaxing towards equilibrium. This behaviour takes an
asymptotic form, with well-defined peaks at stationary values
of t, even when the size of the set of explored states, |E|, is
increasing. This is a result of the application of the dynamic
importance sampling. We are preferentially sampling
different parts of the spectrum of elementary transition rate
constants at every stage of the expansion of the network, i.e.,
at short mean first passage times we are mostly sampling the
fastest transitions (removing the relevant states from B and
adding them to E), while at later stages we are sampling
progressively slower transitions. The dynamic importance
sampling ensures that there is no need for eliminating all
fast transitions before exploring slower ones; that being the
reason that the distribution of individual rate constants in
Fig. 2(c) still contains very fast relaxations. The exploration of
states is prioritised by the moving timescale observation set
by tselect. At times comparable to the mean-first passage time
to escape the network, the relative importance of fast and
slow transitions at faster time-scales has already been
incorporated in the explored networks and does not change
by the addition of more slower transitions. In principle, there
can be other ways to probe relaxation mechanisms based on
a suitable manipulation of the rate constant matrix, but we
strongly believe that the analysis of the efflux current is the
most intuitive.

By expanding a network of states, the probability of
entrapping the studied system within it, i.e., its survival
probability Palive(t; B) at the same time t, becomes larger. The
dependence of the survival probability on time is depicted in
Fig. 6 for an aPS specimen at T = 300K. The survival
probability exhibits a plateau (Palive = 1) at short times; the
set of explored states provides the full description of the
dynamics of the system for the corresponding time-scales.
For a very small network of a single state (red curve in Fig. 6)
the system cannot be trapped within the set of explored
states. Once the longest timescale corresponding to the
slowest transition out of the single state is exceeded, the
system will escape. The larger the set of the explored states
becomes, the more extended the plateau is. This is clearly
seen in Fig. 6 for increasing the size of the network of
explored states. At the time-scale of the mean first passage
time, the survival probability rapidly decays before stabilising
to a new plateau. Having defined the escape probability as
the integral of the efflux current (eqn (11)), the system can be
considered as trapped within a finite-sized network at long
times. In other words, we allow for a finite, albeit small,
probability that the constructed network is a sufficient
description of the dynamics of the system even as t → ∞.
Following the picture of the travellers adopted before, there
is a finite fraction of these travellers that will still wander
within the set E even at very long times. This is a
fundamental difference with respect to the earlier

formulation by Boulougouris and Theodorou,18 where the
definition of the survival probability as the sum of the
conditional probabilities, i.e.,

P
i∈E

Qi t;Bð Þ, fades to zero at t →

∞ by definition. This alternative definition of the survival
probability is depicted by the solid lines in Fig. 6. Both
metrics behave similarly with the exception of the long-time
plateau that is missing from the earlier definition.

4.5 Comparison with experiments

The subglass relaxation processes of (polymer) glasses have
been experimentally probed by a multitude of different
(spectroscopic) techniques. The observed dynamical,
mechanical or dielectric properties depend on the formation
history of the specimens. Grigoriadi et al.31,32 have conducted
systematic measurements of the dielectric response of atactic
PS specimens of different formation histories. Within the
range of the conditions those authors studied was the case of
a freshly quenched aPS specimen, that fully resembles our
simulation setup. In our case, the first state of the network in
the glassy state is the one where the specimen landed after
quenching from the melt state, i.e., at t = 0 we have a “fresh”
glass with no thermal history (e.g., ageing or rejuvenation).
Their measurements of a freshly quenched glassy specimen
indicated three distinct relaxation processes, namely the
α-relaxation of the glass transition, a β*-relaxation that was
present only in the case of freshly quenched glasses and
disappeared after ageing of the samples, and a γ-relaxation
that was always measured irrespective of the thermal history
of the sample. The experimental measurements by Grigoriadi
et al. are depicted by the down-facing red triangles in the
Arrhenius plot of Fig. 7. Going from left to right (higher to
lower temperatures) the first transition to be observed is the
α-relaxation which is clearly non-Arrhenius, the next one (that
consists of three data-points at around τ ≃ 102 at 1000/T ≃ 2.8)
is the β*-relaxation that is not present in aged specimens, and
finally the Arrhenius-like γ-relaxation located at the rightmost
part of the figure. In the same Arrhenius plot we include
measurements of the relaxation times associated with the
δ-relaxation process obtained by neutron scattering
experiments,54 marked with the green dotted circles.

Relaxation times obtained by molecular simulations are
also included in Fig. 7. Analysing the orientational relaxation
of characteristic vectors in the course of a molecular
dynamics trajectory in the melt state can provide indicative
relaxation times, e.g., the decorrelation of the orientation of
the phenyl stem for the α-relaxation process, which are
depicted by the purple squares in the leftmost (T > Tg) part
of Fig. 7.43 The peaks from the probability efflux, Fig. 5, are
included as the blue filled circles in Fig. 7. The results
obtained from the position of the peaks of the efflux current
to the boundary states are remarkably close to the
experimentally observed relaxation time-scales for the δ and γ

subglass relaxations. At the higher temperature (T = 300K),
we can reliably probe the characteristic time of the δ

relaxation. While there is a lack of measurements for the
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lower temperature, our estimate lies close to the
extrapolation by means of an Arrhenius equation of the
neutron scattering measurements. The slope, which is the
activation energy, is also in good agreement with ref. 54. As
far as the γ relaxation is concerned, our simulation
framework matches the experimental measurements at T =
200K and provides a reasonable estimate of the characteristic
time of the γ relaxation at the elevated temperature of T =
300K. Experimental measurements of the γ relaxation are not
available at elevated temperatures, so we are using an
Arrhenius extrapolation of the experimental measurements to
judge the simulation results.

5 Conclusions

The physical ageing of a polymer glass has been studied
by the application of an out-of-equilibrium framework for
the treatment of the master equation. The exploration of
the (free) energy landscape of an atomistically detailed
polymer specimen, together with the quasi-harmonic
approximation for its vibrational motion, provides a
suitable network of states (with well-defined transition
rates for moving from one state to the other) that can
serve as a basis for tracking the dynamical evolution of
the system (under given external stress state). Moving
along the lines of the pioneering work of Boulougouris
and Theodorou,18 a Markovian time-integration scheme
has been reimplemented for a finite network of states
exposed to an unknown larger world through a dividing
surface of boundary states. The distinction between
“explored” and “boundary” (where the system gets
absorbed) states is crucial. No equilibrium probability
distribution is assumed; we show that our formalism
reduces to the well-known equilibrium dynamics if there
are no boundary states present in the network. By
defining the appropriate conditional probabilities for the
system to be trapped within the set of explored states, we
manage to express the escape and survival probabilities
for the finite-sized network, and eventually unveil the
relaxation processes of the system by monitoring its time-
dependent efflux from the explored network to the
boundary states.

Networks generated by the exploration of the (potential or
free) energy landscape actually resemble the network of states
visited by the system during a time trajectory as that was
obtained by MD. The topological features, e.g., the clustering
metrics of the networks, are found in perfect agreement with
the previous MD studies. Since the energy exploration cannot
be exhaustive, replicating the topology of the actual network is
re-assuring for our efforts. Having the full knowledge of the
network of states is far superior to studying a single MD
trajectory, since we, in principle, can weight all trajectories
within the given network. Even better, the method becomes
more effective as the temperature is lowered, since the
transition rate constants become lower and the transitions less
frequent. Summarising, we have presented a viable alternative

to brute force MD simulations with all ingredients of the
method systematically exposed during the last years. Initially,
MD simulations of the same system provided the benchmark
data for its topological features.7 Then, analytical expressions
of the first and higher-order derivatives of any classical
molecular forcefield were derived,13 and methods for obtaining
transition states (first-order saddle points) on the potential
energy landscape,11 and an arbitrary free energy landscape12

were formulated. This work brings every piece of the puzzle
together in a rigorous, general and unified framework.

There are more facets of the simulation of (polymer)
glasses to be studied. We have not discussed the dependence
of the time evolution on the formation history. This is an
unresolved issue, even for experimental studies, where
competing processes, e.g. thermal rejuvenation and
quenching, seem to disturb the appearance of specific
relaxation processes.31,32 The effect of the stereo-chemistry is
also pronounced in polystyrene, with atactic, isotactic and
syndiotactic polystyrenes behaving in a completely different
way during ageing.55 Confinement of the specimen in one
direction, i.e., creating a thin film can also have pronounced
effects on ageing dynamics.56 Finally, from a computational
point of view, solving the master equation by diagonalizing
the rate constant matrix for a huge network of states may
become impractical; lumping the fast-communicating states
might be a way out of the problem,57 allowing us to access
the time-scales relevant for the beta-relaxation and the
transition from secondary to alpha process-assisted ageing.
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Appendices
Appendix A. Estimation of the equilibrium state probabilities
by graph construction

Implementation of the analytical solution scheme for the
master equation for Q, eqn (1), requires that the equilibrium
probabilities, PEi (∞) for i ∈ E, be available at the beginning of
the calculation. These probabilities serve as a convenient
change of basis for K, yielding K̃, which is symmetric (cf.
Appendix B). An easy strategy for accomplishing this without
diagonalizing matrix K is by considering the network of
states as a directed graph.7 In the directed graph
representation, the edges of the graph represent the states,
while the vertices represent the transitions between them.

Having the graph layout at hand, the equilibrium
probability of state i can be related to the equilibrium
probability of state 1, by considering the shortest path
(obtained by breadth first search, BFS) connecting these two
states. Along the path of transitions, the ratio of the relevant
rate constants is accumulated:

Pi;i≠1 ∞ð Þ ¼
Y
nBFS

kcurrent→previous

kprevious→current
P1 ∞ð Þ; (A1)
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where the product runs over all steps taken by the BFS
algorithm, with the index “current” referring to the state
currently visited by the algorithm at a specific step, while
“previous” indicates the state visited by BFS during the
previous step. If there are multiple connections from the
“previous” to the “current” state visited by the BFS algorithm,
the effective rate constant kcurrent→previous is the sum over the
rate constants of all different pathways, e.g., if state 1
communicates with state 2 via three different transitions,
namely I, II and III, then k1→2 = kI1→2 + kII1→2 + kIII1→2.

The method proposed here provides an analytical estimate
of the equilibrium probabilities without resorting to the
numerical solution of the stationary master equation. In
order to solve the master equation,

KPE = 0, (A2)

the rate constant matrix containing only the transitions
between the explored states should be considered, i.e., KE

and not the rate constant matrix K defined in the main text.
The equilibrium probabilities PEi (∞) obtained by the
numerical solution are in good agreement with those
obtained by the recursive evaluation of eqn (A1). For a
network of 600 explored states, we found that the relevant
error was less than 0.1% for all elements of PE(∞) and was
due to the numerical instability of the diagonalization of KE

(the eigenvalues of KE extend over a very wide range of
inverse time-scales).

Appendix B. Negative definiteness of the rate constant matrix
of a network of explored and boundary states

The matrix K̃ as defined by eqn (6) is symmetric by virtue of
the microscopic reversibility condition imposed on the rate
constants of states in E. It has the same eigenvalues as K,
since they are similar matrices, i.e.,

K̃ = (PE∞)
−1KPE∞ (B1)

with PE∞ being the following matrix:

(B2)

where we have used |E| for denoting the count of explored
states.

The eigenvalues of K̃ (and those of K) are real, since
K̃ is symmetric. All eigenvalues of K̃ are negative, if
there is at least one boundary state present in the
network, i.e., |B| > 0. The latter statement can be
proved as follows: let a be an arbitrary |E|-dimensional
vector of real elements. Then,

(B3)

The first term on the right-hand side of the last line of eqn (B3)
can be either zero or negative; the term in the brackets
becomes zero for a vector containing the reduced equilibrium
probabilities. The addition of the second term, which crosses
the boundary between E and B if boundary states are present in
the network, forces the sum to become strictly negative, even if
the first term is zero.

Thus,

(B4a)

(B4b)

Eqn (B4a) establishes K̃ as a negative definite matrix, if there
exists at least one boundary state in the network. Otherwise,
eqn (B4b) establishes K̃ as a negative semidefinite matrix, as
in the standard theory of networks of chemical reactions, as
first shown by Schuler.58

It is easy to see that if λ is one of the real eigenvalues of K̃
with corresponding real eigenvector ũ, then K̃·ũ = λũ and
therefore

(B5)

Because K̃ is either negative definite, or negative semidefinite,
the left-hand side of the latter equation is either

λ < 0 |B| > 0 (B6a)

or

λ ≤ 0 |B| = 0, (B6b)

respectively.
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Appendix C. Computational considerations

A major point of consideration is the scaling of the
computational cost with the size of the system. MD
simulation codes scale almost linearly with the size of the
system, since the rate determining step is the evaluation of
energy and forces. In the case of our network dynamics
method, however, the lion's share of the wall-clock time
spent by the code is devoted to diagonalizing the Hessian
matrix, which is a relatively dense, symmetric real-valued
matrix. The diagonalization of a dense matrix scales with the
cube of the number of degrees of freedom, becoming
prohibitive for large systems. GPU (graphics processing unit)
computing provides a way out of the problem. Since GPUs
provide an order of magnitude more processing elements
than a CPU, dealing with linear algebra tasks is extremely
efficient. Moreover, the method remains robust by employing
diagonalization in single precision for intermediate steps and
saving the more memory (and time) consuming
diagonalization procedure for the stationary points.

By considering a setup of a single CPU with eight processing
cores running at 2.3 GHz and a system size of roughly one
thousand atoms, MD and network dynamics spend comparable
wall-clock time in order to simulate the same physical time. As
far as the MD simulation is concerned, the LAMMPS MD
engine59 achieves integration of the equations of motion for an
aPS system consisting of a thousand atoms at the pace of 3.6 ×
10−12 s of physical time per 1 s of wall-clock time. On the other
hand, our network dynamics code for the same system and
interactions would create a network of 10−5 s mean-first-
passage time at 2.5 × 106 s, i.e., at a rate of 3.9 × 10−12 s of
physical time per 1 s of wall-clock time. The comparison is
performed at T = 300K. For lower temperatures, where the
spectrum of TST-derived rate constants shifts to lower values,
the network dynamics method will produce a longer mean-
first-passage time for the same size of the network.
Interestingly, the method becomes more efficient as the
temperature is lowered. The reader is reminded that, whereas
MD contributes a single trajectory to an out-of-equilibrium
average, network dynamics contributes all possible trajectories
within a given network of states; therein lies the main power of
the network dynamics approach.
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