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Spin–phonon coupling and magnetic relaxation in
single-molecule magnets†
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Jonathan M. Skelton *a and Nicholas F. Chilton *a

Electron–phonon coupling is important in many physical phenomena, e.g. photosynthesis, catalysis and

quantum information processing, but its impacts are difficult to grasp on the microscopic level. One area

attracting wide interest is that of single-molecule magnets, which is motivated by searching for the

ultimate limit in the miniaturisation of binary data storage media. The utility of a molecule to store

magnetic information is quantified by the timescale of its magnetic reversal processes, also known

as magnetic relaxation, which is limited by spin–phonon coupling. Several recent accomplishments of

synthetic organometallic chemistry have led to the observation of molecular magnetic memory effects

at temperatures above that of liquid nitrogen. These discoveries have highlighted how far chemical

design strategies for maximising magnetic anisotropy have come, but have also highlighted the need to

characterise the complex interplay between phonons and molecular spin states. The crucial step is to

make a link between magnetic relaxation and chemical motifs, and so be able to produce design criteria

to extend molecular magnetic memory. The basic physics associated with spin–phonon coupling and

magnetic relaxation was outlined in the early 20th century using perturbation theory, and has more

recently been recast in the form of a general open quantum systems formalism and tackled with

different levels of approximations. It is the purpose of this Tutorial Review to introduce the topics of phonons,

molecular spin–phonon coupling, and magnetic relaxation, and to outline the relevant theories in connection

with both the traditional perturbative texts and the more modern open quantum systems methods.

Key learning points
1. The nature of phonons in molecular crystals.
2. How spin–phonon coupling arises in molecules.
3. How the spin–phonon interaction drives magnetic relaxation.
4. How molecular spin dynamics and magnetic relaxation can be modelled with different levels of approximation.
5. How to perform first-principles calculation of the spin–phonon coupling.

1 Introduction

For the last thirty years, many inorganic, physical and compu-
tational chemists, along with experimental and theoretical

physicists, have been captivated by the discovery,1,2 study and
development of single-molecule magnets (SMMs). SMMs are
molecules that possess a doubly-degenerate electronic ground
state, the components of which have large uniaxial magnetic
moments in opposing directions that can represent binary 1
and 0.3,4 The other low-lying excited electronic states generally
have their magnetic moments oriented more towards the
equatorial plane (i.e. perpendicular to the axis defined by the
ground doublet); this energy difference between different orien-
tations of the magnetic moment is the origin of magnetic
anisotropy. The best-performing SMMs to-date are [DyCpMe5-
Cp

iPr5][B(C6F5)4] and [Cp
iPr5DyI3DyCp

iPr5] (CpMe5 = C5(CH3)5

and Cp
iPr5 = C5(CH(CH3)2)5), which both show open magnetic

hysteresis up to 80 K;5,6 the latter features strong magnetic
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interactions between the metal ions, which offers a new route
to achieving improved performance.7

There have been numerous recent reviews on SMMs,7–10 and
it is not the purpose of this Tutorial Review to discuss the
requisite ingredients for their design; indeed, this Review
assumes a basic understanding of such matters.4,11 Rather,
here we focus on the theory and calculation of magnetisation
dynamics in SMMs as arising from spin–phonon coupling.
While there are many contemporary theoretical works in this
area,12–18 and some excellent reviews of the traditional
methods,19 there exists a gulf between the modern parlance
of these physics-based texts and the original works in the early
to mid 20th century to which the field constantly reflects.20–23

Hence, this work intends to contextualise modern molecular
spin–phonon coupling theory with a backdrop of the original
works, and to provide an explanation suitable for newcomers to
the field – including the basics of lattice dynamics. Herein we

focus on discussion of magnetic relaxation in lanthanide (Ln)
based SMMs,8,24 which invariably possess electronic structures
with the characteristic profile in Fig. 1;7,9 that is, interelectronic
repulsion dominates so that the Hund’s rule ground state is a
well isolated Russell-Saunders term, which is then split by
spin–orbit coupling to give a well-isolated manifold of total
angular momentum J, which is then split by crystal field (CF, or
ligand field) interactions into linear combinations of mJ

states.7,25 The theories discussed herein are equally applicable
to spin–phonon coupling in molecules with other metal ions,
but the importance of the various mechanisms changes when
the energy scales and electronic state multiplicities differ. Note
also that while we use terms such as ‘‘spin–phonon’’, ‘‘spin
system’’, ‘‘spin Hamiltonian’’, etc., ‘‘spin’’ should be inter-
preted as a general total angular momentum.

SMMs are zero-dimensional superparamagnets and there is
no phase transition associated with their magnetic memory,
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unlike for bulk ferromagnets. Thus, their magnetic dynamics
are determined solely by their magnetic relaxation rates, the
timescale on which an ensemble returns to thermodynamic
equilibrium;3,4 this process is often called spin-lattice relaxa-
tion and given the symbol T1, but herein we will use the
symbol t. These rates are determined experimentally by
measuring the time dependence of the magnetisation, often
as a function of an external parameter such as temperature or
magnetic field.9,26 Although magnetic relaxation is an
ensemble property, the underlying rates are determined by
how the individual molecules exchange energy with their
environment. Thus, the process of a sample returning to
equilibrium is the result of a great number of possible
spin–phonon interactions and relaxation pathways. There
are three common mechanisms typically invoked in the
interpretation of relaxation rate data (Fig. 1):19 (i) the Orbach
process, in which relaxation occurs via a series of single spin–
phonon absorption and emission events up and over the
energy barrier; (ii) the Raman process, in which two phonons
interact simultaneously with the SMM (i.e. a phonon is
scattered in a collision with the molecule), where usually
the transition between the ground doublet states is of most
importance; and (iii) quantum tunnelling of the magnetisa-
tion (QTM) where relaxation occurs directly between the
ground doublet states and does not involve absorption or
emission of phonons (not shown in Fig. 1); QTM will not be
discussed further herein.

This Tutorial Review will start with a discussion of the
phonon degrees of freedom, followed by the basics of spin–
phonon interactions, and then will discuss in detail how these
ingredients can be combined to calculate magnetic relaxation
rates under single-phonon (Orbach) and two-phonon (Raman)
paradigms.

2 Phonons

The first point of discussion is the vibrational modes them-
selves, which are frequently referred to as the ‘‘bath’’ in the
literature on open quantum systems, or the ‘‘lattice’’ in the
context of physical chemistry. We begin with a discussion of the
essential features of the vibrations of gas-phase molecules. An
isolated molecule in the gas phase with na atoms has 3na

degrees of freedom, made up of the three Cartesian directions
x, y and z for each atom, which combine together to form
translations, rotations and vibrations. The combinations of

Fig. 1 Two main mechanisms of magnetic relaxation arising from spin–
phonon coupling in single-molecule magnets, Orbach (blue) and Raman
(red), illustrated for the J = 15/2 multiplet of a Dy3+ SMM with a strong
uniaxial crystal field.
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atomic displacements, and the associated vibrational frequen-
cies (energies), are obtained within the harmonic approxi-
mation as the eigenvalues and eigenvectors of the mass-
weighted Hessian matrix H, which we refer to here as the
‘‘dynamical matrix’’ D:

Dab
k;k0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkmk0
p Hab

k;k0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

mkmk0
p

@2E

@rak@r
b
k0

(1)

where rak are the atomic degrees of freedom, the indices k, k0

and a, b label the atoms and Cartesian directions, respectively,
and mk are the atomic masses.

D is a 3na � 3na matrix, and diagonalisation yields 3na

squared frequencies o2 (eigenvalues) and associated mass-
weighted displacements W in the form of 3na-component
vectors (eigenvectors). Fig. 2 shows the energies and displace-
ments obtained by diagonalising the dynamical matrix of CO2,
calculated with density–functional theory (DFT; see ESI,† for
details). Of the 3na combinations of the degrees of freedom,
three combinations are rigid translations, and two or three are
rigid rotations depending on whether the molecule is linear or
non-linear. These collective motions of the atoms do not
perturb the intramolecular interactions, and therefore have
o2 = 0. The remaining 3na � 5 or 3na � 6 combinations are
the vibrations, which are mutually-orthogonal relative motions
of the atoms that conserve the centre of mass but have an
energy change associated with them (i.e. o2 4 0). For CO2,
there are three translations and two rotations with h�o = 0, and
four vibrational modes comprising a doubly-degenerate bend
(h�o = 632 cm�1) and symmetric and antisymmetric stretches
(h�o = 1315 and 2357 cm�1, respectively).

Within the harmonic approximation, the potential energy of
the vibrational modes is quadratic in the displacement ampli-
tude Q according to:

EðQÞ ¼ 1

2
o2Q2 (2)

The relation between Q and the Cartesian displacement of the
kth atom is given by:

uakðQÞ ¼
Qffiffiffiffiffiffi
mk
p Wa

k (3)

where Wa
k is the component of the eigenvector for the atom

along the direction a. Solution of the Schrödinger equation for
the kinetic energy and the potential energy function in eqn (2)
yields allowed energy levels quantised into units of h�o:

Ev ¼ vþ 1

2

� �
�ho (4)

where v is the vibrational quantum number; v = 0 corresponds

to the energetic ground state, and the residual
1

2
�ho of energy in

this state is termed the ‘‘zero-point’’ energy of the vibrational
mode. Fig. 3 shows the potential energy as a function of
amplitude for the two stretching modes in CO2, together with
the allowed harmonic energy levels.

We now consider the generalisation of the harmonic
approximation to periodic crystals. Vibrations in crystalline
solids, termed ‘‘phonons’’, take the form of travelling waves
of atomic displacements that propagate through a crystal. As in
molecules, the relative atomic motion has an associated fre-
quency o, and the wavepacket propagates through the crystal
with a defined wavelength l and velocity n.

In principle, the phonon modes could be obtained by
constructing and diagonalising a dynamical matrix in the form
of eqn (1) for the whole crystal. However, since na approaches
Avogadro’s number (NA E 6.022 � 1023), such a ‘‘brute force’’
approach is not feasible. Instead, the periodicity of the

Fig. 2 Energies and displacement vectors for the translations, rotations
and vibrations of the CO2 molecule, obtained by diagonalising the dyna-
mical matrix D defined in eqn (1), from DFT calculations (see ESI,† for
details). The energies are obtained by taking the square root of the
eigenvalues o2 and multiplying by the reduced Planck constant h�, and
the displacements are obtained from the eigenvectors W using eqn (3)
with a unit amplitude Q = 1.
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crystalline phase can be exploited to view a (macroscopic)
crystal as an infinite repeating array of primitive unit cells with
na atoms each. According to the Bloch theorem, a wavefunction
C(r) in such a periodic system can be expressed as the product
of a cell-periodic function u(r) and a plane-wave exp(iq�r):27

C(r) = u(r) � exp(iq�r) (5)

where q is a wavevector defined in the reciprocal space (first
Brillouin zone, BZ) of the crystal. We note that wavevectors are
conventionally discussed in ‘‘reduced’’ units of fractions of the
reciprocal lattice vectors, which are related to the q used herein
as q = 2p(qR

1a* + qR
2b* + qR

3c*), where qR
n are the components of

the reduced vector qR, and a*, b* and c* are the reciprocal
lattice vectors. In the context of a phonon, the u(r) correspond
to a set of relative atomic displacements in the primitive cell,
and the wavevectors q in the plane-wave terms specify the
propagation direction and wavelength of the phonons, and
define how the local atomic displacements are modulated
across the other unit cells in the crystal (Fig. 4).

Application of the Bloch theorem yields the modified dyna-
mical matrix D(q) given by:

D
ab
k;k0 ðqÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkmk0
p

X
l0

@2E

@rak0@r
b
k0l0

exp iq � rk0l0 � rk0ð Þ½ � (6)

where the indices l, l0 label different crystallographic unit cells.
Diagonalising a given D(q) yields 3na squared frequencies oqj

2

and corresponding mass-weighted displacements Wqj asso-
ciated with the wavevector q, where j is the phonon band index
and runs from 1 to 3na.

Use of the Bloch theorem simplifies the problem of deter-
mining the phonons in an infinite periodic crystal to diagona-
lising a set of D(q) at a formally infinite number of wavevectors
q. However, the oqj and Wqj typically do not vary significantly
for small changes in q, allowing physical properties requiring
integrals over the BZ to be replaced by a finite, discrete sum.
Furthermore, the phonon modes at certain wavevectors can be

related by crystal symmetry operations, and most properties
can therefore be obtained by considering only the subset of q
that lie within the ‘‘irreducible’’ part of the BZ; for crystals in
high-symmetry spacegroups, this is a fraction of the full BZ.

To discuss the phonon spectra of solids, two quantities are
commonly used: the phonon dispersion (band structure) and
the density of states (DoS). The dispersion h�oj (q) shows the
evolution of the 3na phonon energies with the wavevector q
along a specific path through the BZ, and is typically displayed
with a path visiting the set of high-symmetry q-vectors compris-
ing the zone-centre qR = (0, 0, 0) (G) and the zone-boundary
points, the number, coordinates and labels of which are
defined by the crystallographic spacegroup. The DoS g(h�o)
shows the relative number of modes as a function of phonon
energy integrated over the BZ:

gð�hoÞ ¼ 1

O

X
j

ð
O
d �ho� �hoqj

� �
d3q � 1

N

X
qj

d �ho� �hoqj

� �
(7)

where O is the volume of the BZ, d is the Dirac delta function
(d(x) = 0 for x a 0 and

Ð1
�1dðxÞdx ¼ 1), and N is the number of

wavevectors included in the summation approximating the
integral. We note that the DoS is normalised so that it inte-
grates to the number of modes in the primitive cell, i.e.Ð1
0 gð�hoÞd�ho ¼ 3na. It is also common to use the eigenvector

coefficients to quantify the contributions from different atoms
in order to construct an atom-projected partial DoS showing
how atoms contribute to modes in different energy ranges.

The dispersion and DoS for NaCl (calculated using DFT, see
ESI†) highlight several features common to phonon spectra
(Fig. 5). There are three ‘‘acoustic modes’’ that correspond to
concerted motion of all of the atoms in the primitive cell in the
same direction with the same amplitude; at q = G, this motion
is fully in-phase for all unit cells in the crystal, resulting in three

Fig. 3 Potential energy as a function of amplitude E(Q) for the two stretch
modes in CO2 determined from eqn (2): (a) the symmetric stretch with
h�o = 1315 cm�1, and (b) the antisymmetric stretch with h�o = 2357 cm�1.
The E(Q) for both modes are shown over a range of Q = �0.5, and the
energies are given in units of h�o. On each plot, the black lines show
the harmonic energy levels Ev determined from eqn (4). Note that as the
energies are given in units of h�o, the implication is that modes with small
h�o will, in general, have larger displacements |Q| for a given vibrational
quantum state than will modes with large h�o.

Fig. 4 Schematic illustration of how the Bloch theorem defined in eqn (5)
generates four of the phonon modes of a monoatomic 2D lattice. The
displacement of the atom in the primitive cell defines the cell-periodic
function u(r) (blue), which is replicated across the other unit cells in the
lattice with a phase pattern defined by plane-wave terms exp(iq�r) (red). In
(a) and (b) the wavevector q is oriented along the real-space x direction
with two different wavelengths corresponding to different modulation
periods. In (c) and (d), the wavevector is aligned along the y and xy
directions, respectively, with the same wavelength as in (b).
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rigid translations of the entire crystal with h�oj = 0 (one of the
acoustic modes for NaCl is doubly degenerate along the
dispersion path). [We note that, unlike for gas-phase molecules,
rigid rotations of crystals are not defined.] At the zone-boundary

wavevectors, here qRðXÞ ¼ 1

2
; 0;

1

2

� �
and qRðLÞ ¼ 1

2
;
1

2
;
1

2

� �
; the

atomic motion in neighbouring unit cells is fully out-of-phase
along particular real-space directions, and therefore the energy of
the acoustic modes increases sharply away from G with an
approximately linear dispersion. This linear dependence at small
|q| leads to an approximately quadratic increase in the low-
energy DoS,27 which is the basis for the Debye approximation
common in traditional texts on spin–phonon coupling.22 The
acoustic modes have frequencies in the Hz–kHz range at q C G
and allow the transport of sound waves through the crystal,
which is the origin of their name. The slope of the dispersion
qoqj/qq determines the ‘‘group velocity’’ vqj of the modes, which
gives the velocity and direction with which the modes travel
through the crystal. For NaCl, the linear dispersion of the
acoustic modes near G results in these modes having the largest
|vqj|, which sets the speed of sound propagation through the
crystal.

The remaining 3na � 3 modes involve opposing motions of
the atoms in the unit cell, and thus have h�oj 4 0 at all q. These
modes can, in principle, lead to a change in electric polarisa-
tion (the solid-state analogue of the dipole moment) and/or
electric polarisability within the primitive cell, and thus may
interact with light; they are therefore termed ‘‘optic modes’’.
Approximately two-thirds along the path between G and X in
the phonon dispersion of NaCl (Fig. 5) there is an avoided
crossing between an acoustic and optic branch, indicating
mixing between these modes; at wavevectors away from G, the
distinction between these two classes of modes is therefore not

always clear. The DoS of NaCl shows a continuous spectrum of
modes up to B250 cm�1, and the partial DoS shows that Na and
Cl contribute roughly equally across the full range of modes. This
is due to their similar mass (mNa = 22.99 and mCl = 35.45 amu),
and in systems with large mass differences between the con-
stituent atoms the DoS often shows distinct energy regions
where a particular type or group of atoms dominates the
vibrations.

The phonon spectra of molecular crystals present some
additional noteworthy features, which we illustrate here with
the phonon dispersion and DoS of the cubic phase of crystalline
NH3 (Fig. 6; calculated using DFT, see ESI†). In the general case
where there are multiple molecules in the primitive cell, the
translations and rotations of each molecule (i.e. those that are
present in the gas phase) combine to produce low-energy
phonons involving various rigid-body motions of whole mole-
cules that are often termed ‘‘external modes’’. Three combina-
tions of these translations preserve the intermolecular distances
and give rise to the acoustic modes with h�oj = 0 at q = G as in
inorganic crystals. Other combinations of translations, rota-
tions, and translations/rotations have non-zero energy, but are
still relatively low-energy motions due to the generally weaker
intermolecular interactions, and hence there are additionally a
large number of low-energy dispersive modes that mix with the
acoustic modes at q a G; we refer to this loosely-defined set of
modes as ‘‘pseudo-acoustic’’ modes.

Fig. 5 Phonon dispersion h�oj (q) and density of states g(h�o) (DoS) of NaCl from
DFT calculations (see ESI,† for details). The dispersion is shown along the

wavevector path qRðLÞ ¼ 1

2
;
1

2
;
1

2

� �
! qRðGÞ ¼ ð0; 0; 0Þ ! qRðXÞ ¼ 1

2
; 0;

1

2

� �
.

There are 3na = 6 bands at each q, but the high symmetry of the cubic
spacegroup means that a pair of acoustic modes and a pair of optic modes are
degenerate along this path; the singly-degenerate bands are shown in red, and
the doubly-degenerate bands in blue. The DoS is shown in black and the
projections onto the Na and Cl atoms are shown in yellow and green,
respectively.

Fig. 6 Phonon dispersion h�oj(q) and density of states g(h�o) (DoS) of cubic
crystalline NH3 from DFT calculations (see ESI,† for details). Panel (a) shows
the full DoS and highlights four distinct groups of modes, viz. the ‘‘external’’
(pseudo-)acoustic modes formed from rigid-molecule translations and
rotations (blue), and the ‘‘internal’’ modes formed from the NH3 bending
(red), H–N–H ‘‘scissoring’’ (orange), and N–H symmetric and antisym-
metric stretch vibrations (purple). Panel (b) shows the phonon dispersion
and DoS from 0–700 cm�1 corresponding to the blue region in (a).

Tutorial Review Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
  1

44
4.

 D
ow

nl
oa

de
d 

on
 0

5/
03

/4
6 

07
:2

5:
24

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cs00705c


This journal is © The Royal Society of Chemistry 2023 Chem. Soc. Rev., 2023, 52, 4567–4585 |  4573

As a non-linear molecule, NH3 has three translations, three
rotations and six vibrations in the gas phase. There are four
NH3 molecules in the primitive cell of the cubic crystal structure
(na = 4 � 4 = 16) and hence 48 phonon modes at each wavevector
q. The rigid-molecule translations and rotations combine to form
a dense group of 24 phonon bands spanning a range of
0–700 cm�1 (Fig. 6). In this case the translations and rotations
are separated by a small gap of B100 cm�1 between the 12
translational (pseudo-)acoustic modes from around 0–200 cm�1,
and the 12 rotational pseudo-acoustic modes from B300–700
cm�1. Both sets of phonons are pure external modes, and the
wide dispersion is due to the H-bonding network formed between
the molecules in the unit cell. The low-energy DoS remains
approximately quadratic as in the Debye approximation, as the
region where h�oj - 0 is dominated by the acoustic modes, but
the DoS ceases to behave quadratically above the ‘‘Debye limit’’
due to the pseudo-acoustic modes.28

The mid- and high-energy modes in molecular solids tend to
be made up of combinations of intramolecular vibrations
(‘‘internal modes’’). Particularly at higher energies these tend
to be localised vibrations (e.g. bond stretches) that often do not
significantly disrupt the intermolecular interactions, resulting
in a weak dependence on q and hence flat (‘‘dispersionless’’)
bands and sharper features in the DoS. For cubic NH3, there are
three distinct groups of internal modes (Fig. 6a) corresponding
to combinations of the bending modes (1100–1150 cm�1, four
modes), scissoring modes (1600–1700 cm�1, eight modes), and
the symmetric and antisymmetric stretches (3250–3450 cm�1,
12 modes). The two types of N–H stretches do not mix, and the
higher-energy group of stretching modes is notably split into
two distinct features centred around 3290 and 3400 cm�1, with
four and eight modes, respectively. The features corresponding
to the internal modes are much narrower than those from the
external modes, indicating a narrower energy dispersion.

To conclude this section, we cover three more aspects of
phonons that are relevant to the material in the following sections.
Firstly, while the phonon energies are quantised into units of h�oqj

as in the gas phase, for most purposes it is the average harmonic
energy level of each mode that is of interest, which is determined
by the Bose–Einstein occupation number %nqj:

�nqj ¼
1

exp �hoqj

�
kBT

� �
� 1

(8)

Secondly, the analogous expression for the atomic displace-
ments as a function of the mode amplitude in eqn (3) for
phonons in solids is:

uaklðQÞ ¼
X
qj

Qqjffiffiffiffiffiffiffiffiffiffi
Nmk
p Wa

kðqjÞ exp iq � rklð Þ (9)

where the factor of 1=
ffiffiffiffi
N
p

is required to maintain the relation in
eqn (2). This can be used to compute the coupling between
phonon modes and other material properties, in particular the
CF parameters (CFPs), as discussed in the following sections.

Finally, in the harmonic approximation the phonon modes
are strictly independent oscillators and therefore have infinite

lifetimes tqj. However in real crystals, the phonon modes
interact with one-another via collisions and decay, which give
rise to finite lifetimes. As a consequence of the uncertainty
principle, the phonons therefore have finite linewidths
Gqj = h�/tqj (full-width-at-half-maximum in energy units). [n.b.
The symbol used for the phonon linewidths Gqj should not be
confused with the centre of the BZ q = G.] In the case of lifetime
broadening such as this, the phonon lineshape is Lorentzian
(eqn (10)). However, as the phonon DoS (eqn (7)) must go to
zero at zero energy (i.e. g(0) = 0), the anti-Lorentzian lineshape
should be used instead (eqn (11)). In practice, however, there is
little difference if Lorentzian or even Gaussian lineshapes
are used.

L�qjð�hoÞ ¼
Gqj

2p Gqj

�
2

� �2þ �ho� �hoqj

� �2h i (10)

rqjð�hoÞ ¼ p
Lqj
�ð�hoÞ � Lqj

þð�hoÞ
2 tan�1 2�hoqj

�
Gqj

� �" #
(11)

Phonon–phonon scattering is typically the main contributor
to the lifetimes tqj in semiconductors and insulators, although
in some systems coupling between the electrons and phonons
can also be important.29 The lowest-order scattering processes
that conserve energy and (crystal) momentum are three-phonon
processes; these can be calculated and used in conjunction
with the harmonic phonon frequencies and eigenvectors to
compute the tqj from first principles,30 albeit at a considerable
computational cost, especially for large systems such as mole-
cular crystals. Hence, phonon linewidths are often treated as
parameters31 or by using statistical approximations.32 However,
we have recently shown that there is little impact on the spin
dynamics when either fixed, approximated, or calculated line-
widths are used, provided the BZ is integrated with a suffi-
ciently dense q-point grid.33

4 Electronic structure of lanthanide
complexes

Now we turn to the spin states of the molecule, where herein we
focus on the low-lying electronic states of Ln complexes. For
most cases, the trivalent Ln3+ oxidation state is most relevant,
with a well-isolated ground configuration 4fn5s25p6; the 6s and
5d may become relevant depending on the oxidation state and
the ligands surrounding the metal.34 Trivalent Ln3+ ions are
unique in the periodic table in that their valence electrons
reside in the 4f orbitals which are strongly contracted and
shielded beneath a filled set of 5s and 5p orbitals. Given the
inert nature of the 4f orbitals, the electronic structures of Ln3+

ions in molecules are well-described by the free-ion Hunds rule
ground term 2S+1LJ, where S is the total spin angular momen-
tum, L is the total orbital angular momentum, and J = L � S is
the total angular momentum after spin–orbit coupling (the �
sign refers to either 47 or o7 electrons in the 4f shell). While
there are exceptions (e.g. Sm3+ and Eu3+), for most Ln3+ ions the
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population of excited J multiplets is essentially zero at room
temperature and below, which is the temperature range of
interest for SMMs. Coordination of a set of ligands to a Ln3+

ion gives rise to a CF splitting of the 2J + 1 mJ states of the
ground J multiplet, and is described by the CF Hamiltonian
(eqn (12)).35

ĤCF ¼
X

k¼2;4;6

Xk
q¼�k

ykB
q
kÔ

q

k (12)

Here, Bq
k are the Stevens CF parameters of rank k and order q,

the Ôq
k are Stevens operator equivalents in the | J,mJi basis which

are polynomials of the angular momentum operators Ĵx, Ĵy, Ĵz, and
the yk are operator equivalent factors which relate the multi-
electron CF Hamiltonian in the |J,mJi basis to the single-electron
CF Hamiltonian in the Slater determinant basis.36,37

5 Spin–phonon coupling

Under an initial approximation that the electronic spin system is
non-interacting with the phonons, we can define the uncoupled
equilibrium Hamiltonian (eqn (13)). Here, the electronic part is
the CF Hamiltonian and the phonon part is the harmonic
oscillator Hamiltonian; note the distinction between the phonon
wavevector q and the order of the CF operator q.

Ĥeq ¼ ĤCF þ
X
qj

Ĥvib;qj

¼
X
k;q

ykB
q
kÔ

q

k þ
X
qj

�hoqj â
y
qj âqj þ

1

2

� �
: (13)

The operators âqj and â†
qj denote phonon annihilation and

creation operators, which act as âqj vqj
�� 	

¼ ffiffiffiffiffiffi
vqj
p

vqj � 1
�� 	

and

â
y
qj vqj
�� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vqj þ 1

p
vqj þ 1
�� 	

and represent reducing or increas-

ing the vibrational quantum number of phonon mode qj. These
allow us to define the dimensionless mass- and frequency-
weighted normal coordinates as27

Q̂qj ¼
ffiffiffiffiffiffiffiffiffi

�h

2oqj

s
âqj þ â

y
�qj


 �
: (14)

We note that the Q̂qj operator in eqn (14) is non-Hermitian,
unless q coincides with the G point or at special points on the
boundary of the BZ (see ESI†). This occurs because normal
mode displacements are in general complex quantities char-
acterised by amplitude and phase. The Hamiltonian in eqn (13)
can be written in the direct (or tensor) product basis

mJ ; vqj ; vq0j0 ; . . .
�� 	

; and is solved by diagonalisation to give eigen-

states c; vqj ; vq0 j0 ; . . .
�� 	

; where c denotes an electronic eigenstate

and vqj ; vq0j0 ; . . . are non-negative integers specifying the occupa-
tion number of each phonon mode.

The fundamental nature of the spin–phonon interaction
considers how vibrations modulate electronic states. To this
end, we describe spin–phonon coupling for the case of Ln
SMMs using a modified form of the CF Hamiltonian, where
the parameters Bq

k are dependent on the displacement along the
vibrational mode coordinates Qqj (eqn (15)). In the case of a

transition metal, one may alternatively define the coupling
Hamiltonian to arise from vibrational modulation of hyperfine
coupling, the g-matrix, or zero-field splitting, for example;32,38

however for S ¼ 1

2
systems, it is important to account for

changes in the nature of the basis states that is not accom-
modated in a simple g-matrix model.39 Though in any case, we
note that a model Hamiltonian need not be assumed and that
the derivatives of the Hamiltonian matrix elements can be
determined directly and employed in a similar vein.40,41 In
eqn (15) we describe the modulation of the CF parameters
using a Taylor series centred at the equilibrium structure
Qqj = 0, where Bq

k(0) are the same equilibrium CF parameters
appearing in eqn (13) and thus are not relevant for spin–
phonon coupling. Thus, we can define a spin–phonon coupling
Hamiltonian ĤSP up to second-order as eqn (16), where V̂(1)

qj and

V̂
ð2Þ
qj;q0j0 describe first- and second-order spin–phonon coupling,

respectively.

B
q
k Qqj ;Qq0j0 ; . . .
� �

¼ B
q
k 0ð Þ þ

X
qj

Qqj

@Bq
k

@Qqj

� �
eq

þ 1

2

X
qj

X
q0j0

QqjQq0 j0
@2Bq

k

@Qqj@Qq0 j0

� �
eq

þ . . .

(15)

ĤSP ¼
X
qj

V̂
ð1Þ
qj þ

X
qj

X
q0 j0

V̂
ð2Þ
qj;q0j0

¼
X
qj

Q̂qj

X
k;q

yk
@Bq

k

@Qqj

� �
eq

Ô
q

k

þ
X
qj

X
q0j0

1

2
Q̂qjQ̂q0 j

X
k;q

yk
@2Bq

k

@Qqj@Qq0 j0

� �
eq

Ô
q

k

(16)

We note that, as a Hamiltonian operator, ĤSP in eqn (16) must
be Hermitian. However, due to the non-Hermitian definition of
Q̂qj in eqn (14), this implies that the derivatives in eqn (16) are
taken using complex-valued displacements along the normal
mode coordinates.14 Alternatively, one can choose to re-write
eqn (16) such that each term in the sum over qj are all
individually Hermitian; we do this by introducing a new set
of creation/annihilation operators b̂qj as linear combinations of
âqj and â�qj, and defining Hermitian dimensionless normal
displacement operators as X̂qj = b̂qj + b̂†

qj (see ESI†). For the rest
of this review, we only consider the Hermitian representation of
the normal displacements in terms of b̂qj and b̂†

qj, denoting their
corresponding number states as |vqji.

Eqn (16) suggests that the magnitude of the spin–phonon
coupling is dependent on the number of q points included in
the sum within the BZ, as the sums over q collect a growing
number of terms. This apparent paradox is resolved by con-

sidering eqn (9) which includes a factor 1=
ffiffiffiffi
N
p

; thus decreasing
the nuclear displacement amplitudes, and hence the coupling
of individual modes, when the sum over q increases, resulting
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in size-consistent and convergent behaviour under these
definitions.

The spin–phonon coupling Hamiltonian is evaluated in the

product mJ ; vqj ; vq0j0 ; . . .
�� 	

basis, and for the first order term

V̂(1)
qj the non-zero matrix elements are of the form:

mJ 0 ; vqj � 1 V̂
ð1Þ
qj

��� ���mJ ; vqj

D E
¼ vqj � 1 X̂qj

�� ��vqj� 	
mJ 0

X
k;q

yk
@Bq

k

@Xqj

� �
eq

Ô
q

k

�����
�����mJ

* +
;

(17)

where mode qj has either gained or lost a quantum of vibra-
tional energy. Evaluation of the electronic part is straight-
forward as it is simply a matrix element of CF operators. The
vibrational matrix element can be evaluated with reference to
the definition of the position operator in the basis of harmonic
eigenstates, giving:

vqj � 1 X̂qj

�� ��vqj� 	
¼ vqj � 1 b̂qj

��� ���vqjD E
¼ ffiffiffiffiffiffi

vqj
p

(18)

vqj þ 1 X̂qj

�� ��vqj� 	
¼ vqj þ 1 b̂

y
qj

��� ���vqjD E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vqj þ 1

p
: (19)

Considering the second-order coupling V̂
ð2Þ
qj;q0j0 with modes qj

and q0j0, the non-zero matrix elements are given by:

m0J ; vqj � 1; vq0 j0 � 1 V̂
ð2Þ
qj;q0j0

��� ���mJ ; vqj ; vq0 j0
D E
¼ 1

2
vqj � 1 X̂qj

�� ��vqj� 	
vq0 j0 � 1 X̂q0j0

�� ��vq0j0� 	
� m0J

X
k;q

yk
@2Bq

k

@Xqj@Xq0j0

� �
eq

Ô
q

k

�����
�����mJ

* + (20)

and

m0J ; vqj � 2 V̂
ð2Þ
qj;qj

��� ���mJ ; vqj

D E
¼ 1

2
vqj � 2 X̂qj

2
�� ��vqj� 	

� m0J
X
k;q

yk
@2Bq

k

@Xqj
2

� �
eq

Ô
q

k

�����
�����mJ

* +
;

(21)

where

vqj � 2 X̂qj
2

�� ��vqj� 	
¼ vqj � 2 b̂qj

2
��� ���vqjD E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vqj vqj � 1
� �q

(22)

vqj þ 2 X̂qj
2

�� ��vqj� 	
¼ vqj þ 2 b̂

y
qj


 �2���� ����vqj �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vqj þ 1
� �

vqj þ 2
� �q

: (23)

We will see in Section 6 that crucial quantities for determining
the spin dynamics turn out to be the square modulus of the
matrix elements of ĤSP (eqn (17) and (20)), which consist of an
electronic and a vibrational component. When considering the
vibrational terms |hvqj � 1|X̂qj|vqji|2, we will be concerned with
cases where the phonon modes are in thermal equilibrium; i.e.
the vqj harmonic vibrational levels are statistically occupied

with a probability proportional to the Boltzmann factor

pvqj ¼
1

Z
e��hoqj vqj=kBT (where Z is the partition functionP1

vqj¼0
e��hoqj vqj=kBT ). Thus, averaging over thermally populated

vibrational levels, gives

X1
vqj¼0

pvqj vqj � 1
� ��X̂qj vqj

�� 	�� ��2 ¼X1
vqj¼0

pvqj vqj ¼ �nqj ; (24)

X1
vqj¼0

pvqj vqj þ 1
� ��X̂qj vqj

�� 	�� ��2 ¼X1
vqj¼0

pvqj vqj þ 1
� �

¼ �nqj þ 1; (25)

where %nqj is the Bose–Einstein occupation number defined in
eqn (8). While calculating the vibrational and electronic com-
ponent of the matrix elements of ĤSP is straightforward,

obtaining the spin–phonon coupling parameters
@Bq

k

@Xqj

� �
eq

and
@2Bq

k

@Xqj@Xq0 j0

� �
eq

is not straightforward; see Section 7. With

the total Hamiltonian of a coupled spin and phonon system up
to second-order in the spin–phonon coupling defined as
ĤT = Ĥeq + ĤSP, one may examine how the spin–phonon coupling
affects molecular properties. For instance, we could calculate
vibronic spectra directly in the coupled spin-vibrational basis,13,42

or we could calculate how the phonon bath leads to magnetic
relaxation of the electronic spin system;14,31 the latter will be our
focus here.

6 Spin dynamics and magnetic
relaxation

In order to discuss magnetic relaxation, we must consider how
the spin and phonon systems evolve in time and influence one-
another; from here we will refer to phonons as ‘‘the bath’’
interchangeably. The goal of our interrogation is to assess the
probability that a spin–phonon interaction leads to a spin flip
in the electronic system, i.e. magnetic relaxation. In general, the
dynamics of the phonon bath is assumed to be much faster
than the spin dynamics of the SMM (though this assumption
does not have to be made, see below), and the overall phonon–
molecule interactions leading to a spin flip include: (i) phonons
are absorbed by the SMM, (ii) phonons are emitted by the SMM,
and (iii) phonons are scattered inelastically by the SMM. This
section is separated into two subsections: in the first, we
discuss open quantum systems methods which contain the
most accurate approaches for dealing with the dynamics of
quantum systems, starting from a minimal set of approxima-
tions and relaxing the accuracy of our approach. In the second,
we discuss methods based on perturbation theory, which are
the traditional approaches taken in this field, relying on a set of
approximations from the outset.
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6.1 Open quantum systems methods

As we are concerned with calculating the spin-flip probabilities,
we must work with probabilistic measures of the quantum
states; this necessitates use of the density matrix, r̂. The density
matrix encodes the probabilities of finding the total system in a
particular state (diagonal matrix elements) and also allows us to
describe quantum coherences between states (off-diagonal
matrix elements); note that here the states of the total system
include both spin and phonon degrees of freedom. At the most
exact level of theory, we could construct a density matrix
representation of the spin-vibrational system described by
the total Hamiltonian ĤT starting in a well-defined state, e.g.
r̂(0) = |Cspin–vibi hCspin–vib|, and consider its unitary evolu-
tion according to the Liouville–von Neumann equation
r̂(t) = e�iĤTt/h�r̂(0)eiĤTt/h� (the analogue of the time-dependent
Schrödinger equation).43 Performing such a calculation would
include all interactions between the spin and phonons and give
us the knowledge of the system at all times. However, this is
prohibitively expensive in practice owing to the very large
number of phonon modes in any real system, and hence there
have arisen many ways to find approximate solutions to this
problem: this is a field of research called open quantum
systems.44–47 The first simplification in solving this problem
is to identify that we are not very interested in the state of the
bath in the end, rather, we only care about the probability of the
SMM undergoing a spin flip. Hence, we can perform a partial
trace of r̂ over the phonon modes: this is a mathematical
operation to remove the phonon degrees of freedom from the
total density matrix by averaging over them (often referred to as
‘‘tracing out the bath’’) to give the reduced density matrix of the
spin system:

r̂S ¼ Trvib r̂ ¼
X1
vqj¼0

X1
vq0 j0 ¼0

. . . vqj ; vq0j0 ; . . .
� ��r̂ vqj ; vq0 j0 ; . . .

�� 	

¼
X
ci ;ck

cij i
X1
vqj¼0

X1
vq0 j0 ¼0

. . . ci; vqj ; vq0j0 ; . . .
� ��r̂ ck; vqj ; vq0 j0 ; . . .

�� 	0@ 1A
� ckh j:

(26)

Note that the expectation values of r̂ in the above equation are
taken with respect to the phonon degrees of freedom only,
leaving us with a reduced density matrix for the spin system.
This is made evident in the second line of eqn (26), where the
matrix elements of r̂S in the electronic eigenbasis are given
explicitly in terms of the matrix element of r̂. This procedure
could be done either before or after interrogation of spin
system dynamics. For instance, chain-mapping methods such
as time-evolving density using orthogonal polynomial algo-
rithm (TEDOPA)48,49 employ a linearisation of the bath Hamil-
tonian to approximate the dynamics of the whole system with
density matrix renormalisation group (DMRG) methods,50 after
which a trace over the bath degrees of freedom gives the desired
reduced density matrix. Alternatively, another class of methods
aims at finding approximations for the time evolution of the

reduced density matrix of the spin system alone (eqn (26)) after
performing the partial trace over the bath degrees of freedom
analytically. In this class we find methods such as the
quasi-adiabatic path integral (QUAPI),51,52 hierarchy equations
of motion (HEOM),53,54 or the time-evolving matrix product
operator (TEMPO).55 While all of the above are examples of
methods that can approach high-degrees of accuracy that may
be required when the spin and phonon systems are strongly
coupled, in the domain of molecular magnetism it is usually
safe to assume that the spin and phonon systems are weakly
coupled. Moreover, magnetic relaxation is typically much
slower than the underlying phonon dynamics, thus allowing
for a clear separation of system and bath timescales; we have
recently confirmed this separation of timescales by calculating
the phonon lifetimes for a molecular crystal of a Dy(III) SMM.33

These additional constraints simplify the problem consider-
ably, allowing one to treat the phonons as a weakly coupled
bath with no memory (on the timescale of the spin system).
Under these assumptions, commonly referred to as the Born–
Markov approximation, the dynamics of the reduced density
matrix is described by the Redfield equation:44,56

d

dt
r̂SðtÞ ¼ �

i

�h
Ĥ
0

CF; r̂SðtÞ
h i

þRð1Þr̂SðtÞ þRð2Þr̂SðtÞ; (27)

where the square brackets denote the commutator ([Â,B̂] = ÂB̂�B̂Â),

and Rð1Þ and Rð2Þ are the Redfield superoperators arising from the
first- and second-order spin–phonon coupling in eqn (16). Denot-
ing the electronic part of the first- and second-order spin–phonon
coupling operators as:

V̂
ð1eÞ
qj ¼

X
k;q

yk
@Bq

k

@Xqj

� �
eq

Ô
q

k (28)

V̂
ð2eÞ
qj;q0j0 ¼

X
k;q

yk
@2Bq

k

@Xqj@Xq0 j0

� �
eq

Ô
q

k; (29)

the Redfield superoperators can be written as:

Rð1ÞrS ¼ �
X
qj

V̂
ð1eÞ
qj ; êVð1eÞqj rS � rS

ê
V
ð1eÞ
qj


 �y� �
(30)

Rð2ÞrS ¼ �
1

4

X
qj;q0j0

V̂
ð2eÞ
qj;q0 j0 ;

ê
V
ð2eÞ
qj;q0 j0rS � rS

ê
V
ð2eÞ
qj;q0j0


 �y� �
; (31)

where:

ê
V
ð1eÞ
qj ¼

X
q0 j0

ð1
0

C
ð1Þ
qj;q0 j0 ðtÞe

�iĤ
0
CFt
�

�hV̂
ð1eÞ
qj eiĤ

0
CFt
�

�hdt (32)

ê
V
ð2eÞ
qj;q0 j0 ¼

X
q00j00;q000 j000

ð1
0

C
ð2Þ
qj;q0 j0 ;q00j00;q000j000 ðtÞe

�iĤ
0
CFt
�

�hV̂
ð2eÞ
q00j00 ;q000 j000e

iĤ
0
CFt
�

�hdt:

(33)

The time-dependent coefficients in eqn (32) and (33) are defined as

C
ð1Þ
qj;q0j0 ðtÞ ¼

1

�h2
eiĤvibt=�hX̂qje

�iĤvibt=�hX̂q0 j0

D E
eq

(34)
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C
ð2Þ
qj;q0 j0;q00 j00;q000j000 ðtÞ ¼

1

�h2
eiĤvibt=�h X̂qj X̂q0 j0 � dqj;q0j0 X̂qj

2
� 	

eq


 �
e�iĤvibt=�h

D
� X̂q00j00 X̂q000j000 � dq00j00 ;q000 j000 X̂q00 j00

2
� 	

eq


 �E
eq
;

(35)

where Ĥvib ¼
P
qj

Ĥvib;qj is the total vibrational Hamiltonian in

eqn (13). Eqn (34) and (35) represent the bath correlation functions
calculated for a thermal distribution of phonons (eqn (8)).
The thermal averages over phonons appearing in eqn (34)
and (35) can be calculated as h. . .ieq = Trvib{. . .r̂eq}, where
r̂eq = e�Ĥvib/kBT/Trvib{e�Ĥvib/kBT} is the thermal density matrix for
phonons. The CF Hamiltonian appearing in eqn (27) includes a
correction arising from the second-order spin–phonon coupling,

Ĥ
0
CF ¼ ĤCF þ

1

2

P
qj

X̂qj
2

� 	
eq
V̂
ð2eÞ
qj;qj ; accounting for the average

energy shift induced by the quadratic terms.
The Redfield superoperators Rð1Þ and Rð2Þ in eqn (27)

describe one- and two-phonon processes corresponding to the
linear and quadratic terms of the expansion in eqn (16) (i.e.
Orbach and Raman-II processes; see Section 6.2). In fact,
Redfield theory incorporates the effect of the spin–phonon
coupling in eqn (16) only to lowest order; higher-order interactions,
i.e. two-phonon processes induced by the linear spin–phonon
coupling (Raman-I mechanism) require either extending Redfield
theory or resorting to other strategies that neglect the influence of
electronic coherences (see Section 6.2 and ESI†).14 In principle, the
effect of arbitrarily high-order spin–phonon interactions on the
dynamics of the reduced spin density matrix r̂S can be included
systematically in a quantum master equation of a similar form to
eqn (27) via the time-convolutionless projection operator method,44

which amounts to expanding the reduced system dynamics in
powers of the system-bath coupling, giving further corrections to
the equation of motion for r̂S (eqn (27)). In practice, however, going
beyond second-order is not very common for systems with more
than a few electronic states or with highly structured vibrational
environments, since the calculation of higher-order contributions to
the dynamics will likely require computational resources comparable
to the ones required for numerically exact methods (such as the ones
mentioned above), which are more generally applicable, since they
do not rely on a perturbative expansion in the system-bath
coupling. However, the Redfield equation (and its secular ver-
sion) remain extremely valuable tools to investigate the dissipa-
tive dynamics of quantum systems, especially when used in
conjunction with other prescriptions to extend its validity beyond
the Born–Markov approximation. A common strategy of this type
is to redefine the boundary between system and bath by parti-
tioning the total Hamiltonian ĤT = Ĥeq + ĤSP in a different way, in

general such as ĤT ¼ Ĥ
0
eq þ Ĥ

0
SP; where the revised system

Hamiltonian Ĥ
0
eq now contains the ‘‘important’’ spin-bath

dynamics and the residual system-bath coupling Ĥ
0
SP is ammen-

able to description with the Born–Markov approximation. As an
example, the reaction coordinate mapping method57 aims to
capture non-Markovian effects on the electronic system dynamics

by identifying a single collective coordinate of the bath, given by a
suitable linear combination of individual coordinates X̂qj, which is
treated exactly, while the rest of the bath, which only couples to the
collective mode, is treated with Redfield theory. Different criteria for
selecting the most relevant bath pseudo-modes may be chosen,
leading to different methods.58,59 Another strategy is to describe the
coupled spin–phonon system in terms of polarons, displacing the
phonon coordinates conditionally on the state of the spin system.45

The residual spin–phonon coupling in the polaron frame describes
small harmonic displacements around the redefined equilibrium
configurations, which can then be treated within Redfield
formalism.60,61

We have discussed how the Redfield equation (eqn (27))
describes the dynamics of the reduced spin density matrix
under the Born–Markov approximation, capturing the coupled
time evolution of both electronic populations hci|r̂S|cii and
coherences hci|r̂S|cki (where i a k). A further approximation is
often performed at this point, which amounts to averaging the
oscillations induced by the time evolution of the electronic spin–
phonon coupling operators in eqn (32) and (33). This procedure,
known as the secular approximation,44 decouples the evolution of
populations from coherences, and is justified when magnetic
relaxation is much slower than the typical timescale of the unitary
spin system dynamics, determined by energy differences between
different eigenvalues of the CF Hamiltonian. Since SMMs exhibit
either exactly or nearly doubly-degenerate electronic states
(Fig. 1), this approximation is not always applicable, as the
interaction between populations and coherences within a degen-
erate doublet cannot be decoupled, and other strategies must be
used instead.14 If we decide to neglect electronic coherences
entirely (which would not be appropriate if we cared about the
decoherence of the quantum spin system induced by the pho-
nons (i.e. the T2 timescale),62 but is usually a good approximation
if we are only concerned with magnetic relaxation (i.e. the T1

timescale)), we can calculate the rates for a transition between
two eigenstates of the CF Hamiltonian, ci - cf (given symbol gfi),
by taking the expectation value of the Redfield superoperators
(eqn (30) and (31)) on the final state cf, and singling out the
contributions from the terms hci|r̂S|cii. For instance, applying

this procedure to Rð1Þ gives:

gð1Þfi ¼
2p
�h

X
qj

cf V̂
ð1eÞ
qj

��� ���ci

D E��� ���2 �nqj þ 1
� �

d Ef � Ei þ �hoqj

� ��
þ �nqjd Ef � Ei � �hoqj

� ��
(36)

which describes single-phonon emission (arising from the
first term in the square braces) or absorption (second term in
the square braces) by the spin system. In the above, the
phonon occupation numbers arise from expanding the mode
coordinates X̂qj in terms of the phonon creation and annihi-
lation operators (as performed in eqn (14) and considering
the thermal averages (eqn (24) and (25)) where %nqj is defined
in eqn (8):

hb̂qjb̂
†
qjieq = %nqj + 1 (37)
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hb̂†
qjb̂qjieq = %nqj. (38)

In eqn (36), the phonon modes are considered in the harmonic
limit as having infinitely-long lifetimes and hence the line-
shape is given by the Dirac delta function; we could augment
this expression by considering a finite linewidth, for example
described by eqn (11).

Eqn (36) should be familiar to readers who have read
traditional texts on magnetic relaxation or spin–phonon cou-
pling: this is almost identical to the expression for single-
phonon absorption or emission obtained by applying first-
order time-dependent perturbation theory, viz. Fermi’s Golden
Rule, to the problem of magnetic relaxation; this is the route we
take in the next section.

6.2 Perturbation theory methods

When we want to calculate the rates of magnetic relaxation in
SMMs, we are not concerned with electronic coherences; if, on
the other hand one wants to calculate decoherence rates, read
Section 6.1. In this case, we can adopt a simpler theoretical
framework and describe transitions between different states of
the spin system using a classical rate equation. Furthermore,
unlike for the single-phonon rate equation obtained from the
first-order Redfield superoperator (eqn (36)), it is tedious to
obtain rate-like equations for electronic populations considering
the higher-order superoperators from the time-convolutionless
expansion, and using perturbation theory (viz. Fermi’s golden
rule) is far more straightforward for this task.14 These two
approaches lead to the same rate expressions, provided that
some reasonable assumptions on the spin–phonon coupling
strength and on the timescales of spin and phonon dynamics
are made (see ESI† for a detailed derivation of one- and two-
phonon rates). Using first-order time-dependent perturbation
theory, the transition rate gfi between any two pairs of states |cii
and |cfi caused by a periodic perturbation V̂ can be calculated
as:43

gfi ¼
2p
�h

ð
cfh jV̂ cij i
�� ��2d Ef � Eið Þr Efð ÞdEf ; (39)

where r(Ef) is the density of final states such that r(Ef)dEf is the
number of final states in the energy range Ef - Ef + dEf. We first
consider cases where the absorption or emission of a single
phonon by the spin system drives transitions between electronic
eigenstates |cii and |cfi of the equilibrium electronic Hamilto-
nian (eqn (12)). For the case of magnetic relaxation, we only care
about the states of the electronic spin system and not the bath
states, and so we can perform the analogous procedure to
‘‘tracing out the bath’’ by first separating hcf|V̂|cii into an
electronic and vibrational part (viz. eqn (17) and (20)), then

summing the contribution of all modes qj independently and
assuming a thermal state of their phonon occupations (eqn (8)),
which gives eqn (40) and (41), where the coupling operators are
defined in eqn (28), Ei and Ef are the equilibrium electronic
eigenstate energies. The only difference between this expression
and eqn (36) is that we allow the phonon modes to have a finite
linewidth, described by the lineshape rqj (eqn (11)); note that
the integration variable h�o is an argument of the phonon
occupation terms, the delta function, and the lineshape), and
have explicitly separated the phonon absorption (gfi

�) and
emission (gfi

+) terms.

gfi
� ¼ 2p

�h

X
qj

ð
cfh jV̂

ð1eÞ
qj cij i

��� ���2�nð�hoÞd Ef � Ei � �hoð Þrqjð�hoÞd�ho

(40)

gfi
þ ¼

2p
�h

X
qj

ð
cfh jV̂

ð1eÞ
qj cij i

��� ���2ð�nð�hoÞ þ 1Þd Ef � Ei þ �hoð Þrqjð�hoÞd�ho

(41)

Since phonons have a finite linewidth, we allow their occupation
numbers to vary continuously with the energy, i.e.
%n(h�o) = 1/[exp(h�o/kBT) � 1]. Note that for these single-phonon
transitions, the integrals can be performed analytically to give
only non-zero contributions where h�o = �(Ef � Ei), and we
remind the reader that normalisation for the number of q-
points included in the summation is accounted for in the
definition of the spin–phonon coupling coefficients in V̂(1e)

qj via
the displacements in eqn (9). The approximation here is that the
electronic spin–phonon coupling matrix element hcf|V̂(1e)

qj |cii
does not change over the phonon lineshape: this is a fair
approximation for the case of narrow lines, but n.b. the zero-
point displacement of a phonon with a different energy will be
different from the central value, and this is not accounted for in
this approximation.

Considering now two-phonon interactions, there are three
possibilities: (i) two phonons are absorbed by the spin system
(gfi
��); (ii) two phonons are emitted by the spin system (gfi

++); or
(iii) a phonon is scattered inelastically by the spin system
(gfi
�+ and gfi

+�). Using first-order time-dependant perturbation
theory as before, a similar derivation to the first-order rates can
be carried out using the second-order spin–phonon coupling

perturbation V̂
ð2Þ
qj;q0j0 : this gives transition rates corresponding to

the Raman-II mechanism (eqn (42)–(45)).14,21 Alternatively, one
can use the first-order spin–phonon coupling Hamiltonian and
take the time-dependent perturbation theory to second-order,
thus defining the Raman-I mechanism (eqn (46)–(49)).14,20,23

gII;��fi ¼ p
�h

X
qj;q0j0

ðð
cfh jV̂

ð2eÞ
qj;q0j0 cij i

��� ���2�nð�hoÞ�nð�ho0Þd Ef � Ei � �ho� �ho0ð Þrqjð�hoÞrq0j0 ð�ho0Þd�ho d�ho0 (42)

gII;þþfi ¼ p
�h

X
qj;q0 j0

ðð
cfh jV̂

ð2eÞ
qj;q0j0 cij i

��� ���2ð�nð�hoÞ þ 1Þð�nð�ho0Þ þ 1Þd Ef � Ei þ �hoþ �ho0ð Þrqjð�hoÞrq0j0 ð�ho0Þd�ho d�ho0 (43)
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Note that the terms appearing in the double sums over qj,qj0 in
eqn (42)–(49) are symmetric with respect to exchange of the mode
indices qj 2 q0j0. The terms involving simultaneous phonon
emission and absorption (labelled by superscripts +� and �+)
simply transform into each other when swapping mode indices.
Therefore, the double summation can be replaced by twice the
restricted sum over pairs of modes (qj Z q0j0) and a double-counting
correction factor for the case in which the mode indices are the

same 1� 1

2
dqj;q0j0

� �
inserted between the summation and double

integral, for computational efficiency; we note that all terms should

have the factor of
1

2
and not some with

3

4
as given in ref. 14.

With these transition rates calculated (n.b. total transition
rates gfi are the sum of all contributions, eqn (40)–(49)), simula-
tion of the spin dynamics is then a case of solving a classical rate
equation for the electronic eigenstate populations:63

d

dt
piðtÞ ¼

X
fai

gifpfðtÞ � gfipiðtÞ½ � (50)

For this method to be valid, the gfi must obey the principle of
detailed balance such that in equilibrium the forwards and
backwards probability currents gfipi and gifpf are equal due to
microscopic reversibility:

gfi
gif
¼ exp

Ei � Ef

kBT

� �
: (51)

Solving the coupled differential eqn (50) can be achieved by construc-
ting the matrix C with elements Gfi ¼ 1� dfið Þgfi � dfi

P
mai

gmi

(note that C here is the rate matrix and not the origin of the BZ,
nor is it the phonon linewidth) and diagonalising‡ it (i.e.
finding the matrix /, that transforms C into a diagonal form
K = /�1C/;).63 The eigenvalues of C (diagonal entries of K) are
a set of 2J + 1 characteristic rates �tk

�1, each corresponding to
a so-called ‘‘normal mode’’ of relaxation (n.b. these are not the
normal modes of vibration, nor are they different relaxation
mechanisms). Of these normal modes, one rate corresponds to
the system in equilibrium and is identically zero. When con-
sidering single-phonon processes alone for SMMs, often the
Orbach mechanism dominates, and one of the normal modes
of relaxation corresponds to the rate of this over-barrier pro-
cess, which is many orders of magnitude slower than the
remaining modes consisting of fast fluctuations of the popula-
tions of the states on either side of the barrier.3 Hence,
often this rate is taken to be the same as the magnetic

gII;�þfi ¼ p
�h

X
qj;q0j0

ðð
cfh jV̂

ð2eÞ
qj;q0j0 cij i

��� ���2�nð�hoÞð�nð�ho0Þ þ 1Þd Ef � Ei � �hoþ �ho0ð Þrqjð�hoÞrq0j0 ð�ho0Þd�ho d�ho0 (44)

gII;þ�fi ¼ p
�h

X
qj;q0j0

ðð
cfh jV̂

ð2eÞ
qj;q0j0 cij i

��� ���2ð�nð�hoÞ þ 1Þ�nð�ho0Þd Ef � Ei þ �ho� �ho0ð Þd rqjð�hoÞrq0 j0 ð�ho0Þd�ho d�ho0 (45)

gI;��fi ¼ p
�h

X
qj;q0j0

ðð X
c

cfh jV̂
ð1eÞ
qj ccj i cch jV̂

ð1eÞ
q0j0 cij i

Ec � Ei � �ho0

������ þ
cfh jV̂

ð1eÞ
q0 j0 ccj i cch jV̂

ð1eÞ
qj cij i

Ec � Ei � �ho

������
2

� �nð�hoÞ�nð�ho0Þd Ef � Ei � �ho� �ho0ð Þrqjð�hoÞrq0 j0 ð�ho0Þd�ho d�ho0 (46)

gI;þþfi ¼ p
�h

X
qj;q0j0

ðð X
c

cfh jV̂
ð1eÞ
qj ccj i cch jV̂

ð1eÞ
q0j0 cij i

Ec � Ei þ �ho0

������ þ
cfh jV̂

ð1eÞ
q0 j0 ccj i cch jV̂

ð1eÞ
qj cij i

Ec � Ei þ �ho

������
2

� ð�nð�hoÞ þ 1Þð�nð�ho0Þ þ 1Þd Ef � Ei þ �hoþ �ho0ð Þrqjð�hoÞrq0j0 ð�ho0Þd�ho d�ho0 (47)

gI;�þfi ¼ p
�h

X
qj;q0j0

ðð X
c

cfh jV̂
ð1eÞ
qj ccj i cch jV̂

ð1eÞ
q0j0 cij i

Ec � Ei þ �ho0

������ þ
cfh jV̂

ð1eÞ
q0 j0 ccj i cch jV̂

ð1eÞ
qj cij i

Ec � Ei � �ho

������
2

� �nð�hoÞð�nð�ho0Þ þ 1Þd Ef � Ei � �hoþ �ho0ð Þrqjð�hoÞrq0j0 ð�ho0Þd�ho d�ho0 (48)

gI;þ�fi ¼ p
�h

X
qj;q0j0

ðð X
c

cfh jV̂
ð1eÞ
qj ccj i cch jV̂

ð1eÞ
q0j0 cij i

Ec � Ei � �ho0

������ þ
cfh jV̂

ð1eÞ
q0 j0 ccj i cch jV̂

ð1eÞ
qj cij i

Ec � Ei þ �ho

������
2

� ð�nð�hoÞ þ 1Þ�nð�ho0Þd Ef � Ei þ �ho� �ho0ð Þrqjð�hoÞrq0j0 ð�ho0Þd�ho d�ho0

(49)

‡ Note that care must be taken with numerical diagonalisation of C where
eigenvalues span many orders of magnitude and limitations due to finite
numerical precision become important. For example, magnetic relaxation rates
are usually on the order of 105 s�1 to 10�5 s�1, while the ‘‘fast fluctuations’’ can be
B1013 s�1, which sets the numerical value of ‘‘zero’’ as B10�3 s�1 in double
precision arithmetic, which clearly poses a problem for calculation of rates at low
temperature. However, using quadruple precision arithmetic, numerical ‘‘zero’’
would be B10�21 s�1 in the presence of eigenvalues of B1013 s�1.
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relaxation rate. In principle the spin dynamics of the system
evolve under the influence of all normal modes of relaxation, so
the magnetic relaxation rate should be determined by first
simulating a magnetisation decay process and then fitting the
trace with an exponential decay to give t:

MðtÞ ¼Mð0Þ exp �t
t


 �
(52)

To do so, one must first calculate the population of each state
|cii as a function of time t:

piðtÞ ¼
X
k

lkfik exp �
t

tk

� �
(53)

with k = /�1p0, where p0 is a vector specifying the initial
populations of the states; to simulate magnetic relaxation,
one of the degenerate ground states would have unit popula-
tion and all other states zero population. In this approach,
the initial population evolves under the influence of each
normal mode of relaxation (eigenvector of C). Then, the
time-dependence of the total magnetisation is given as the
sum over the magnetisation of each state, weighted by its
population:

MðtÞ ¼
X2Jþ1
i

piðtÞMi: (54)

7 Practical considerations for ab initio
calculation of spin–phonon coupling

Following the above theoretical descriptions, a practical
ab initio calculation of spin–phonon coupling and spin
dynamics requires four steps: (i) optimisation of the structure
and calculation of the phonon modes; (ii) calculation of the
equilibrium electronic structure; (iii) calculation of the spin–
phonon coupling terms; and (iv) simulation of the spin
dynamics.

The first step is usually performed using (semi-)local DFT
methods, which are currently the only tractable methods for
optimisation and lattice-dynamics calculations on periodic mole-
cular crystals. Periodic DFT calculations commonly describe the
valence electronic wavefunctions with a plane-wave basis set and
use pseudopotentials to describe the nuclei and core electrons
(e.g. in VASP,64,65 CASTEP66 or CP2K67), but all-electron calcula-
tions and atom-centred Gaussian-type atomic orbital basis sets
are also an option (e.g. in CRYSTAL68). Optimisation of molecular
crystal structures should generally be performed using a method
including dispersion corrections (e.g. DFT-D69) in order to obtain
qualitatively correct intermolecular potential energies.

Even when starting the optimisation of a molecular crystal
from an experimental structure obtained with X-ray diffraction,
the optimisation process is not necessarily straightforward
owing to the presence of crystallographic disorder and shallow
potential energy surfaces that can result in the optimisation
algorithm getting stuck in a local maximum. The hallmark of a
geometry optimisation landing in a local maximum on the PES

is the presence of imaginary phonon modes (o2 o 0) at the BZ
centre (G point). These ‘‘dynamical instabilities’’ imply that a
distortion of the atoms in the unit cell along the imaginary
modes will lower the total energy, and hence that the unit
cell contents are not fully optimised. Just like for molecular
structure optimisations in the gas-phase, the imaginary modes
can be removed by distorting the geometry along the
eigenvector(s) corresponding to the imaginary phonon mode(s)
and re-starting the optimisation at the minimum energy point
along the distortion path. Doing so may result in a lowering of
the crystallographic spacegroup symmetry. Typically one would
distort along the largest magnitude imaginary mode, although
this does not necessarily lead to the deepest energy minimum.
After optimisation, the G-point phonon spectrum should be
recalculated and checked for imaginary modes, and this process
repeated until they are all removed.

When all phonon modes have o2
Z 0 at the G point, then

the unit cell can be considered optimised. Next, the phonon
modes and their dispersion in reciprocal space should be
calculated. For this, one chooses a path in reciprocal space
visiting the unique high-symmetry q-points in the BZ, which are
determined by the crystallographic spacegroup. If all phonon
branches have non-imaginary energies at all the high-symmetry
wavevectors in the BZ, then the phonon calculation can be
considered adequate. If there are imaginary modes at non-zero
wavevectors, then these should be investigated. Off-G imaginary
modes can arise in two cases: (i) interpolation artefacts for
wavevectors that are not commensurate with the supercell
expansion used in a finite-displacement calculation (or are
not included in the ‘‘coarse’’ q-point mesh in a perturbation-
theory calculation); or (ii) ‘‘true’’ imaginary modes that indicate
a dynamical instability for which an expanded unit-cell is
required to contain the energy-lowering distortion. To check
which case is causing the imaginary mode, one must perform
the dispersion calculation with an expanded supercell (or a
larger ‘‘coarse’’ mesh) that includes the wavevector(s) with
imaginary mode(s). If the mode(s) becomes real, then it is case
(i) and the phonons must simply be calculated in the larger
supercell. If the mode remains imaginary, then it is a case of (ii)
and the unit cell must be enlarged to contain the wavevector in
question and the structure re-optimised. Checks for imaginary
modes must then be repeated on the enlarged unit cell, and
further calculations performed as necessary to remove them. In
general, using a larger supercell expansion when calculating
the phonon modes, which is equivalent to finer q-point sam-
pling, will improve the accuracy with which the frequencies of
off-G modes are evaluated, but this is limited in practice by
computational cost.

In the case of low-symmetry molecular crystals, it may not
always be computationally tractable to remove all imaginary
modes. As an example, we recently calculated the phonon
spectra of [Dy(Cpttt)2][B(C6F5)4] (Cpttt = 1,2,4-tBu3-C5H2; tBu =
C(CH3)3) at various pressures, and found that a 2 � 2 � 1
supercell with 1104 atoms was required to remove imaginary
modes at most pressure points. Despite this, imaginary modes
with h�o B 10i cm�1 persisted at two pressures, and phonon
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calculations with the 2 � 2 � 2 supercell (2208 atoms) required
to remove them were simply not computationally feasible.70 A
detailed review of the physical significance of imaginary modes,
possible causes, and treatments can be found in ref. 71.

This workflow for determining phonon spectra applies
equally to all molecular crystals, however there are extra con-
siderations for metal ions. For 4f elements, the near-degenerate,
core-like 4f electrons, which present a problem for the single-
determinant ansatz of DFT (see below) can be resolved by
subsuming the 4f electrons into the pseudopotential core using
‘‘f-in-core’’ potentials – this is an acceptable approximation as the
potential energy surface is largely unaffected by the 4f electrons.
For d-block or 5f elements, the substantial bonding character of
the d and 5f electrons makes this approach inappropriate, and
hence these calculations are more challenging. Here, the self-
interaction error in (semi-)local DFT functionals tends to overly
delocalise the d- or f-states, which can be empirically corrected
with an additional on-site term known as the Hubbard U para-
meter using the DFT+U method.72,73 However, even this approach
does not guarantee success, and often simply converging the
electronic wavefunction is a challenge and can make it difficult
both to optimise the structure and, subsequently, to calculate the
accurate forces required for phonon calculations. In these cases,
sometimes substitution of the open-shell metal ion for an
isovalent, closed-shell analogue with similar chemistry (e.g. repla-
cing Co(II) with Zn(II) in octahedral environments to remove
complications from the ground orbital triplet) is a suitable
approximation.

The second step, calculation of the equilibrium electronic
structure, requires explicit treatment of ground and excited
electronic states, as well as inclusion of spin–orbit coupling,
in order to accurately represent the magnetic spin states in
molecules. Compared to closed-shell molecules, for which DFT
is by far the dominant approach, such ‘‘single-determinant’’
electronic structure methods applied to open-shell molecules
fail to correctly describe the ground state, where a single
electron configuration fails as a qualitatively correct description
of the electronic wavefunction.74 Instead, a multi-determinantal
method is required to include the ground and excited electron
configurations relevant for the magnetic properties. Often in
the case of monometallic metal complexes, the magnetic
states are well-localised and the d- or f-orbitals are the most
important (this is obviously not true in the presence of
strong magnetic coupling between multiple spin centres, e.g.
for [Cp

iPr5DyI3DyCp
iPr5]6). Here, the complete active space self-

consistent field (CASSCF)75 method provides a suitable approxi-
mation, where all electron configurations are included within a
given ‘‘active’’ orbital space; this method is available in many
codes (e.g. in OpenMolcas,41,76 Orca77 and Q-Chem78). In the case
of Ln3+ complexes, the active space typically includes the seven 4f
orbitals occupied by n electrons. The number of states and
different spin multiplicities included in the calculation is user-
determined, and for magnetic properties it is advised to be guided
by the low-lying Russell–Saunders atomic terms 2S+1L.22,35 Spin–orbit
coupling can then be added in a second step by mixing the CASSCF
states of different spin multiplicities,79 leading to states representing

the 2S+1LJ multiplets split into 2J + 1 components by the CF potential.
Owing to the relatively small CF splitting of the 4f orbitals, the low-
lying electronic states of Ln complexes can be well-described by a
model crystal field Hamiltonian (eqn (13)), where the CFPs can be
projected directly from the ab initio calculation.80 In general, any
model Hamiltonian can be projected from such calculations for d-
or 5f-containing molecules.41

While the CASSCF method provides an effective treatment of
the so-called ‘‘static’’ electron correlation (arising from the
multi-determinantal character of the electronic states), it does
not do a good job of describing the ‘‘dynamic’’ electron correla-
tion missing from the mean-field description of electron–elec-
tron repulsion (DFT has been so successful because it can
approximate this second type of electron correlation very effi-
ciently). This can be overcome by corrections on top of a CASSCF
reference wave function either by using variational methods
such as multi-reference configuration interaction (MRCI),81 or
through the application of many-body perturbation theory,
including methods such as second-order complete active space
perturbation theory (CASPT2)82,83 and second-order n-electron
valence state perturbation theory (NEVPT2),84 which often pro-
vide increased accuracy for magnetic properties.80

Correlated wave function methods such as CASSCF usually
do not allow the explicit inclusion of extended environments
(i.e. beyond the molecule of interest) due to their undesirable
scaling behaviour with system size. As an alternative, environ-
ments can be included through implicit continuum models or
at an atomistic level using hybrid approaches.85 We have
recently demonstrated that an electrostatic potential derived
from atomic point charges of environmental molecules86 can
provide an appropriate description of the environment. In the
case of crystalline environments, the electrostatic potential
imposed by finite-size cluster models converges slowly towards
the true Madelung potential of an infinite crystal, and has a
non-trivial dependence on the shape of the point-charge cluster
model.87 We have recently shown that the Madelung potential
can be closely-approximated in a consistent manner by employ-
ing a spherical cluster of unit cells embedded in a conductor-
like reaction field to screen the non-physical surface charges
that arise from finite-size unit-cell expansions.33

The third step, computation of the spin–phonon coupling
parameters, requires knowledge of the electronic response to
nuclear distortions which is encoded in derivatives of the CFPs
as presented in Section 5. The most obvious method to obtain
these parameters is by computing the electronic structure and
CFPs at distorted geometries along the normal mode coordi-
nates and fitting the parameters to a polynomial (Fig. 7); such
methods have been used by numerous authors.16,31,38,88,89

Clearly, however, for large and/or low symmetry molecules,
many expensive ab initio calculations must be performed, and
this is not yet even considering the second-order terms; to our
knowledge only Sourav and Lunghi have attempted the latter,
where they have used machine-learning methods to greatly
simplify the calculation.62,90

Recently, we have shown that the spin–phonon coupling
constants can alternatively be obtained analytically using a

Chem Soc Rev Tutorial Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
  1

44
4.

 D
ow

nl
oa

de
d 

on
 0

5/
03

/4
6 

07
:2

5:
24

 . 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cs00705c


4582 |  Chem. Soc. Rev., 2023, 52, 4567–4585 This journal is © The Royal Society of Chemistry 2023

linear vibronic coupling (LVC) approximation91–94 based on a
single ab initio calculation at the equilibrium geometry.40 The
LVC method parametrises a first-order expansion of the
CASSCF Hamiltonian matrix elements V in the atomic degrees
of freedom rakl (for both the SMM and the environment):95,96

V = W(0) + W(1) + . . . (55)

W(0) = diag(e0,e1,e2,. . .) (56)

W ð1Þ
mn ¼ Cmh jŴ ð1Þ Cnj i ¼

P
kla

gaklðnÞrakl m ¼ n

P
kla

laklðn;mÞrakl man

8><>: ; (57)

where W(k) collects terms of order k in the atomic coordinates,
which are parameterised in case of k = 1 by electronic energies {en},
gradients {gakl(n)} and non-adiabatic couplings (NACs) {lakl(n,m)}
with respect to the CASSCF states n, m, which have recently
become accessible for larger systems through the implementation
of density fitting gradients in OpenMolcas.92,97,98 Although terms
of k 4 1 can be included in a straight-forward manner to give a
higher-order extension of the method, the higher-order deriva-
tive couplings become increasingly expensive to compute,
though we note that a scheme to parametrise a quadratic model
from first-order derivatives has been reported.99 Furthermore,
in cases where the inclusion of dynamical electron correlation is
indispensable, the LVC model can be parameterised based on
CASPT2 calculations.100,101

The final step is calculation of the spin dynamics and
magnetic relaxation rates themselves. Here, one must either
make their own implementation of the techniques described in
Section 6 or rely on tools developed by others. We have
developed a suite of Python tools (molcas_suite, angmom_suite
and spin–phonon_suite, all available on the PyPI repository§) to
facilitate steps (i)–(iii) in conjunction with the VASP, phonopy
and OpenMolcas codes, and the program Tau (available on

GitLab¶) to calculate magnetic relaxation rates; we have shown
that this methodology gives quantitative accuracy with respect
to experimental data.33 Lunghi and co-workers have developed
their own methods in the MolForge package, available on
GitHub.8

8 Conclusions and outlook

Herein we have discussed the theory and practicalities of the
calculation of phonon spectra, spin–phonon coupling and spin
dynamics for molecular crystals, with a particular focus on
magnetic relaxation in lanthanide single-molecule magnets.
This area of research is at the cutting-edge of developments in
electronic structure theory, quantum dynamics, machine learn-
ing and synthetic chemistry. The depth of knowledge required
to take such calculations from start to finish is immense, and
many works often make numerous assumptions on the back-
ground knowledge of the reader; we hope this Tutorial Review
has lifted the veil on at least one aspect for the interested reader.
We expect that as packages for these calculations become more
advanced and automated, that exploration of chemical space
with computational methods could start to make significant
inroads into molecular design, both for improving timescales of
classical memory storage in single-molecule magnets and coher-
ence times for molecular qubits. Further, we expect that such
methods will become crucial for understanding spin–phonon
coupling and spin dynamics at the microscopic level for a
broader class of nanomaterials in quantum science, such as
spintronics and solid-state defect qubits, as well as in biological
contexts such as enzyme catalysis and energy transfer.
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Fig. 7 Change in each Bq
k from the equilibrium values for [Yb(trensal)] as a function of mass- and frequency-weighted dimensionless displacement Qqj

along a vibrational mode.42 Note that this mode is a totally-symmetric vibrational mode so that the C3 symmetry of [Yb(trensal)] is not broken and hence
only certain Bq

k are affected; hence, some are overlapping with zero magnitude.

§ https://pypi.org/project/molcas-suite/, https://pypi.org/project/angmom-suite/,
https://pypi.org/project/spin-phonon-suite/

¶ https://gitlab.com/chilton-group/tau

8 https://github.com/LunghiGroup/MolForge
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49 A. W. Chin, Á. Rivas, S. F. Huelga and M. B. Plenio, J. Math.
Phys., 2010, 51, 092109.
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A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach,
A. Hauser, M. F. Herbst, M. Hernández Vera, M. Hodecker,
Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh,
M. Ivanov, D. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler,
K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda,
J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter,
K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau,
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