Issue 1, 2013

Computational studies on the adsorption of CO2 in the flexible perfluorinated metal–organic framework zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate

Abstract

Carbon dioxide adsorption sites within the flexible metal–organic framework (MOF) zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate (Znbpetpa) were investigated using density functional theory (DFT) and canonical Monte Carlo (MC) calculations. Two types of sites with different heats of adsorption were found by using DFT and confirmed by the MC results. Expansion of the cavities occurred simultaneously with gas uptake and the process of “breathing” within the MOF was identified. The presence of such a mechanism makes the understanding of this structure useful in tuning the design of MOFs for permanent trapping of gases.

Graphical abstract: Computational studies on the adsorption of CO2 in the flexible perfluorinated metal–organic framework zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate

Article information

Article type
Paper
Submitted
17 شوال 1433
Accepted
16 ذو الحجة 1433
First published
20 ذو الحجة 1433

Phys. Chem. Chem. Phys., 2013,15, 176-182

Computational studies on the adsorption of CO2 in the flexible perfluorinated metal–organic framework zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate

B. K. Chang, P. D. Bristowe and A. K. Cheetham, Phys. Chem. Chem. Phys., 2013, 15, 176 DOI: 10.1039/C2CP43093B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements