Issue 17, 2020

Ligand exchange on Au38(SR)24: substituent site effects of aromatic thiols

Abstract

Understanding the critical roles of ligands (e.g. thiolates, SR) in the formation of metal nanoclusters of specific sizes has long been an intriguing task since the report of ligand exchange-induced transformation of Au38(SR)24 into Au36(SR′)24. Herein, we conduct a systematic study of ligand exchange on Au38(SC2H4Ph)24 with 21 incoming thiols and reveal that the size/structure preference is dependent on the substituent site. Specifically, ortho-substituted benzenethiols preserve the structure of Au38(SR)24, while para- or non-substituted benzenethiols cause its transformation into Au36(SR)24. Strong electron-donating or -withdrawing groups do not make a difference, but they will inhibit full ligand exchange. Moreover, the crystal structure of Au38(SR)24 (SR = 2,4-dimethylbenzenethiolate) exhibits distinctive π⋯π stacking and “anagostic” interactions (indicated by substantially short Au⋯H distances). Theoretical calculations reveal the increased energies of frontier orbitals for aromatic ligand-protected Au38, indicating decreased electronic stability. However, this adverse effect could be compensated for by the Au⋯H–C interactions, which improve the geometric stability when ortho-substituted benzenethiols are used. Overall, this work reveals the substituent site effects based on the Au38 model, and highlights the long-neglected “anagostic” interactions on the surface of Au-SR NCs which improve the structural stability.

Graphical abstract: Ligand exchange on Au38(SR)24: substituent site effects of aromatic thiols

Supplementary files

Article information

Article type
Paper
Submitted
25 جمادى الثانية 1441
Accepted
26 رجب 1441
First published
29 رجب 1441

Nanoscale, 2020,12, 9423-9429

Author version available

Ligand exchange on Au38(SR)24: substituent site effects of aromatic thiols

Y. Li, R. Juarez-Mosqueda, Y. Song, Y. Zhang, J. Chai, G. Mpourmpakis and R. Jin, Nanoscale, 2020, 12, 9423 DOI: 10.1039/D0NR01430C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements