Issue 6, 2022

The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective

Abstract

The lifetime of Li-ion batteries (LIBs) is highly dependent on the imperceptible physical/chemical changes/reactions that occur on/between the electrodes and electrolyte. Therefore, reliable and repeatable high-precision detection of the imperceptible changes/reactions is extremely significant. High precision electrochemical measurements, such as high-precision coulombic efficiency, isothermal heat flow, and leakage current, can indicate imperceptible parasitic reaction and predict the practical working status of batteries and the battery life. However, the exact imperceptible physical/chemical changes/reactions inside the battery and battery damage remain unknown. Thus, high-precision material characterization techniques, such as in situ synchrotron radiation techniques in particular, which can demonstrate the structural evolution of materials dynamically during battery working are much needed. High-precision electrochemical measurements and material measurements are used to compare the two departments of a “battery hospital” metaphorically, and combining these two “diagnoses” is the best “consultation” for the battery. This paper is the first to present high-precision measurements from both levels of electrochemical science and materials science of LIBs. The aim of this work is to offer detailed and timely insight into the application of high-precision measurements for battery performance and material analysis, thus benefitting and promoting the further development of LIBs/battery systems.

Graphical abstract: The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective

Article information

Article type
Perspective
Submitted
26 شعبان 1443
Accepted
19 رمضان 1443
First published
19 رمضان 1443

Energy Environ. Sci., 2022,15, 2329-2355

The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective

H. Zhao, W. A. Lam, L. Wang, H. Xu, W. A. Daoud and X. He, Energy Environ. Sci., 2022, 15, 2329 DOI: 10.1039/D2EE01020H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements