Issue 10, 2019

Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells

Abstract

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy has been used widely for probing the molecular properties of materials. Coupling a synchrotron infrared (IR) beam to an ATR element using a high numerical aperture (NA) microscope objective enhances the spatial resolution, relative to transmission or transflectance microspectroscopy, by a factor proportional to the refractive index (n) of the ATR element. This work presents the development of the synchrotron macro ATR-FTIR microspectroscopy at Australian Synchrotron Infrared Microspectroscopy (IRM) Beamline, and demonstrates that high quality FTIR chemical maps of single cells and tissues can be achieved at an enhanced spatial resolution. The so-called “hybrid” macro ATR-FTIR device was developed by modifying the cantilever arm of a standard Bruker macro ATR-FTIR unit to accept germanium (Ge) ATR elements with different facet sizes (i.e. 1 mm, 250 μm and 100 μm in diameter) suitable for different types of sample surfaces. We demonstrated the capability of the technique for high-resolution single cell analysis of malaria-infected red blood cells, individual neurons in a brain tissue and cellular structures of a Eucalyptus leaf. The ability to measure a range of samples from soft membranes to hard cell wall structures demonstrates the potential of the technique for high-resolution chemical mapping across a broad range of applications in biology, medicine and environmental science.

Graphical abstract: Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
28 ذو القعدة 1439
Accepted
27 جمادى الثانية 1440
First published
28 جمادى الثانية 1440

Analyst, 2019,144, 3226-3238

Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells

J. Vongsvivut, D. Pérez-Guaita, B. R. Wood, P. Heraud, K. Khambatta, D. Hartnell, M. J. Hackett and M. J. Tobin, Analyst, 2019, 144, 3226 DOI: 10.1039/C8AN01543K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements