Issue 26, 2019

Anharmonic excited state frequencies of para-difluorobenzene, toluene and catechol using analytic RI-CC2 second derivatives

Abstract

Analytic second nuclear derivatives for excited electronic state energies have been implemented for the resolution-of-the-identity accelerated CC2, CIS(D) and ADC(2) models. Our efficient implementation with O(N2) memory demands enables the treatment of medium sized molecules with large basis sets and high numerical precision and thereby paves the way for semi-numerical evaluation of the higher-order derivatives required for anharmonic corrections to excited state vibrational frequencies. We compare CC2 harmonic and anharmonic excited state frequencies with experimental values for para-difluorobenzene, toluene and catechol. Basis set problems occur for out-of-plane bending vibrations due to intramolecular basis set superposition error. For non-planar molecules and in plane modes of planar molecules, the agreement between theory and experiment is better than 30 cm−1 on average and we reassign a number of experimental bands on the basis of the ab initio predictions.

Graphical abstract: Anharmonic excited state frequencies of para-difluorobenzene, toluene and catechol using analytic RI-CC2 second derivatives

Supplementary files

Article information

Article type
Paper
Submitted
30 صفر 1440
Accepted
01 جمادى الأولى 1440
First published
01 جمادى الأولى 1440
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2019,21, 14063-14072

Anharmonic excited state frequencies of para-difluorobenzene, toluene and catechol using analytic RI-CC2 second derivatives

D. P. Tew, C. Hättig and N. K. Graf, Phys. Chem. Chem. Phys., 2019, 21, 14063 DOI: 10.1039/C8CP06952B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements