Issue 19, 2018

Mobilising ion mobility mass spectrometry for metabolomics

Abstract

Chromatography-based mass spectrometry approaches (xC-MS) are commonly used in untargeted metabolomics, providing retention time, m/z values and metabolite-specific fragments, all of which are used to identify and validate an unknown analyte. Ion mobility-mass spectrometry (IM-MS) is emerging as an enhancement to classic xC-MS strategies, by offering additional ion separation as well as collision cross section (CCS) determination. In order to apply such an approach to a metabolomics workflow, verified data from metabolite standards is necessary. In this work we present experimental DTCCSN2 values for a range of metabolites in positive and negative ionisation modes using drift tube-ion mobility-mass spectrometry (DT-IM-MS) with nitrogen as the buffer gas. The value of DTCCSN2 measurements for application in metabolite identification relies on a robust technique that acquires measurements of high reproducibility. We report that the CCS values found for 86% of metabolites measured in replicate have a relative standard deviation lower than 0.2%. Examples of metabolites with near identical mass are demonstrated to be separated by ion mobility with over 4% difference in DTCCSN2 values. We conclude that the integration of ion mobility into current LC-MS workflows can aid in small molecule identification for both targeted and untargeted metabolite screening.

Graphical abstract: Mobilising ion mobility mass spectrometry for metabolomics

Supplementary files

Article information

Article type
Paper
Submitted
29 شعبان 1439
Accepted
27 ذو القعدة 1439
First published
09 ذو الحجة 1439

Analyst, 2018,143, 4783-4788

Mobilising ion mobility mass spectrometry for metabolomics

E. Sinclair, K. A. Hollywood, C. Yan, R. Blankley, R. Breitling and P. Barran, Analyst, 2018, 143, 4783 DOI: 10.1039/C8AN00902C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements