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Qomi,c Jarrod V. Crum, b Jade E. Holliman Jr.,d Elena Tajuelo Rodriguez,e Lawrence M. Anovitz,f 

Kevin M. Rosso, d Quin R. S. Miller b*

The ongoing use of fossil fuels to supply modern energy demands has necessitated research on combating carbon dioxide 
(CO2) emissions and climate change. Carbon storage via mineral trapping in basalt and related rocks is a promising strategy. 
However, mineralization rates depend on the variable minerology that makes up these rock formations. Diopside 
(CaMgSi2O6) is a common pyroxene mineral in ultramafic and mafic rocks including basalt, but relatively little work has been 
done to understand its carbon mineralization kinetics using hydrated supercritical CO2, which induces the formation of 
reactive nanoscale interfacial water films. In situ XRD experiments at 50-110°C and 90 bar indicate that diopside transforms 
into a myriad of Mg/Ca carbonates, including huntite [Mg3Ca(CO3)4] and very high magnesium calcite (VHMC, i.e., 
protodolomite). Through ex situ characterization, we were able to constrain reaction pathways for the dissolution-
precipitation transformation process including metastable intermediate precipitates. Experiments performed at variable 
temperatures enabled Avrami-derived rate constants and an apparent activation energy of 97  16 kJ/mol, implying the 
dissolution of diopside is the rate-limiting step. Density functional theory (DFT) calculations, used to gain molecular insight 
into the surface stability of the diopside during dissolution, suggest that exposed calcium cations are susceptible to 
dissolution when put in contact with water given their coordination environment.  The collective results point to the high 
CO2 mineralization potential of diopside in basalts, which could help guide parameterization of reactive transport models 

needed to design and permit commercial-scale subsurface carbon storage operations.

Introduction
Since the onset of the industrial revolution carbon dioxide (CO2) 
emissions have increased, with exponential growth in the past 
75 years. An estimated 36.3 gigatonnes was released in 2021 

due to anthropogenic sources and the numbers are only 
expected to climb without any mitigation measures.1 It is well 
known that this increase in CO2 and other gases has enhanced 
the global greenhouse effect and is the main culprit of climate 
change and ocean acidification. If allowed to continue the 
Earth’s temperature will keep rising which will have detrimental 
effects to the environment, aquatic life, and overall human 
health. 

Although the renewable energy sector is growing, it is not 
enough to meet global energy needs and thus coal power will 
still be required in the immediate future. One approach to 
mitigate CO2 emissions is to utilize carbon capture and 
sequestration (CCS) processes.2 This approach takes inspiration 
from the natural carbon cycle, wherein subsurface rocks store 
CO2 from the atmosphere as stable carbonate minerals. 
However, it would take thousands of years to passively convert 

Environmental significance 

To combat increasing carbon dioxide (CO2) emissions a permanent storage solution is required, with carbon mineralization at the forefront 
of research. To implement this strategy work must be done to understand the nanoscale reaction pathways and stability of the resulting 
carbonate products. Diopside is a silicate mineral that is highly prevalent in basalt formations, however, its complex multi-ion composition 
leads to a variety of possible carbonate products. This study used a suite of experiments to analyse the carbonation pathways and kinetics 
of diopside at temperatures and pressure relevant to CO2 storage. Our results provide a better understanding of diopside carbonation and 
are key steps towards large-scale carbon storage to offset CO2 emissions and create more sustainable industries.
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all the CO2 that is now present. To combat this issue, CO2 can be 
injected into basaltic formations, which is known to be much 
more reactive than sedimentary rocks, as they contain metal 
cations, such as magnesium, calcium, and iron, which will 
readily form metal-carbonates.3-5 Originally, carbon dioxide 
removal (CDR) scenarios targeted capturing CO2 from large 
point sources for subsequent transport and injection into the 
subsurface.6 More recently though, driven by private 
investment and tax incentives, modular direct air capture (DAC) 
systems7 have expanded siting options for future CO2 storage 
projects.

While research continues on methods to capture CO2, ongoing 
studies at the laboratory scale highlight the feasibility of basalt 
rock for converting CO2 into stable carbonates. Field-scale tests 
at the Wallula Basalt Carbon Storage Pilot Project (SE 
Washington, USA) and CarbFix (SW Iceland) have demonstrated 
successful mineralization of supercritical CO2 (scCO2) and 
aqueous-dissolved CO2, respectively. 8-13 These complementary 
endeavors are demonstrating permanent carbon storage 
technologies that leverage rapid reactivity in mafic 
formations.14, 15 It is clear basalt can convert CO2 into stable 
carbonate minerals, but more work is needed to address 
multiscale knowledge gaps related to mineralization outcomes 
and timescales that are required for designing and 
implementing commercial-scale storage.

Forsteritic olivine (nominally Mg2SiO4) has received by far (c.f. 
14, 16-18) the most attention of any mineral for carbon storage 
reactivity, due to its rapid carbonation kinetics17, 19-25, structural 
and chemical simplicity, along with its prevalence in ultramafic 
rocks and many basalt formations. In contrast, relatively little 
mineral carbonation research has been conducted on more 
abundant and widespread minerals that have more complex 
structures and compositions. The pyroxene group is another 
type of mineral class that is commonly found in basalt and other 
mafic-ultramafic rock formations.26 The pyroxene group has the 
general formula XYZ2O6 and is characterized as an inosilicate. 
Within this class, diopside (CaMgSi2O6) is of great interest due 
to its natural reactivity,27, 28 abundance, and complex multi-ion 
composition, which provides a multitude of possible carbonate 
products once exposed to injected CO2. Extensive work29-49 has 
been focused on pyroxene dissolution kinetics and mechanisms 
and also on pyroxene carbonation.26, 50-56 However, there is a 
dearth of reported results54, 55, 57, 58  for the carbonation of 
diopside or its reactivity in wet scCO2 fluids, which are vital to 
understand the fate and transport of anthropogenic subsurface 
CO2 in mafic and ultramafic rocks. 

This present investigation focuses on the kinetics and pathways 
of diopside mineralization at relevant temperatures and 
pressure to simulate downhole conditions (>850 m) of 
subsurface carbon storage reservoirs, including Pacific 
Northwest National Laboratory’s Wallula site.8, 59 The 
experimental conditions focused on the reactivity of diopside in 
water-poor scCO2-dominant environments, where the carbon 
mineralization transformation occurs in reactive nanoscale 

interfacial water films and water behaves as a catalyst.14 
Through a combination of in situ high pressure X-ray diffraction 
(XRD) and a suite of ex situ sample characterization we were 
able to identify the carbonate products as well as the transient 
and amorphous phases that formed during diopside 
carbonation experiments. A kinetic analysis of the carbonation 
at variable temperatures allowed us to calculate the energy 
barrier required for diopside carbonation, which is the first 
reported kinetic data for carbon mineralization of diopside. This 
data was then supplemented by computational work to 
calculate the surface stabilities and the relative surface changes 
during dissolution. Overall, the goal of this work is to provide 
fundamental insight into carbon mineralization potential for a 
widespread and highly relevant mineral, helping secure a 
sustainable energy future.  

Materials and Methods
Materials

The diopside used in this study was synthesized as previously 
reported.60 The starting sample had a high specific surface area 
of 63.5 m2/g and was comprised of nanoparticles with a 
diameter of 50-100 nm. The phase purity and crystallinity were 
confirmed with XRD analysis (Figure S1) by comparing to the 
diopside powder diffraction file (PDF #019-0239) from the 
International Centre for Diffraction Data (ICDD).

In situ X-ray diffraction

Time-resolved in situ XRD experiments were conducted at 90 
bar and 50-110 °C in a high-pressure static reactor with a 
beryllium cap and stainless-steel base. The in situ XRD 
experimental apparatus and procedures have been previously 
described in detail. 61-65 For all experiments, 30 L of water was 
placed in the reactor reservoir to ensure that the scCO2 was fully 
saturated. The diopside powder was lightly packed into the 
vertically oriented XRD sample holder not in contact with the 
water reservoir below. The reactor was preheated and 
stabilized at the desired temperature before pressurizing with 
90 bar CO2.

The in situ XRD reactor was housed in a Bruker D8 Discover 
Super Speed powder diffractometer equipped with an XYZ 
Materials Research Instruments TCP Temperature Chamber 
stage, horizontal goniometer, and a VANTEC-500 detector set at 
a 20 cm sample-to-detector distance. A 0.5 mm point source 
with a Montel mirror was operated at 50kV and 24mA power 
settings. The sample stage was positioned at 10 and the 
detector was fixed at 28.5 2θ, providing a 2θ range of 12-44. 
The diffractometer automatically scanned the sample for 200-
500 seconds (Table 1) with a nine second delay in between each 
pattern. The images were processed with Bruker AXS GADDS 
software and then imported into JADE XRD software to obtain 
peak positions, intensities, and phase identification through 
comparison with ICDD PDF database entries.

Ex situ sample characterization 
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All reacted samples were analysed with ex situ XRD to resolve 
reflections not visible in situ. The sample apparatus was first 

Table 1.  Experimental conditions and results for diopside carbonation experiments conducted at 50-110 °C and 90 bar scCO2.*

Experiment a
Temperature 

(°C) b
Reaction Time 

(hr)

In situ XRD 
Scan Time 

(s)
Carbonate Mineral Assemblage c 

Reaction Extent 
(%) d

Avrami k 
(s-1) e

I 136.3 200 huntite, ACC, aragonite 77

II 20.7 200 huntite, ACC, aragonite 61

III 

110

3.9 300 huntite, ACC, aragonite 24

3.51E-03

IV 89.0 200 huntite, ACC, aragonite, magnesite 66

V 44.2 200 huntite, ACC, aragonite 62

VI 

90

5.9 200 huntite, VHMC, ACC 18

2.66E-04

VII 166.5 200;500f aragonite, VHMC, AMC 38

VIII 70.2 500 aragonite, VHMC, AMC 15

IX 

50

20.3 500 VHMC, ACMC 8

9.70E-06

*Abbreviations:  scCOR2R – supercritical COR2R; k- carbonation rate constant; ACC- amorphous calcium carbonate; VHMC- very high magnesium calcite with equal Mg and 
Ca; AMC- amorphous magnesium carbonate; ACMC- amorphous calcium magnesium carbonate; XRD- high pressure X-ray diffraction; TGA-MS- thermogravimetric mass 
spectrometry; SEM-EDS- scanning electron microscopy energy dispersive spectroscopy.
P

a
P Experiments were conducted at 90 bar with 30 µl of HR2RO. Carbon dioxide density at 90 bar and 110, 90, and 50 °C is 154.93, 175.34, and 285 kg/m3, respectively.66 

b H2O solubility in 90 bar scCO2 (mol %) is 2.509, 1.359, and 0.354 for 110 °C, 90 °C, and 50 °C, respectively. Calculated using solubility model of Spycher and Pruess.67

c Carbonate phases identified or inferred based on combination of XRD, TGA-MS, SEM-EDS, and mass balance; see Results and Discussion section.
d Reaction extent for diopside carbonation based on TGA-MS results. Reaction extent of 100% defined as all Mg and Ca from diopside is incorporated into carbonate 
minerals. This reaction extent concept and calculation was used for our previous forsterite studies.21, 65, 68

e 10X the uncertainty calculated in SigmaPlot 12.569; Avrami R2 of kinetic model fit for 110, 90, and 50 °C were 0.92, 0.96, and 0.95, respectively.
f Scan time was changed to 500 s after 72 hr.

cooled to room temperature and depressurized, followed by 
removal of the beryllium cap. The reacted samples remained in 
the sample holder and patterns were collected from 12-64 °2θ. 

Portions of the reacted samples were collected for 
thermogravimetric analysis coupled with mass spectrometry 
(TGA-MS) to calculate the reaction extent and confirm the 
carbonate species present. Briefly, 2-5 mg of sample was heated 
to 850 C at a rate of 10 K/min with simultaneous monitoring of 
the ion currents for CO2 (m/z=44) and H2O (m/z=18). A 
temperature range of 35-850 C was used for total mass loss 
determination. The reaction extent was calculated by 
comparing the experimental mass loss with the theoretical 
weight percent of carbonate products and their thermal 
decomposition reactions. The mass spectrometer tracked CO2 
and H2O release to further confirm the types of carbonate 
species identified by XRD and inferred from mass balance.

Scanning electron microscopy coupled with energy dispersive 
spectroscopy (SEM-EDS) was used to determine the 
morphology and chemistry, respectively, of the products. 
Reacted samples were mounted on aluminum stubs using 
double sided carbon tape, sputter coated with 2nm of iridium, 
and analyzed with a JSM-7001F field-emission gun scanning 
electron microscope (SEM, JEOL USA, Inc. Peabody, 

MA).  Images were collected using a JEOL retractable low-
working distance backscattered electron (BSE) detector. 
Energy-dispersive spectroscopy (EDS) was performed using a 
pair of apposing Bruker XFlash®6|60 (Bruker AXS Inc., Madison, 
WI) detectors to mitigate shadowing caused by sample 
typology. Data analysis was performed using Bruker ESPRIT 
(v2.0) software.

Carbonation kinetics calculations

Previously established kinetic models were applied to 
understand the rate of carbonate crystallization.17, 70 The 
reaction extents for each temperature, as shown in Table 1, 
were evaluated using the Avrami equation71 as expressed 
below: 

                                                                                (1)                  𝛼(𝑡) = 1 ― 𝑒 ―𝑘𝑡𝑛
     

where is the reaction extent as a function of time ,  is 𝛼(𝑡) (𝑡) 𝑛
an empirical constant, and  is the rate constant.72-76 This model 𝑘
is ideal for transformations with sigmoidal reaction profiles77 
and has been successfully applied to fluid-solid reactions78 
including carbonation.79, 80 The rate constants from the 
experiments were then used to calculate the apparent 
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activation energies ( of diopside carbonation using the 𝐸𝑎) 
Arrhenius relationship given by:

                                                                                       (2)                                                                                                  𝒌 = 𝑨𝒂𝒆
―𝑬𝒂
𝑹𝑻

where is the gas constant,  is the absolute temperature, and 𝑅 𝑇
designates a pre-exponential factor. The calculated value 𝐴𝑎 𝐸𝑎 

is considered an apparent activation energy because of the 
complex dissolution-precipitation processes. Lines of best fit on 
the Arrhenius plot were determined via simple linear regression 
and the negative slopes divided by  resulted in the apparent 𝑅
activation energy of diopside carbonation in kJ/mol with a 
conservative uncertainty of ±16 kJ/mol. 

Density functional theory calculations

To calculate surface formation energies through Density 
Functional Theory (DFT), Vienna Ab-initio Simulation Package 
(VASP)81 was implemented. Projector augmented wave (PAW) 
potentials82 were used with the kinetic cut-off energy of 520 eV. 
The Perdew-Burke-Ernzerhof (PBE) generalized gradient 
approximation (GGA) was used as the exchange-correlation 
functional.83 For the crystal surfaces, mesh points 2 × 2 × 1 
were used to sample the K-space using the Monkhorst-Pack 
scheme. The Conjugate gradient method was used for geometry 
optimization. 

The (110) surface cleavage of the diopside was studied, which is 
the most observed surface. However, which metal sites are 
exposed at the surface has yet to be discovered. Therefore, the 
surface energies for four surface configurations were 
calculated. In each configuration, either calcium or magnesium 
was exposed at the surface. The surface formation energy was 
calculated through the following formula:

                                                                            (3)𝛾 =
𝐸𝑠𝑢𝑟𝑓 ―

𝑁𝑠𝑢𝑟𝑓
𝑁𝑏𝑢𝑙𝑘

𝐸𝑏𝑢𝑙𝑘

2𝐴

where  and  are the surface and bulk energies, 𝐸𝑠𝑢𝑟𝑓 𝐸𝑏𝑢𝑙𝑘

respectively.  and  are the number of atoms in 𝑁𝑠𝑢𝑟𝑓 𝑁𝑏𝑢𝑙𝑘

surface and bulk configurations, respectively.  is the surface 𝐴
area. In each surface simulation case, the first two layers of the 
solid were free to move while the inner layers were kept fixed 
to represent the bulk phase.

Results and Discussion
Carbon mineralization pathways for diopside

Results from in situ and ex situ XRD experiments, TGA-MS, and 
SEM-EDS for EXP I-IX were used in concert to determine the 
effects of temperature (50-110 C) on the carbonation 
pathways of diopside. These results, organized in Table 1, 
provide insight into the transient and amorphous phases that 
form on the path to long-term carbon dioxide sequestration in 
mafic and ultramafic rocks.  

110 C/90 bar. XRD waterfall plots (Figure 1 and Figure S2) show 
rapid dissolution of diopside with precipitation of a crystalline 
carbonate phase identified as huntite84-89 [Mg3Ca(CO3)4]. This 
was an unexpected result given the initial 1:1 Mg:Ca ratio of 
diopside transforming into a 3:1 ratio of the metal cations in 
huntite. Huntite has been implicated as an intermediate on the 
path to dolomite formation,85, 89, 90 sometimes appearing in Mg-
Ca carbonate precipitation studies.91-94 The in situ data provided 
no evidence of transient phases in EXP I and EXP II so EXP III was 
conducted to further resolve crystalline phases at the onset of 
precipitation. Ex situ XRD analyses was required to distinguish 
the aragonite (CaCO3) phase present in EXP III indicating that 
huntite and aragonite begin to coprecipitate after 4 hours of 

Figure 1. Carbonation of diopside as a function of time at 110 ˚C/90 bar supercritical CO2 showing precipitation of huntite and aragonite. In situ XRD 
2D waterfall plots with corresponding ex situ initial and final patterns for EXP I (A), EXP II (B), and EXP III (C). 
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reaction time. Given the high magnesium content in the system, 
it is reasonable that aragonite is present over other polymorphs 
of CaCO3.95 Aragonite, as opposed to calcite, precipitation in 
these experiments is likely due to the inhibitory effect of 
magnesium on calcite crystallization.96, 97 After closer 
examination of the EXP I and II ex situ XRD patterns small 
aragonite peaks are still present, providing further evidence of 
the coprecipitation of huntite and aragonite at 110 C. As the 
reaction proceeds, the abundance of crystalline Ca-carbonate 
diminishes, creating a greater percentage of amorphous 
calcium carbonate (ACC) with increasing huntite formation.

TGA-MS was utilized on post-reacted samples to determine the 
carbonation reaction extent based on the carbonate species 
identified from XRD analyses (Figure S3). From the TGA, the 
total mass loss was determined for each sample and was used 
to calculate the reaction extent. From these results, we can see 
that the longer the reaction proceeds, the greater the reaction 
extent (Table 1), with EXP I having the largest value of 77%, 
followed by EXP II (61%) and EXP III (24%). The mass 
spectrometry results further validate the carbonate species 
identified. Huntite is expected to have two CO2 peaks released 
associated with the decomposition reaction of 3 Mg: 1 Ca 
carbonate species,98, 99 as evidenced in the mass-normalized 

mass spectrometry data (Figure S4) for EXP I and II. EXP III, with 
the more prevalent presence of aragonite with huntite has 
three CO2 peaks as the sample decomposes.99

SEM-EDS provides visual evidence of the phases identified by 
XRD and TGA-MS (Figure 2). EXP I-III images have regions of 
magnesium and carbon-rich areas attributed to huntite. 
Although huntite is present in all samples, the crystal size and 
definition vary as the reaction proceeds due to the continuous 
dissolution-precipitation during carbonation. EXP I and III 
images have calcium and carbon-rich areas indicating the 
presence of ACC and aragonite, respectively. This provides 
further evidence of ACC in EXP I given the substantial decrease 
in intensity of the aragonite peak on the ex situ XRD pattern.

90 C/90 bar. EXP IV-VI XRD waterfall plots (Figure 3 and Figure 
S5) have similar results to the experiments conducted at 110 C 
with huntite formation beginning around 6 hours. There is 
evidence of small aragonite peaks for the EXP IV and V ex situ 
XRD patterns, suggesting the majority of calcium carbonate is 
amorphous. The ex situ scan of EXP IV also shows evidence of 
magnesite (MgCO3) that is not present in EXP V or VI, 
highlighting the varied transient phases possible with a mixed 
metal system such as diopside. To better resolve the minute 

Figure 2. SEM-EDS composite images of samples from EXP I-IX post-reaction with mineral designation labels (Table 1). Colours correspond to 
elemental composition as indicated in the legend. Scale bars are 7 m.
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changes in the XRD patterns for EXP VI, the initial and final 
patterns were normalized and overlayed (Figure S6). This 
allowed us to resolve a small shoulder representing the initial 
formation of huntite, as well as an increase in the peak intensity 
at 2.89 Å suggestive of very high magnesium calcite (VHMC) 
with nominally equal molar amounts of Ca and Mg, also known 
as disordered dolomite or protodolomite.100-102 In this work, we 
follow the  best practices nomenclature of Gregg et al.101 to not 
refer to these phases as a type of dolomite, as that implies 
cation ordering and so-called superstructure103 (ordering) XRD 
reflections. The process of “huntinization”104 is not well 
understood, especially in our context of  Mg:Ca ratio for 
different phases changing from 1:1 (diopside) to 3:1 (huntite) to 
1:1 (VHMC). 

TGA-MS results for EXP IV-VI (Figure S3 and Figure S4) follow 
suit with reaction extents having a rapid increase from 18% at 
5.9 hours (EXP VI) to 62% within 44.2 hours (EXP V) and 66% as 
the reaction continues for 89.0 hours (EXP IV). The mass 
spectrometry results have two CO2 peaks associated with 
huntite, containing successive decomposition of the two types 
of carbonates.98 SEM-EDS imaging of EXP IV and EXP V samples 
delineated Ca-rich, Mg-dominant precipitates, consistent with 
huntite signatures observed with XRD and TGA-MS. The image 
collected for EXP VI was inconclusive with no identifiable 
regions of the carbonate products. The image for EXP V 
provided the best visual representation of the products with a 
silicon rich and magnesium/calcium poor area attributed to the 
amorphous silica by-product that is expected once the metal 
cations dissolve from the mineral and precipitate as carbonates. 
As well, there is a calcium and carbon rich area for the ACC that 
must be present to account for the mass-balance of calcium in 
the products.

50 C/90 bar. XRD waterfall plots for EXP VII-IX were 
inconclusive due to the high CO2 density at lower temperatures, 
wherein no peaks were able to be resolved in situ (Figure S7). 

Analysis was then done solely based on ex situ patterns (Figure 
4) with the appearance of aragonite for EXP VII and VIII, as well 
as evidence of VHMC with a steady increase in the peak 
intensity at 2.88 Å. To consider the Mg mass-balance there must 
also be amorphous magnesium carbonate (AMC) present as one 
of the products. A subtle hump in the XRD pattern prior to 
background subtraction further substantiates the presence of 
an amorphous phase, although that contribution may be partly 
a signal from amorphous silica. For EXP IX there is evidence of 
an increase in intensity for the peak positioned at 2.90 Å (Figure 

°2 Theta
12 16 20 24 28 32 36 40 44 48 52 56 60

Time = 0 hr

50 °C, 90 bar ex situ XRD

Diopside

Aragonite

Time = 20.3 hr

R
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Time = 166.5 hr
EXP VII

EXP VIII
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Figure 4. Depressurized post-reaction XRD patterns of diopside reacted with 
scCO2 at 50 ˚C/90 bar. Green-dashed reference line is at d-spacing of 2.88 Å, 
suggestive of a VHMC phase (see text). In situ data sets are presented in Fig. 
S7.

Figure 3. Carbonation of diopside as a function of time at 90 ˚C/90 bar supercritical CO2 showing precipitation of huntite. In situ XRD 2D waterfall plots with 
corresponding ex situ initial and final patterns for EXP IV (A), EXP V (B), and EXP VI (C). 
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S6) indicative of VHMC however, no further information can be 
gathered from XRD analysis. 

TGA-MS results show low reaction extents only reaching 38% 
after 166.5 hours for EXP VII, which is rational given the lower 
temperature for this set of experiments (Figure S3). What is 
interesting is the mass spectrometry results, clearer in the 
mass-normalized MS overlay (Figure S4), with the early release 
of H2O and CO2 from 35-350 C indicative of amorphous 
carbonate phases present in EXP VII-IX.63, 99, 105 Given that no 
other carbonates can be conclusively identified for EXP IX, 
based on the mass spectrometry data, we can infer that the 
early H2O and CO2 comes from the decomposition of an 
amorphous calcium magnesium carbonate (ACMC) with 
unknown proportions. We note that AMC and ACC may both 
incorporate Ca and Mg, respectively, leading to ACMC.105-108 
The multiple CO2 peaks for EXP VII-IX further confirm the variety 
of carbonates present in the samples post-reaction. SEM-EDS 
images for EXP VII-IX all have carbon rich regions with near 
equal amounts of calcium and magnesium indicating VHMC, 
which further supports the XRD results with an increase in peak 
intensity at 2.88-2.90 Å. The VHMC d104 peak positions of 2.90-
2.88 Å observed in this study correspond to compositions of 
~45-52% MgCO3.109 EXP VII and VIII also show calcium and 
carbon rich areas attributed to aragonite. 

A summary of carbonate mineral phase outcomes for diopside 
carbonation determined in this study is shown in Figure 5. The 
carbonate mineral assemblages identified through combined 
analyses from XRD, TGA-MS, SEM-EDS, and mass balance were 
graphed as a function of time for each temperature set in Figure 
6A. This graph allows a better visual representation of the 
transient phases that form and offers insight into the 
complexities of the continued dissolution-precipitation of 
diopside carbonation. Since the diopside contains two distinct 
metal cations, there are a variety of metal carbonates in 
different ratios that can form. Initially, the magnesium and 
calcium begin to precipitate in near equal amounts as ACMC to 
VHMC. 110 As dissolution continues at higher temperatures, the 
magnesium content increases due to the reduced solvation 

energy barrier110 and begins forming huntite, while the 
remaining calcium precipitates as aragonite and ACC. If 
carbonation was allowed to continue, we propose that the 
calcium and magnesium ions would continue to order in a 1:1 
ratio and form the thermodynamically stable product, dolomite 
[CaMg(CO3)2].104, 111 A preliminary in situ Raman spectroscopy 
reactivity study57 of natural diopside in water-saturated scCO2 

(60°C and 79 bar, 0.49 mol% H2O)67 reported transitory huntite 
that increased in abundance before disappearing over the 
course of 49 days. That investigation highlighted the metastable 
nature of huntite during diopside carbonation, consistent with 
our reaction path interpretations. Longer-term studies, 
including in situ high-pressure infrared spectroscopy 
experiments are currently being conducted to better 
understand amorphous carbonate transformations and the 
possibility of achieving dolomite crystallization at relatively low 
temperatures.

Carbonation kinetics of diopside

The reaction extent results based on the TGA-MS data were 
plotted for each temperature vs time to better elucidate the 
kinetics of diopside carbonation. As shown in Figure 6B, 

Figure 5. Conceptual graphic showing carbonate mineral phase outcome 
possibilities observed in the present study for calcium and magnesium cation 
released from dissolving diopside. The colour scheme consists of red Mg2+ and 
blue Ca2+, so the Mg:Ca ratio is reflected in the precipitate colour: red for 1:0 
AMC and magnesite, magenta for 3:1 for huntite, purple for 1:1 VHMC, and 
blue for 0:1 ACC and aragonite. 

Figure 6. (A) Carbonate species identified through XRD analysis, TGA-MS, SEM-EDS, and mass balance for EXP I-IX versus their calculated reaction extent. (B) 
Time-dependent reaction extents for 50, 90, and 110 ̊ C diopside carbonation experiments and (C) Arrhenius plot based on kinetic fit of rate constants derived 
from the Avrami equation. Diopside carbonation apparent activation energy is 97 ± 16 kJ/mol. The dashed curves comparative reaction extent trends 
determined in Miller et al.65 for forsterite conversion to magnesite (Mg2SiO4+2CO2 = 2MgCO3+SiO2 ) at 50 ˚C (blue) and 90 ˚C (green).
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forsterite carbonation determined in our previous study is 
substantially faster than that of diopside at the same 
experimental conditions of 50 or 90 °C and 90 bar in water-
saturated scCO2. This disparity in reaction rates, even though 
the specific surface area of the diopside is ~2.4 times higher 
than that of the forsterite (63.5 vs. 26.7 m2/g), is likely due to 
the slower dissolution rate of diopside relative to that of 
olivine.112 This discrepancy in reaction (dissolution and/or 
carbonation) rates between olivine and pyroxenes is also 
documented for enstatite (MgSiO3) and forsterite.39, 52, 113 The 
chain silicate diopside has polymerized silica requiring more 
bond breakages, as opposed to the isolated silica tetrahedra of 
orthosilicate forsterite. Additionally, based on the 
thermo.dat114, 115 thermodynamic base, the free energy change 
for forsterite conversion to magnesite is more negative than 
that of diopside dolomitization. We are continuing to explore 
these types of mineral structure-reactivity differences for 
pyroxene, olivine, and mafic glass, particularly in the context of 
interfacial water film development and complex multi-cation 
carbonate precipitates. 

Using the Avrami equation, which is used to describe solid 
transformations between phases at a constant temperature,17, 

70 the rate constants were derived for each temperature (Table 
1). Increases in reaction extent with time are described by the 
Avrami mode, and herein we have no evidence for reaction 
inhibition via surface passivation.  The linear slope of the Avrami 
rate constants indicates that the carbonation is proceeding 
through the same mechanism between temperatures, and the 
different time-dependent phase assemblages (Figure 6A) at our 
three temperatures are not affecting the observed end product. 
The Arrhenius plot was then used to fit the rate constants and 
calculate the activation energy of diopside carbonation to be 97 
 16 kJ/mol (Figure 6C). This value aligns with the activation 
energy of diopside dissolution, 96.1 kJ/mol,112 which implies the 

dissolution of diopside is the rate-determining step in the 
carbonation reaction.   

Molecular insights into the surface stability of diopside

Our DFT calculations for the diopside surface provided insight 
into the dissolution susceptibility of a mixed-cation inosilicate. 
The (110) surface cleavage is considered here as it is 
experimentally the most stable surface.116 The (110) surface can 
be cut at four locations on the z-axis to keep the dipole moment 
zero (Figure 7). The surface stability indices are calculated for all 
cases, as shown in Table S1. Case (II) represents the most stable 
surface, followed by case (III). The surface silicon atoms in cases 
(I) and (IV) are coordinated with three oxygen atoms and are 
thus undercoordinated. Conversely, the surface silicon atoms in 
cases (II) and (III) are coordinated with four oxygen atoms. The 
silicate chains have an infinite length similar to the silicate 
chains in the inner bulk layers. 

After the surfaces in cases (II) and (III) are relaxed, the distance 
between the outermost metal ions and the second metal ion 
layers decreases due to undercoordination. The oxygen 
coordination numbers for surface metal ions, before and after 
surface relaxation are shown in Table S2. For case (III), 
relaxation occurs such that both Ca and Mg surface ions are fully 
coordinated compared to their bulk coordination numbers. 
However, for case (II), surface calcium atoms, furthest from the 
inner layers compared to magnesium atoms, remain 
undercoordinated with the coordination number of 6. The 
undercoordination of surface calcium ions could be 
compensated through bonding with water molecules, ligands, 
and hydroxyl groups. Such surface complexations can lead to 
proton- or ligand-promoted dissolution.117-122 

Environmental implications

Figure 7.  Atomistic representation of diopside (110) surfaces. Cases (I) to (IV) demonstrate a diopside (110) surface when the surface is cut at different locations 
along the z-axis. The relaxed surfaces in cases (II) and (III) show significant displacement between surface Ca (blue) and Mg (green) with respect to the second 
layer. Surface energies and coordination numbers are listed in Table S1 and Table S2, respectively. 
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Pyroxene is one of the most prevalent mineral groups found in 
basalt and similar reactive rocks, and is one of the most 
abundant mafic minerals in the Earth’s crust.34 Of these, 
diopside is commonly found in nature but minimal work has 
been done to understand the carbonation pathways once 
injected with CO2. Our work has verified that the multi-ion 
composition of diopside means there are a range of carbonate 
products possible, including transient and amorphous phases. It 
is important to collect and interpret such time and temperature 
data for diopside carbonation if it is to be a practical carbon 
storage solution. The diopside carbonation rates for 50-110C 
and the resulting activation energy may be used in conjunction 
with similar data for other minerals to directly parameterize 
reactive transport models for CO2 injection into mafic and 
ultramafic reservoirs, helping address multi-scale knowledge 
gaps in complex field environments. When combined with 
ongoing studies with other mafic minerals, these findings could 
ultimately help enable implementation of CO2 injection 
projects, such as in obtaining permits, developing measuring, 
reporting, and verifying (MRV) protocols, optimizing injection 
strategies, and enhancing permanence. 

Conclusions
A combination of in situ and ex situ experiments was used to 
elucidate the pathways and kinetics of diopside carbonation. 
XRD, TGA-MS, SEM-EDS, and mass-balance analyses showed 
that once diopside is exposed to hydrated scCO2 it rapidly reacts 
to form a variety of carbonate products, including transient and 
amorphous phases. Since diopside has two metal cations and 
carbonation is a continuous dissolution-precipitation process, it 
is rational that multiple carbonates would result at different 
times and temperatures. Avrami-derived rate constants for 
each temperature were plotted and fit the Arrhenius equation 
to give an activation energy of 97  16 kJ/mol, similar to the 
energy of diopside dissolution. Computational studies provided 
molecular insight into the surface stabilities of the different 
faces of diopside, indicating that the undercoordinated calcium 
atoms at the diopside/vacuum interface are prone to 
dissolution when in contact with water. Our results provide 
valuable insight into the mechanisms of diopside carbonation 
and its role in the fate and transport of CO2 injected into basalt 
and other mafic-ultramafic rocks for permanent storage. These 
types of fundamental measurements and complementary 
molecular simulations are poised to help enable CCS and CDR 
technologies and achieve carbon-negative goals worldwide.  
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