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Machine-learning-driven modelling of amorphous and
polycrystalline BaZrS3

Laura-Bianca Pas, ca,a Yuanbin Liu,a Andy S. Anker,a,b Ludmilla Steier,a and Volker L.
Deringer∗a

The chalcogenide perovskite material BaZrS3 is of growing interest for emerging thin-film pho-
tovoltaics. Here we show how machine-learning-driven modelling can be used to describe the
material’s amorphous precursor as well as polycrystalline structures with complex grain bound-
aries. Using a bespoke machine-learned interatomic potential (MLIP) model for BaZrS3, we study
the atomic-scale structure of the amorphous phase, quantify grain-boundary formation energies,
and create realistic-scale polycrystalline structural models which can be compared to experimen-
tal data. Beyond BaZrS3, our work exemplifies the increasingly central role of MLIPs in materials
chemistry and marks a step towards realistic device-scale simulations of materials that are gaining
momentum in the fields of photovoltaics and photocatalysis.

Introduction
In the search for new, sustainable photoabsorbers, sulfide-based
chalcogenide perovskite materials have emerged as attractive
lead-free candidates.1 However, while oxide and halide per-
ovskites have defined much of the progress in photovoltaics and
related fields, chalcogenide perovskites have only more recently
begun to be explored. Among the latter, BaZrS3 presents opti-
cal absorption matching or even surpassing those of halide per-
ovskites and GaAs,2 competitive charge carries lifetimes, and im-
proved stability to environmental factors compared to other per-
ovskite materials.3–5 Thin films of BaZrS3 can be synthesised
from earth-abundant and non-toxic elements: by sulfidation of
Ba–Zr–O precursors4,6,7 or by directly depositing sulfide species
using pulsed laser deposition,8 molecular beam epitaxy,9 or sput-
tering.3 Most methods involve the deposition of amorphous pre-
cursors that require temperatures of ≈ 900 ◦C to crystallise. Their
growth and subsequent crystallisation has been followed experi-
mentally using X-ray diffraction (XRD) or X-ray spectroscopy tech-
niques.10–12

Given the rapidly growing interest in BaZrS3, computational
methods are increasingly used to complement experimental stud-
ies of this material. Density-functional theory (DFT) and phonon
computations were employed to map out the thermodynamic
conditions under which BaZrS3 films might form and which

a Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Ox-
ford OX1 3QR, UK
b Department of Energy Conversion and Storage, Technical University of Denmark,
Kgs. Lyngby 2800, Denmark
∗ Corresponding author. E-mail: volker.deringer@chem.ox.ac.uk

surface termination is expected to be the most stable.13,14

To reach beyond the system-size limits of DFT-based methods,
machine-learned interatomic potentials (MLIPs) have now been
applied to many functional materials,15–17 including halide per-
ovskites.18–21 The chalcogenide alternatives, viz. BaZrS3 and ho-
mologous compounds, were recently studied in a comprehensive
work using ML-accelerated molecular dynamics (MD).22 These
studies have typically focused on the crystalline material20,22

and the formation of other phases, such as the binary crystals or
2D Ruddlesden–Popper structures.13 To validate ML-accelerated
MD, Kayastha et al. compared simulated XRD patterns for MD-
generated BaZrS3 structures with experimental XRD patterns.23

However, these simulations also were focused on ordered unit
cells, corresponding to single-crystalline samples.

This limitation is more generally a current research challenge in
modelling perovskite solar-cell materials: experimentally synthe-
sised materials are usually polycrystalline, and fully realistic sim-
ulations would therefore need to involve structural models rep-
resenting individual grains, with sizes typically on the order of
tens or hundreds of nanometres.10,12 A single-crystalline struc-
tural model will therefore likely not suffice to fully understand
the structure and properties of BaZrS3 films. We have recently re-
ported very-large-scale atomistic models of functional materials,
including phase-change materials for data storage30 and amor-
phous silicon which is relevant to solar cells.31,32 It would seem
highly beneficial to achieve this type of realism for chemically
complex, perovskite-type photoabsorber materials as well.

Here, we introduce a machine-learned interatomic potential
(MLIP) model for ordered and disordered forms of BaZrS3, based
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Fig. 1: A machine-learned interatomic potential for crystalline and amorphous BaZrS3. (a) Schematics of the different approaches
used in training dataset construction, showing examples of the different configuration types sampled. Structural images were created
using OVITO.24 (b) Evolution of the training dataset, visualised in a style similar to Ref. 27. Each slice provides a two-dimensional
representation (using the UMAP algorithm28) of the relevant configurational space, showing the reference training dataset of the ML
potential, distributed based on the structures’ average atomic-environment similarity. The latter is quantified using the SOAP kernel
similarity metric29 with a cut-off radius of 5 Å and smoothness of 0.75 Å (see ESI for more details): the distances between points in
this two-dimensional space therefore reflect the structural (dis-) similarity between entries of the training dataset.

on the atomic cluster expansion (ACE) framework.33,34 For train-
ing, we employ a combination of de novo35,36 and domain-specific
iterative training (Fig. 1), aiming for the final dataset to capture
the structural complexities of BaZrS3. We show how ML-driven
simulations can describe three scenarios relevant to experimen-
tal studies: (i) the amorphous precursor; (ii) large-scale grain
boundaries; and (iii) polycrystalline BaZrS3 structures. This way,
ML-driven simulations can corroborate experimental observations
regarding the atomistic structure of this material and provide in-
sights that experiments on their own can not. Beyond their appli-
cation to BaZrS3, we expect that ML-driven approaches for sim-
ulating polycrystalline structures—from precursors to individual
grains—can more broadly accelerate computational studies of di-
verse polycrystalline solar-cell materials.

Methodology

The choice of data used to train MLIP models is now a central
consideration in the field,37 and different approaches to dataset
building have been discussed in the literature.38,39 Here, we be-
gin with random structure searching (RSS)40,41 using an iterative
protocol similar to Refs. 35 and 36, whereby an initial MLIP is
trained on randomised structures and then used to sequentially
drive the RSS exploration (Fig. 1a). It was previously shown
that RSS can sample the complex atomistic environments relevant
to grain boundaries and interfaces by generating diverse start-

ing structures.42 High-temperature structures obtained from ML-
driven MD, as well as crystalline–amorphous interfaces were sub-
sequently added (ESI). As shown in a series of “structure maps” in
Fig. 1b, the structures generated at different temperatures using
iterative MD (shown as orange points in Fig. 1b) sample differ-
ent regions of configurational space compared to the initial RSS
dataset (light blue). Furthermore, our “domain-specific” addi-
tions to the dataset (purple), such as small-scale structural models
representing crystalline–amorphous interfaces, include structures
in-between disordered, high-temperature snapshots from MD and
crystalline structures. Domain-specific training data such as inter-
face structures have been used before to help describe crystallisa-
tion processes in Ge–Sb–Te memory materials, for example.30

We used different MLIP fitting approaches as part of the devel-
opment of the final model. Initially, the Gaussian Approximation
Potential (GAP)43 framework was used because of its data effi-
ciency: it allowed us to generate a stable initial potential with
relatively few training data points (90 initial RSS structures, with
a further 899 structures obtained from de novo GAP-RSS explo-
ration35,36). Once a larger dataset had been built by iterative
training, the computationally efficient ACE framework as imple-
mented in pacemaker was used to fit a faster MLIP model to that
dataset.34,44

The final ACE model was obtained by iterative training until
it could reliably generate a structural model for the amorphous
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phase using an MD melt–quench protocol in the NPT ensemble
(see ESI for further details). Two model versions were fitted to
the final dataset: the first by filtering out structures with high
DFT energies (> 1 eV/atom), indicative of very close contacts
between atoms or high-energy RSS structures, and the second us-
ing the full reference dataset (ESI). The first version was used to
generate all the quantitative data presented, as it achieved good
accuracy on the structures relevant in the present study, show-
ing an energy root-mean-square error (RMSE) of 13.9 meV/atom
relative to DFT results using the PBEsol functional.45 The second
version, which includes higher-energy dimers and random struc-
tures, is less accurate (energy RMSE: 23.1 meV/atom), but it did
not fail when handling structures with closer contacts between
atoms, and therefore it was used to relax the polycrystalline struc-
tures with randomly-oriented grains. (We consider a simulation
to have “failed” if, during the MD run, atoms come closer to each
other than 1 Å, collapsing the structure, or if atoms are lost dur-
ing the simulation.) Details of numerical errors are provided in
Figs. S1 and S2 in the ESI. As an additional test, we computed the
phonon dispersion curves for crystalline BaZrS3 (Fig. S3).

Results and discussion
We describe the computational modelling of BaZrS3 in the same
sequence as would be relevant to experimental synthesis and
characterisation. First, we use the MLIP model to simulate the
amorphous phase, corresponding to precursor phases that are
deposited in experiments.3,4 Second, we validate the model for
grain boundaries, which need to be accurately described so that
the model can be applied to polycrystalline samples. With both of
these aspects available, we finally apply the model to simulating
structures with different grain sizes, providing a direct connection
to experimental scattering data.

Amorphous BaZrS3

The amorphous structure simulated using the MLIP model is
shown in Fig. 2a. The structure was obtained using the melt–
quench protocol described in the ESI. The effect of changing the
quench rate and the starting configuration is detailed in Tables
S3 and S4, respectively. In our structural model of amorphous
BaZrS3, many of the Zr atoms still have a (defective) octahedral
coordination by S, similar to the crystalline structure; however,
the ZrSx polyhedra lack long-range order. The geometry of the
different Zr coordination environments, which also present un-
dercoordinated and a few overcoordinated Zr atoms, and those of
the BaSx polyhedra, are shown in the histogram plots in Fig. 2b–
c, respectively. We show examples of the coordination polyhedra
for each coordination number (CN). A wider distribution of CNs is
observed for Ba, and in this case, also, we observe a pronounced
undercoordination of the cation, which has an expected CN of 8
in crystalline BaZrS3 (due to the orthorhombic distortion of its
perovskite-like structure, and compared to CN = 12 for the cubic
archetype).

The local ordering of S atoms around the A- and B-site cations
can be observed in the radial distribution function (RDF) of the
quenched amorphous structure (Fig. 2d, left), which shows well-

defined peaks in the short-range region, at distances roughly be-
low 4 Å. These two main peaks correspond to the Zr–S and Ba–
S interatomic distances, as confirmed by the partial RDF plots
(Fig. 2d, right). The RDF data obtained from atomistic simula-
tions can be compared with experimental extended X-ray absorp-
tion fine structure spectroscopy (EXAFS) results,10 which probe
the local structure around Zr atoms in the amorphous phase. Al-
though the techniques are different, both the EXAFS data and
our simulations qualitatively indicate under-coordinated Zr envi-
ronments in amorphous BaZrS3 compared to its crystalline coun-
terpart. Specifically, analysis of the EXAFS data yielded a Zr–S
bond length of 2.593 Å and coordination number (CN) of 5.2 (see
Ref. 10 for details), while our simulations yield an average bond
length of 2.575 Å and CN of 5.9 (determined using a 3.1 Å cut-off
in OVITO24). A more in-depth comparison between the experi-
mental and simulated values of the bond length and CN of Zr is
provided in Table S5. In addition to the differences in method-
ology, the experimental values may be influenced by factors such
as defects in the amorphous precursor material, for example sul-
fur vacancies, which were not taken into account in our current
model. While modelling defects is beyond the scope of the current
work, datasets such as those provided by the ab initio study of the
defect landscape of BaZrS3 by Desai et al.,25 as well as method-
ologies such as those developed by Mosquera-Lois et al.,26 could
be used to expand the training of MLIP models for BaZrS3 further.

The presence of B-site cation halide fragments in our simulated
structure, some maintaining a similar octahedral geometry to the
crystalline phase, is in agreement with experimentally reported
structural details of the amorphous phases derived from other
materials adopting the perovskite structure.10,46,47 Preserved lo-
cal bonding units of TiO6 connected in a random network via
apex-, edge-, and face-sharing octahedra have also been observed
in the amorphous phases of BaTiO3

48,49 and SrTiO3.50

The expected bulk density of amorphous BaZrO3 phases was
reported to be in the range of 82–84% of the crystalline den-
sity (Ref. 51). In our ML-driven NPT simulation of amorphous
BaZrS3, the observed density was 3.94 g/cm3, which is roughly
92.5% of the crystalline density, in qualitative agreement with
the lower density observed in the related oxide compound. The
average bond length of the 6-fold-coordinated Zr atoms in the
amorphous phase, with a value of 2.58 Å, is similar to the ex-
pected bond length of 2.55–2.56 Å in the ZrS6 octahedra of the
crystalline phase. In the case of the 5- and 7-coordinated Zr–
S environments, the bonds are slightly compressed or elongated
compared to the crystalline phase (2.50 Å and 2.66 Å, respec-
tively). The Ba–S bonds vary in length within a similar range to
that observed in the crystalline phase, around 3.0–3.4 Å; how-
ever, as also observed in the partial RDF peak, the coordination
can vary more than in the case of the Zr environment.

The relationship between the geometry of the cation environ-
ments in the amorphous and crystalline forms of BaZrS3 can be
observed in the angle distribution function (ADF) plots for the S–
Zr–S and S–Ba–S bond angles (Fig. 2e and Fig. 2f, respectively).
The main ADF peaks in the case of Zr are clearly distributed
around the values expected for the octahedral crystalline environ-
ment, specifically 90◦ angles between equatorial and axial Zr–S
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Fig. 2: Amorphous BaZrS3. (a) The atomistic structure of the simulated amorphous phase (10,240-atoms) and manually-chosen
close-ups showing the range of geometries and connectivity types between the coordination polyhedra of the A- and B-site cations.
(b) Histogram plot showing the distribution of coordination numbers around Zr atoms in the amorphous and crystalline phases, respec-
tively. (Note that environments with CN < 0.5% are not visualised in the histogram, but Table S3 presents full details of the coordination
numbers.) (c) Same but for Ba atoms. (d) Total and partial RDFs for the Zr–S and Ba–S interatomic distances in the 10,240-atom
simulated amorphous phase. (e) ADF plot showing the S–Zr–S bond-angle distribution in the amorphous phase, compared to the
crystalline structure. (f) Same but for S–Ba–S bond angles. The radial cut-off used for calculating coordination numbers and ADF plots
was set to 3.1 Å in the case of the Zr environments and to 3.8 Å in the case of Ba.

bonds, 180◦ between the axial Zr–S bonds, and about 150◦ for
the bonds connecting the octahedra in the orthorhombic crystal
structure. The distribution is harder to assess for the S–Ba–S bond
angles, both due to the wider range of bond angles observed for
higher coordination geometries, and due to the greater variety
of CNs present in the amorphous phase. Given the undercoor-
dination of the cations compared to the crystalline phase, there
is an observed increase in close S–S contacts in the amorphous
structure (Fig. S4).

We note that structural properties of the amorphous phase are
of interest not only to provide insight into the atomic environ-
ments found in the as-deposited precursor to the polycrystalline
material, but additionally to reveal possible structure–property
relationships in amorphous or surface-amorphised perovskites
which have shown good performance as electro- or photoelectro-
catalysts in the case of oxide perovskite materials.52 The presence
of dangling bonds from undercoordinated atoms has been sug-
gested as a possible reason for the efficiency of perovskites with
amorphised surfaces during electrochemical processes.52 Further
experimental work could determine whether electrocatalytic sur-
face reconstruction occurs in BaZrS3 and therefore whether this
could explain the performance of the material in electrocatalysed
oxygen or hydrogen evolution reactions, where the reactant binds
to undercoordinated Zr sites.53,54 In the long run, knowledge of
the coordination environment in the amorphous precursor phase
might aid in the development of higher-quality crystallised mate-
rials with fewer defects.

Grain boundaries

Crucially, the ML potential also allows the modelling of interfaces,
such as those observed at grain boundaries (GBs). To date, the
atomistic structure of the boundary region and the associated GB
formation energies in BaZrS3 have remained unexplored. There-
fore, we use the misorientation angles predicted by coincidence
site lattice (CSL) theory applied to an orthorhombic system56 to
construct models of the anticipated stable structures for higher
misorientation angles around the (001) axis, in the lattice plane
defined by the a and b axes. Additionally, we test the potential’s
performance on low-angle GBs, choosing misorientation angles
up to 10◦. The MLIP was used to relax the positions of atoms
in the boundary region to obtain structures with GB energies in
good agreement with DFT results (Fig. 3a). The GB formation
energy, EGBf, was calculated as

EGBf =
EGB −Ebulk

2A
,

where EGB is the energy of the modelled system containing two
identical grain boundaries, Ebulk is the energy of the same su-
percell without grain boundaries (the bulk single-crystal system),
and A is the area of the grain-boundary region.

For most GB systems studied, the MLIP’s prediction has a mini-
mum accuracy of 0.10 J m−2 relative to DFT values. This is within
0.07 J m−2 of the errors obtained in a study by Ito et al. for an ML
potential specialised on grain-boundary structures.57 The maxi-
mum error is obtained for the GB with a misorientation angle of
1.5◦, which is 0.18 J m−2 off the DFT value. Overall, the poten-
tial is also able to capture the relative stabilities of the different
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Fig. 3: Grain boundaries. (a) The grain-boundary (GB) energy prediction for relaxed GB structures of BaZrS3 using the MLIP model
compared with the single-point energies predicted by DFT at the PBEsol level of theory. (b) Optimisation of the Σ31[001]/(001) GB
geometry, where high-energy atoms with energies higher than 1 eV/atom (red) are relaxed to a lower-energy structure using the ML
potential. (c) Relaxation of a 615,214-atom 3D polycrystalline structure with six randomly-oriented grains.

GB systems, with the exception of the GB with an angle of 5.5◦,
where the energy prediction incorrectly identifies it as higher in
energy than its relative ground-truth value. These errors could
be addressed by adding the structures of interest to the dataset
or changing the weightings of relevant configuration types such
that the potential is more specialised on the region of interest
(Fig. S5). As noted, it has been previously shown that ML poten-
tials can be specifically trained on different GB structures.57, 58

However, such targeted training is beyond the scope of the cur-
rent work.

An example of the successful relaxation of the expected CSL
Σ31[001]/(001) GB system is shown in Fig. 3b. The relaxation of
an approximately 1,000-atom GB structure, at the limit of what is
achievable using DFT methods, is achieved within seconds using
the MLIP, while systems of up to hundreds of thousands of atoms
can be successfully studied and relaxed within a few minutes on
a 128-core CPU compute node.

Polycrystalline structures

As discussed above, MLIPs allow the relaxation of much larger
and more realistic systems which are inaccessible to ab initio
methods. Going beyond a simple grain-boundary system, we cre-
ated 3D polycrystalline models of up to 600,000 atoms (Fig. 3c).
The polycrystalline unit cell with 6 randomly-oriented grains was
generated by Voronoi tessellation in Atomsk59 and relaxed with
the potential trained on the full dataset, to avoid unphysical close
contacts between atoms (see ESI for details). The extrapola-
tion grade based on the D-optimality algorithm is an established
method for measuring the uncertainty of an ACE ML potential

in a particular region of the configurational space being mod-
elled.57,60 We found that the MLIP is able to relax the polycrys-
talline unit cell, resulting in a structure with extrapolation grades
up to a maximum value of 2, which is considered accurate, as
described in Ref. 60 (see Fig. S6). This result suggests that the
potential can predict the atomistic structure with relatively high
certainty, including in the boundary region. Given the potential’s
performance for modelling the amorphous phase, its transferabil-
ity to the polycrystalline system is unsurprising, as we found that
in the polycrystalline relaxed structure, the coordination around
the Zr atom is similar to that found in the amorphous phase, but
with a shorter Zr–S bond length (CNZr = 5.87 and dZr−S = 2.54
Å; see also Fig. S7). Thus, the undercoordinated Zr environ-
ment suggests that the relaxed grain boundaries are S-deficient
(Fig. S8).

While the potential can efficiently relax systems exceeding
600,000 atoms, calculating scattering patterns of discrete struc-
tures remains computationally demanding,61 and so we focused
our study on polycrystalline unit cells with a side length of 20 nm
(≈ 310,000 atoms). Figure 4 illustrates the effect that polycrys-
tallinity has on the simulated XRD pattern and pair distribution
function (PDF) of BaZrS3, which were generated using the Debye-
Calculator package (Ref. 61). Going from a single-crystal model
shown in Fig. 4a to a polycrystalline model with 8 grains and
50 grains in Figs. 4b and 4c, respectively, the peaks in the sim-
ulated XRD patterns broaden—an effect primarily attributable to
size variation: the size of the grains decreases when their number
increases in a simulation box of constant size, as expected from
applying the Scherrer equation in XRD experiments. This broad-
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Fig. 4: Effect of grain size on the X-ray diffraction (XRD) patterns and pair distribution functions (PDFs) of crystalline BaZrS3. (a) A
single-crystal 10,240-atom model (top) and its simulated PDF [G(r); bottom]. (b) A polycrystalline model with a simulation box side
length of 20 nm containing 8 grains (313,449 atoms). (c) A polycrystalline model with a simulation box side length of 20 nm containing
50 grains (312,370 atoms). (d–e) Comparison between the XRD patterns and PDFs, respectively, for the simulated models and the
experimental data from Ref. 55. For simulating the scattering data, we employed the DebyeCalculator default parameters, except for
the intensity data shown in panel (d) where Qmin and Qmax were set to 1.61 Å−1 and 5.25 Å−1, respectively, assuming the use of Cu
K-α1 radiation for the conversion to 2θ .

ening causes the smaller, secondary peaks observed in the crys-
talline pattern to gradually become unresolved for the systems
with a larger number of grains; the effect is detailed in Fig. S9
and Fig. S10, which compare the simulated partial XRD patterns
of single-crystal and polycrystalline BaZrS3 models, showing the
effect of increasing the number of grains even further.

In the PDF, size effects manifest as a more rapid dampening
of the signal at high r values in the model with a large num-
ber of grains relative to the polycrystalline model with fewer,
larger grains and to that of the single-crystal model. Addi-
tionally, the local structure of each model varies slightly, pre-
sumably due to differences in the grain-boundary fraction. In
Fig. 4d–e, the simulated data are compared to experimental data
from Ref. 55. The experimental XRD and PDF patterns are de-
scribed best by the polycrystalline 50-grains model, consistent
with the nanoparticulate nature of the material described in Ref.
55, which presents a solution-phase synthesis of plate-like, aggre-
gated BaZrS3 nanoparticles. Similar results were also reported
in Ref. 62: a low-temperature synthesis of BaZrS3 nanoparti-
cles with grain sizes of 3–5 nm. A related trend in the experi-
mental XRD patterns can be observed when samples are progres-
sively annealed at higher temperatures, whereby the crystal size
increases.3

Conclusions and outlook
Our study has introduced an ML-based interatomic potential
model for disordered and polycrystalline BaZrS3 and shown how
it can be used to simulate multiple types of structures that are rel-
evant for this emerging functional material. We addressed ques-
tions related to the structural and physical properties of BaZrS3

across different stages of the experiment, from the deposition of
the amorphous precursor phase to the study of polycrystalline sys-
tems with different grain sizes. These simulations can be directly
compared with experimental results, such as XRD patterns, PDFs,
or local bonding information obtained from EXAFS. Furthermore,
the potential is capable of relaxing grain-boundary structures and
estimating their formation energies at a low computational cost
for large-scale structural models: simulations on the order of hun-
dreds of thousands of atoms can be achieved in less than a day on
a single 64-core compute node.

The present study is an early step towards the realistic mod-
elling of thin-film photovoltaic materials. In the future, as an
extension to this work, the modelling of surface structures, or
amorphised surfaces, could provide further insights into the mate-
rial’s functionality. More generally, our work shows how polycrys-
talline perovskite materials can now be modelled with atomistic
machine learning, having in view the realism that has already
been achieved for other technologically relevant systems.30,63

The present study thus lays the groundwork for such studies in-
volving more complex photovoltaic materials, including mixed-
cation and anion perovskites, with hybrid organic–inorganic com-
ponents, and for starting to approach their modelling at the
length scale of real devices.

Data availability

Data supporting this work, including MLIP parameter files,
structural models, and analysis code, are available at
https://github.com/BiancaPasca/polycrystalline-BaZrS3.
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