Issue 24, 2023

Advanced nano-bifunctional electrocatalysts in Li–air batteries for high coulombic efficiency

Abstract

To meet the growing demand for energy storage technologies, it is crucial to develop next-generation energy storage and conversion devices with superior energy density, safety, low cost, and green sustainability. Li–air batteries (LABs) can catalyze the special redox reaction of light weight metal–oxygen (O2) couples, with superb theoretical energy density, low cost, and environmental friendliness, making them suitable for large-scale electricity storage technologies. However, an in-depth understanding of the root causes of poor battery performance and a well-defined electrochemical mechanism based on structural or material properties are still lacking. Hence, we discuss the main obstacles to the sluggish kinetics of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) at the cathode in LABs in this review. Exploration of a special redox reaction based on the design of the catalyst material is extremely instructive for battery development. Various design/manufacturing methods for nanoscale bifunctional electrocatalysts are introduced to offer general design principles. Electrocatalysts involve alloys, transition metal oxides (manganese-based, cobalt-based), other transition metal compounds (carbides/nitrides/sulfides), and carbon materials. The effects of different crystal structure designs on the bifunctional electrocatalytic mechanism of the OER/ORR are investigated at the nanoscale to guide performance improvement strategies. In addition, the root causes of poor battery performance caused by other components are discussed, as well as their possible future breakthroughs. Finally, the prospects of LABs should be highly focused on an integrated mechanism–structure–property strategy to guide catalyst synthesis and further integration with practical parameters for device development.

Graphical abstract: Advanced nano-bifunctional electrocatalysts in Li–air batteries for high coulombic efficiency

Article information

Article type
Tutorial Review
Submitted
27 ذو القعدة 1444
Accepted
08 ربيع الثاني 1445
First published
20 ربيع الثاني 1445

Green Chem., 2023,25, 10182-10208

Author version available

Advanced nano-bifunctional electrocatalysts in Li–air batteries for high coulombic efficiency

J. Zhao, R. Pathak, Z. Zhao, X. Chen, M. B. Saud, H. Li, F. Wu, Q. Qiao, J. W. Elam and X. Wang, Green Chem., 2023, 25, 10182 DOI: 10.1039/D3GC02151C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements