Issue 11, 2018

Controlling anticancer drug mediated G-quadruplex formation and stabilization by a molecular container

Abstract

Controlling of ligand mediated G-quadruplex DNA (GQ-DNA) formation and stabilization is an important and challenging aspect due to its active involvement in many biologically important processes such as DNA replication, transcription, etc. Here, we have demonstrated that topotecan (TPT), a potential anticancer drug, can instigate the formation and stabilization of GQ-DNA (H24 → GQ-DNA) in the absence of Na+/K+ ions via circular dichroism, fluorescence, NMR, UV melting and molecular dynamics (MD) simulation studies. The primary binding mode of TPT to GQ was found to be stacking at the terminal rather than binding to the groove. We have also reverted this conformational transition (GQ-DNA → H24) using a molecular container, cucurbit[7]uril (CB7), by means of the translocation of the drug (TPT) from GQ-DNA to its nanocavity. Importantly, we have carried out the detection of these conformational transitions using the fluorescence color switch of the drug, which is more direct and simple than some of the other methods that involve sophisticated and complex detection techniques.

Graphical abstract: Controlling anticancer drug mediated G-quadruplex formation and stabilization by a molecular container

Supplementary files

Article information

Article type
Paper
Submitted
29 ربيع الثاني 1439
Accepted
27 جمادى الأولى 1439
First published
30 جمادى الأولى 1439

Phys. Chem. Chem. Phys., 2018,20, 7808-7818

Controlling anticancer drug mediated G-quadruplex formation and stabilization by a molecular container

S. Satpathi, R. K. Singh, A. Mukherjee and P. Hazra, Phys. Chem. Chem. Phys., 2018, 20, 7808 DOI: 10.1039/C8CP00325D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements