Issue 42, 2019

Interfacial synergy of ultralong jagged Pt85Mo15–S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution

Abstract

The higher electrocatalytic activity of hydrogen evolution in basic media for Pt-based catalysts is largely dependent on the intrinsic microscopic surface chemical environment. Given the fundamental mechanism of the interfacial interaction between Pt and oxophilic components, engineering a moderate oxygen-friendly surface environment of Pt-based catalysts is beneficial for endowing Pt with high catalytic activity for the hydrogen evolution reaction (HER). Herein, we fabricated ultralong jagged Pt85Mo15–S nanowires with rich interfacial active sites by using S as the “active auxiliary” to demonstrate an enhanced catalytic HER performance. Strikingly, the Pt85Mo15–S nanowires exhibited exceptional activity with 3.62 times the specific current density and 4.03 times the mass current density of commercial Pt/C as well as excellent stability towards alkaline HER. X-ray photoelectron spectroscopy revealed that the S element could prevent the further oxidization of Mo and then lead to enough electron transfer from Mo to Pt. In addition, the theoretical calculations demonstrated that the water dissociation energy barrier could be significantly reduced under the interfacial synergy of the intimate contact between Pt and MoSx. This work illustrates a new strategy to advance the fundamental exploration on electrocatalytic materials, which makes a systematic approach to build an interfacial model catalyst for fundamental electrocatalytic studies of alkaline HER.

Graphical abstract: Interfacial synergy of ultralong jagged Pt85Mo15–S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution

Supplementary files

Article information

Article type
Paper
Submitted
22 ذو الحجة 1440
Accepted
19 محرم 1441
First published
21 محرم 1441

J. Mater. Chem. A, 2019,7, 24328-24336

Interfacial synergy of ultralong jagged Pt85Mo15–S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution

Y. Wang, H. Zhuo, X. Zhang, Y. Li, J. Yang, Y. Liu, X. Dai, M. Li, H. Zhao, M. Cui, H. Wang and J. Li, J. Mater. Chem. A, 2019, 7, 24328 DOI: 10.1039/C9TA09285D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements