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drug discovery: integrating CADD
tools and drug repurposing for PD-1/PD-L1 axis
inhibition†
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Zélia Silva, *bcd Paula A. Videira*bcd and Florbela Pereira *a

Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial,

with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play

a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs)

targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs)

becoming widely prescribed. However, challenges with current mAb ICIs, such as limited oral

bioavailability, adverse effects, and high costs, underscore the need to explore alternative small-

molecule inhibitors. In this work, we aimed to identify new potential ICI among all FDA-approved drugs.

We employed QSAR models to predict PD-1/PD-L1 inhibition, utilizing a diverse dataset of 29 197

molecules sourced from ChEMBL, PubChem, and recent literature. Machine learning techniques,

including Random Forest, Support Vector Machine, and Convolutional Neural Network, were employed

for benchmarking to assess model performance. Additionally, we undertook a drug repurposing strategy,

leveraging the best in silico model for a virtual screening campaign involving 1576 off-patent approved

drugs. Only two virtual screening hits were proposed based on the criteria established for this approach,

including: (1) QSAR probability of being active against PD-L1; (2) QSAR applicability domain; (3)

prediction of the affinity between the PD-L1 and ligands through molecular docking. One of the

proposed hits was sonidegib, an anticancer drug, featuring a biphenyl system. Sonidegib was

subsequently validated for in vitro PD-1/PD-L1 binding modulation using ELISA and flow cytometry. This

integrated approach, which combines computer-aided drug design (CADD) tools, QSAR modelling, drug

repurposing, and molecular docking, offers a pioneering strategy to expedite drug discovery for PD-1/

PD-L1 axis inhibition. The findings underscore the potential to identify a wider range small molecules to

contribute to the ongoing efforts to advancing cancer immunotherapy.
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1. Introduction

Notwithstanding signicant improvement in relative survival
rates, cancer continues to be the leading or second leading
cause of death globally.1 Additionally, an estimated 29.9 million
new cancer cases per year are predicted to occur in 2040,
marking a 33% increase from the 20 million cases reported in
2022.2,3

Cancers are characterized by countless genetic and epige-
netic alterations that produce a variety of tumor antigens. The
immune system can exploit these alterations to recognize tumor
cells and activate effector T cells to ght the tumor. In a healthy
individual, immune checkpoints are key to controlling the
action of T cells, and for protecting tissues in response to
pathogenic infections or auto-immunity. However, in the pres-
ence of tumors, the expression of these proteins can become
dysregulated. This dysregulation can make cancer cells unde-
tectable and diminishes their elimination by cytotoxic T cells,
allowing them to grow.4 One way to overcome this resistance
© 2025 The Author(s). Published by the Royal Society of Chemistry
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mechanism involves utilizing antibodies, small molecules or
receptors that will act as immune checkpoint blockers or
modulators. This approach is effective because most immune
checkpoints are activated through ligand–receptor interac-
tions.5 PD-1 is a transmembrane glycoprotein belonging to the
immunoglobulin (Ig) superfamily, consisting of 288 amino
acids. It consists of a solitary N-terminal IgV-like domain, an
approximately 20 amino acid stalk that separates the IgV
domain from the plasma membrane, a transmembrane
domain, and a cytoplasmic tail housing tyrosine-based
signaling motifs. In contrast, PD-L1 features a trans-
membrane region and two extracellular domains, IgC and IgV.
The short cytoplasmic domain of PD-L1 initiates intracellular
signaling pathways.6 Activated T cells, B cells, dendritic cells,
and natural killer cells express high levels of PD-1, while its
ligand, PD-L1, is expressed on various types of tumor cells.5,6

The clinical translation of immune checkpoint inhibitors
(ICIs), drugs that modulate T cell activation, was unquestion-
ably the greatest accomplishment in cancer treatment in the
last decade. This breakthrough began in 2011 with the approval
of ipilimumab, the rst antibody blocking the immune check-
point Cytotoxic T-lymphocyte associated protein 4 (CTLA4).
Next, pembrolizumab and nivolumab were developed, targeting
PD-1, along with durvalumab and atezolizumab, which target
PD-L1. So far, eight agents have been approved as PD-1/PD-L1
immune checkpoint inhibitors (Table S1 available in the
ESI†).6–9

While approved ICIs are currently monoclonal antibodies
(mAbs), they have drawbacks such as limited oral bioavail-
ability, extended tissue retention, suboptimal membrane
permeability and high costs. Consequently, research focus has
shied towards creating small molecule inhibitors to overcome
these constraints associated with mAbs.9 The interaction
between PD-1 and PD-L1 receptors is a typical example of
protein–protein interaction (PPI), where the binding sites are
shallow and poorly dened, and are generally too large (∼1970
Fig. 1 The co-crystal dimer structure of PD-L1 in complex with (A) BMS-
Data Bank, PDB ID: 5J89) is highlighted, illustrating the critical residues

© 2025 The Author(s). Published by the Royal Society of Chemistry
Å2 for PD-1/PD-L1) to accommodate a small molecule. This
makes designing inhibitors for such interactions particularly
difficult.10,11 In 2015, the examination of PD-1/PD-L1 crystal
structures, combined with molecular network mapping, led to
the discovery of potential hotspots. Three key regions on PD-L1
were identied: a hydrophobic cle containing Met115, Ala121,
and Tyr123; a hydrophobic pocket composed of the side chains
of Tyr56, Glu58, Arg113, Met115, and Tyr123; and an elongated
groove involving the main chain and side chains of Asp122,
Tyr123, Lys124, and Arg125. All these regions are considered
suitable for small molecule binding to PD-L1.10,11 Also in 2015,
Bristol-Myers Squibb (BMS) disclosed the rst small molecules
exhibiting promising inhibitory activity against PD-L1. These
molecules comprise a series of compounds featuring a biphenyl
group.12 Subsequently, Holak's group elucidated the binding
mechanism, revealing that the BMS compounds induced the
dimerization of the PD-L1 protein. The disclosure of two co-
crystal structures, PD-L1 in complex with small molecule
inhibitors BMS-200 (1) and BMS-202 (2) (PDB ID: 5N2F and PDB
ID: 5J89, respectively), provided insight into structure-based
drug design13,14 (Fig. 1).

These ndings led to follow-up docking studies and conse-
quently to the development of BMS derivatives that retain the
biphenyl moiety. Further evidence conrmed that the residues
Tyr56, Asp122 and Lys124 are crucial for ligand binding,
following in this case a ligand-based approach.15 Although no
small molecules have yet been approved as PD-1/PD-L1 ICI to
date, six small molecules are currently undergoing clinical
trials, predominantly in the early phases,16 as outlined in Table
S2 available in the ESI.†

A few studies have been reported on Computer-Aided Drug
Design (CADD) for inhibitory activity against PD-1/PD-L1,17 with
some of them simply using a Structure Activity Relationship
(SAR) strategy and docking against PD-L1 as a corroboration
approach, manly based on the pharmacophoric model of BMS
compounds.18–34 One of those works was performed by Qin
200 (1) (Protein Data Bank, PDB ID: 5N2F) and (B) BMS-202 (2) (Protein
for ligand binding.

RSC Adv., 2025, 15, 2298–2316 | 2299
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Fig. 2 Chemical structures of small molecule inhibitors of the PD-1/PD-L1 immune checkpoint.
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et al.,29–31 who developed several studies in which numerous
compounds were obtained using a ring fusion strategy
exploring series of [1,2,4]triazolo[4,3-a]pyridines, indolines and
4-arylindolines scaffolds, reaching the compound A30 (9) rep-
resented in Fig. 2 with an IC50 value of 11.2 nM using the latter
scaffolds. Dai et al.32 obtained compound D38 (10) with an IC50

value of 9.6 nM by exploring pyrazolo [4,3-b] pyridine deriva-
tives. Wang and his team34 obtained a biphenyl pyridine (11)
with an IC50 value of 3.8 nM, while Liu et al.33 developed benzo
[c][1,2,5]oxadiazole derivatives, with the compound L7 (12)
presenting an IC50 value of 1.8 nM (Fig. 2). Cheng and co-
workers35 opted to use molecular docking as a starting point,
conducting a docking-based virtual screening and drug design
based on SARs study of the top hits, resulting in NP19 (13)
shown in Fig. 2. NP19 is a resorcinol dibenzyl ether with the
same core group as BMS-202, with an IC50 value of 12.5 nM.
Similarly, Vergoten et al.36 also employed a molecular docking
approach, focusing on pseudoguaianolide sesquiterpene
2300 | RSC Adv., 2025, 15, 2298–2316
lactones, particularly britannin (14, Fig. 2). They chose bri-
tannin due to its known potential as a potent anticancer agent
acting via modulation of the transcription factor NFkB and the
Nrf2-Keap1 signaling pathway, as well as its ability to induce
down-regulation of the ICI PD-L1. The computed empirical
energy of interaction (DE) for the BRT-PD-L1 dimer complex was
approximately −63.1 kcal mol−1, closely resembling the value
obtained for the reference PD-L1 ligand BMS-202 (2, Fig. 1) (DE
= −73.4 kcal mol−1) under the same conditions.

Though most studies use a more straightforward approach
for identication of PD-1/PD-L1 binders, some studies reported
the practice of more complex strategies. One such study is by
DiFrancesco et al.,37 which, similar to Cheng's work,35 starts
with a docking-based virtual screening. The key difference lies
in the choice of compound library: Cheng's work utilized Tar-
getmol's natural compound library containing 1867
compounds, whereas DiFrancesco's work involved screening of
approximately 3.7 million lead-like molecules from the ZINC
© 2025 The Author(s). Published by the Royal Society of Chemistry
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repository,38 against both human PD-1 and PD-L1. Due to the
challenging small molecule tractability of the PD-L1 binding,
they opted to continue only with PD-1 and performed another
docking-screening, this time using the National Cancer Insti-
tute (NCI) dataset. These screenings followed specic criteria:
a molecular weight between 250 and 350 g mol−1, an XlogP
value of #3.5 and a maximum of 7 rotatable bonds. From the
results, 40 top hits were selected based on factors such as the
commercial availability, cost, and binding to key residues of PD-
1 and PD-L1. Subsequently, a Molecular Dynamics (MD) simu-
lation with the Desmond Molecular Dynamics package was
performed, revealing NSC631535 (15), shown in Fig. 2, as the
most promising compound with a IC50 value of 15 mM. Simi-
larly, Kumar and his team39 also began their study with
a docking-based high-throughput virtual screening, utilizing
the Natural Product Atlas database against PD-L1. The ligands
were also ltered using ADME and drug-likeness criteria, this
time using QikProp tool. Following MD simulation, ve natural
compounds emerged as top hits: neoenactin B1 (16), actino-
furanone I (17), cosmosporin (18), ganocapenoid A (19) and 3-[3-
hydroxy-4-(3-methylbut-2-enyl)-2-methylidene-cyclohexanone
(20) (Fig. 2).

Another commonly employed strategy is the structure-based
pharmacophore-based virtual screening (PBVS) approach.40–44

Urban et al.'s40 developed a structure-based pharmacophore
model using Pharmit server soware, utilizing crystal structures
of the PD-L1 dimer in complex with BMS-8 (PDB ID 5J89), BMS-
202 (2) (PDB ID 5J8O), BMS-1001 (PDB ID 5NIU) and BMS-1166
(PDB ID 6R3K). Over 90 million compounds from the PubChem
database were screened against this model. The matching
compounds were then subjected to docking to the PD-L1 dimer
using AutoDock Vina soware, followed by further screening
using QikProp program and SwissADME web tool to the
compounds of the complexes with lower energy (kcal mol−1).
Subsequently, MD simulations were conducted, revealing nine
compounds exhibited stable complexes with PD-L1, although
their identities were not disclosed. Luo and his team41 used
a very similar strategy, using Discovery Studio 4.5 to construct
the pharmacophore model. Instead of using PubChem, they
screened marine small molecules databases such as Compre-
hensive Marine Natural Products Database (CMNPD) and the
Seaweed Metabolite Database (SWMD). Likewise, ADME,
toxicity and docking studies were performed using the Swis-
sADME, ProTox-II and CDOCKER programs, respectively.
Compound 51320 (21), represented in Fig. 2, was selected for
MD analysis, with the results showing a stable binding to PD-L1
and the potential to become an ICI. Surmiak et al.45 reported
a comparison of representative molecules from different
classes, such as mAbs, macrocyclic peptides, and small mole-
cules, in terms of their PD-1/PD-L1 dissociation capacity
measured by Homogeneous Time-Resolved Fluorescence
(HTRF) and their in vitro bioactivity assessed through the
immune checkpoint blockade co-culture assay. The authors
concluded that, unlike mAbs and macrocyclic peptides, most of
the known PD-L1 targeting small molecules do not simply block
the PD-L1 surface in a 1 : 1 molar ratio. Instead, these small
molecules induce homodimerization of human PD-L1 in vitro.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Chandrasekaran et al.,42 Fattakhova et al.43 and Pushkaran
et al.44 also follow a structure-based PBVS approach, but they
complement it with a drug repurposing strategy. Drug repur-
posing,46 also referred to as drug repositioning or reproling,
entails discovering new applications for approved or investiga-
tional drugs beyond their original medical indications. This
approach presents several benets over the development of
entirely new drugs. Firstly, there is a lower risk of failure since
the repurposed drug has already undergone safety assessments
in preclinical models and humans, reducing the likelihood of
safety-related failures in subsequent efficacy trials. Secondly,
the drug development timeline is abbreviated as a signicant
portion of preclinical testing, safety evaluation, and, at times,
formulation development is already completed. Thirdly, the
required investment is reduced, contingent on the stage of
development of the repurposing candidate. While regulatory
and phase III costs may remain comparable, substantial savings
are achievable in preclinical and phases I and II trials. These
advantages have the potential to yield a less risky and faster
return on investment in the development of repurposed drugs,
with lower average associated costs. These costs are estimated
to be approximately $300 million on average, in contrast to the
$2–3 billion typically associated with developing a new chemical
entity.46 Chandrasekaran et al.42 based their pharmacophore
model on observed interactions between the PD-L1 dimer and
INCB086550 (4), a compound undergoing clinical trials. They
identied six key properties: two acceptors of hydrogen
bonds, one donor of hydrogen bonds, one positively ionizable
group and two aromatic rings. This model, created using
PHASE module, was employed to screen FDA-approved drugs.
The FDA-approved drugs with the highest scores were
compared with a clinical trial candidate, IN-35 (22). Further
screening, docking and MD simulations were performed,
revealing mirabegron (23) (Fig. 2), a drug approved for over-
active bladder, as their top hit. Pushkaran et al.44 used a similar
strategy, using in this case the PD-L1/BMS-202 (2) complex and
the “Structure-based pharmacophore” module of the Ligand
Scout 4.1 program.47 This model was then used for screening all
the FDA-approved drugs in the DrugBank database48 and small
molecules in the Specs database. Aer docking-screening, in
vitro studies were performed, revealing that raltitrexed (24),
sanamide (25) and specs compound (AK-968/40642641) (26),
shown in Fig. 2, effectively increased the proliferation of
immune cells and IFN-g production. Fattakhova and co-
workers43 opted to start with a docking-screening of ZINC15
database that includes ∼10 000 approved and investigational
drugs. The AutoDock Vina docking algorithm was employed for
the structure-based docking of drug molecules to multiple PD-
L1 dimer interfaces (PDB IDs: 5N2F, 5NIU, 6R3K, 5J89, 5J8O,
5N2D, 6NM8). The selection process involved picking the top
1000 molecules with the most favorable docking scores.
Subsequently, the ligand-based virtual screening of ZINC15
utilized ROCS 3.4.1.0, a database ranking drugs based on 3D
structure similarity. Compounds with higher Tanimoto Combo
scores, indicating greater similarity to seven crystal ligands,
were then combined with the initial 1000 molecules. These
leading ROCS hits underwent further docking against the high-
RSC Adv., 2025, 15, 2298–2316 | 2301
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resolution PD-L1 crystal structure (PDB: 5N2F). Aer conduct-
ing molecular dynamics (MD) analysis and Homogeneous
Time-Resolved Fluorescence (HTRF) binding assays, Pyrvinium
(27) (Fig. 2), an FDA-approved anthelmintic drug, demonstrated
the highest activity with an IC50 value of approximately 29.66
mM. The AutoDock Vina docking algorithm was employed
for the structure-based docking of drug molecules onto
various PD-L1 dimer interfaces (PDB IDs: 5N2F, 5NIU, 6R3K,
5J89, 5J8O, 5N2D, 6NM8). The selection process involved
picking the top 1000 molecules with the most favorable docking
scores. Following this, the ligand-based virtual screening of
ZINC15 utilized ROCS 3.4.1.0, a database ranking drugs based
on 3D structure similarity. Compounds with higher Tanimoto
Combo scores, indicating greater similarity to seven crystal
ligands, were subsequently merged with the initial 1000
molecules.

Here, we employed a combined approach of CADD tools and
drug repurposing, adopting a methodology distinct from
previously reported ones and akin to our group's prior work. We
constructed classication QSAR models utilizing empirical
molecular descriptors and ngerprints to predict the inhibition
of the PD-1/PD-L1 axis, employing active or inactive labels. A
total of 29 197 molecules from the ChEMBL and PubChem
databases, along with recent literature from the Web of Science,
were utilized to build these models. We explored three machine
learning (ML) techniques—Random Forest, Support Vector
Machine, and Convolutional Neural Network—to predict PD-1/
PD-L1 inhibition, assessing model performance through
internal and external validation. Subsequently, utilizing the
best in silicomodel, we conducted a virtual screening campaign
using 1576 off-patent approved drugs (FDA, EMA, and other
agencies) obtained from the ZINC database. Two virtual
screening hits, sonidegib and lapatinib, were proposed based
on their potential to act as active PD-1/PD-L1 axis inhibitors in
the QSAR model, their affinity (kcal mol−1) to PD-L1, binding to
key residues assessed through docking studies, and the appli-
cability of the top-performing model. Due to solubility issues,
only sonidegib was experimentally evaluated. Finally, we
conrmed the in vitro activity of sonidegib as a PD-1/PD-L1
modulator using an ELISA method and ow cytometry-based
competition assays.
Table 1 Structural clusters and counts of PD-L1 classes for the training

Clustera #b

PD-L1 classesc CLogPd

Active Inactive Active Inactive

A 25 605 299 (1%) 25 306 (99%) 3.72 2.96
B 1644 78 (3%) 1566 (97%) 4.21 2.89
C 101 8 (8%) 93 (92%) 2.96 3.74
D 26 16 (62%) 10 (38%) −8.24 0.95
X 943 2 (0%) 941 (100%) 4.12 2.22

a Cluster code. b Number of molecules. c Within the cluster for the trainin
partition coefficient), within the category for the training set. e Average v
f Average value of Rotatable bonds within the category for the training se
training set.

2302 | RSC Adv., 2025, 15, 2298–2316
2. Results and discussion
2.1. QSAR classication modelling

The whole data set comprising 29 197 organic molecules that
was randomly partitioned based on the two PD-L1 activity
classes into a training set of 28 319molecules (403 active and 27
916 inactive molecules), a test_1 set of 878 molecules (14 active
and 864 inactive molecules), and a test_2 set of 1000 molecules
(14 active and 986 inactive). These sets were used for the
development (training set) and external validation (test set 1) of
the QSAR classication models. The test set 2 was used for an
additional internal validation. The training set was further
categorized into ve structural clusters or scaffold types (A–D,
and X). Tables 1 and 2 display the ve structural clusters along
with their centroids, as well as the count of PD-L1 classes (active
and inactive) within each structural cluster, and Murcko scaf-
fold analysis. The clustering and Murcko scaffolding were done
using Data Warrior.49 The Tanimoto coefficient of similarity was
calculated using an RDKit script.50

Aer clustering our training set using Data Warrior, we ob-
tained four clusters (A, B, C, and D). Cluster A contained the
majority of the molecules, while cluster D comprised only 26
molecules. Upon analysing the corresponding centroids and the
Tanimoto coefficient between them and the remaining mole-
cules in each cluster, we found that the minimum Tanimoto
coefficient for clusters A to C ranged from 0.03 (C) to 0.06 (A and
B), whereas for cluster D, it was 0.375. To balance the clusters
and enhance their internal similarity, we opted to exclude
molecules from each cluster with a Tanimoto coefficient below
0.195. These molecules are denoted as category X in Tables 1
and 2. It's clear that the group of excluded molecules mainly
consists of inactive molecules, with only two active molecules
originally belonging to cluster B. Cluster A continued to be the
most representative cluster, with 25 605 molecules as opposed
to the previous 26 054.

Upon analysing Table 1, it is possible to observe that the
percentage of active class is quite consistent for clusters A, B
and C, ranging between 1% to 8%, but signicantly higher for
the cluster D (62%). Cluster D pertains to peptides, a class of
compounds well-known for their signicant role as ICIs due to
their higher molecular weight (MW) (1712.60 for the active
set

MWe Rotatable bondsf
Polar surface areag

(Å2)

Active Inactive Active Inactive Active Inactive

573.19 503.37 10.29 6.84 115.37 118.02
465.56 340.63 9.00 4.36 75.92 81.11
232.29 305.44 2.5 2.84 29.27 47.20

1712.60 762.74 42.63 13.50 688.10 228.70
398.50 255.71 8.5 3.94 60.84 60.86

g set. d Average value of CLogP (an estimation of LogP, the octanol–water
alue of MW (molecular weight) within the category for the training set.
t. g Average value of polar surface area (Å2) within the category for the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Chemical structure of centroids and their Murcko scaffolds for the five structural clusters in the training set

Clustera Centroidb Centroid Murcko scaffoldc Number of Murcko scaffoldsd (%)

A 4180 (16%)

B 608 (37%)

C 58 (57%)

D 18 (69%)

X 281 (30%)

a Cluster code. b Chemical structure of the cluster centroid. c Chemical structure of the centroid Murcko scaffold. d Percentage within the category
for the training set. e Contains ve enantiomers of the centroid. f Contains one enantiomer of the centroid.
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class). Consequently, peptides are theoretically more capable of
acting as blockers in the typically larger active sites of proteins.10

Docking studies or biological assays solemnly based on
© 2025 The Author(s). Published by the Royal Society of Chemistry
interaction might explain the high percentage of the active
class, as good druglikeness might not be expected due to the
violation of one of Lipinski's rule-of-ve (R-o-5),51 which
RSC Adv., 2025, 15, 2298–2316 | 2303
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Table 4 Exploration of 3D RDKit descriptors for building PD-L1 clas-
sification models using the RF algorithm for the training set in an OOB
estimation

Descriptors # SEa SPb Qc MCCd

AUTOCORR3D 80 0.777 0.998 0.995 0.814
MORSE 224 0.700 0.999 0.995 0.812
RDF 210 0.732 0.997 0.994 0.764
WHIM 114 0.650 0.996 0.991 0.660

a Sensitivity, the ratio of true positive to the sum of true positive and
false positive. b Specicity, the ratio of true negative to the sum of
true negative and false negative. c Overall predictive accuracy, the
ratio of the sum of true positive and true negative to the sum of true
positive, true negative, false positive and false negative. d Matthews
correlation coefficient.
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typically limits MW to below 500 Da. However, the MW rule is
followed by the other three categories in both classes, except for
the active class of cluster A, which has a mean value of
573.19 Da. Nonetheless, Veber's rule52 suggests that a more
effective discrimination between orally active and inactive
compounds within a substantial dataset can be achieved by
considering the polar surface area and the number of rotatable
bonds. Specically, compounds that meet the criteria of 10 or
fewer rotatable bonds and a polar surface area not exceeding
140 Å2 are expected to exhibit favourable oral bioavailability.
Additionally, Ghose et al.53 also extended the R-o-5 by proposing
a more limited range of LogP values within the range of −0.4 to
+5.6. All these criteria are followed by the active class of cluster
A, and by the other clusters and classes, with the exception of
cluster D, which further validates our analysis. While the focus
of this work is small molecules, we opted to maintain this
category in our dataset to compare their descriptors and their
performance.

The structural variability within each of the ve categories
(A–D, and X) was assessed by examining the number of Murcko
scaffolds within each structural category, as outlined in Table 2.
Across the ve categories, the range of Murcko scaffolds varies
from 18 to 4180, indicating a substantial degree of structural
diversity. This diversity is represented by a percentage range of
16–69%, where 100% signies complete structural variability. It
is interesting to note that the mean Tanimoto coefficient,54

based on ngerprint-similarity (FP-similarity), is higher
between the centroid and rest of the cluster for both cluster A
and D (∼0.57). However, the percentage of scaffolds is much
lower for cluster A compared to cluster D. While cluster D has
a much lower representation that should be considered, it
seems that Murcko scaffolds can be a less useful tool to apply to
peptides.

RDKit was used to calculate ngerprints (FPs) and molecular
descriptors, encompassing three different types of FPs with
different sizes (166 MACCS; 1024 Morgan, circular ngerprints
and 2048 RDKit) and a total of 242 1D & 2D molecular
descriptors, including electronic, topological, and constitu-
tional descriptors. The RF ML technique was used for building
the QSAR classication models to predict PD-1/PD-L1 inhibi-
tion, and the models' performance was successfully evaluated
Table 3 Evaluation of the predictive performance of FPs and 1D & 2D
molecular descriptors for modelling the PD-L1 activity using the RF
algorithm for the training set in OOB estimation. The best models are
highlighted in bold

Descriptors # SEa SPb Qc MCCd

1D & 2D 425 0.896 0.999 0.997 0.895
RDKit FPs 2048 0.950 1.000 0.999 0.961
Morgan FPs 1024 0.983 1.000 0.999 0.976
MACCS FPs 166 0.935 1.000 0.999 0.950

a Sensitivity, the ratio of true positive to the sum of true positive and
false positive. b Specicity, the ratio of true negative to the sum of
true negative and false negative. c Overall predictive accuracy, the
ratio of the sum of true positive and true negative to the sum of true
positive, true negative, false positive and false negative. d Matthews
correlation coefficient.

2304 | RSC Adv., 2025, 15, 2298–2316
through internal validation (OOB estimation for the training
set), as depicted in Table 3. Among the four sets of FPs and
descriptors used to build the QSAR classication model, the
Morgan FPs exhibited the best performance.

The 3D descriptors were calculated using GUIDEMOL,55 an
innovative program created in the scope of our research group.
In addition to calculating 3D molecular descriptors already
implemented in RDKit, GUIDEMOL also generates grid repre-
sentations of 3D molecular structures using the electrostatic
potential or voxels. The results are presented on Tables 4 and 5.

The best set of ngerprints (FPs), Morgan, along with all
RDKit 3D descriptors, and the best 3D grid descriptors were
selected for additional investigation (see Table 6). The perfor-
mances of the two models were compared, with the best results
belonged to the model of 1024 Morgan FPs (see Table 3), all 3D
RDKit descriptors (see Table 4) and Molar Refractivity grid voxel
(see Table 5) comprising a total 3008 descriptors. Subsequently,
this model was further optimized through descriptor selection,
based on the importance assigned by the RF model using the
25, 50, 100 or 150 most important descriptors. The selection of
the 50 most important descriptors from the Morgan FPs, 3D
RDKit and Molar Refractivity grid voxel descriptors set, used to
build the model with the RF, enabled the training of much
smaller RF models with even better prediction accuracies (Q =

0.999 andMCC= 0.972) than themodels trained with the entire
Table 5 Exploration of 3D grid descriptors for building PD-L1 classi-
fication models using the RF algorithm for the training set in an OOB
estimation

Descriptors # SEa SPb Qc MCCd

Grid of voxel – atomic number 1331 0.402 0.998 0.990 0.553
Grid of voxel – LogP 0.395 0.999 0.990 0.577
Grid of voxel – MMFF 0.467 0.996 0.988 0.532
Grid of voxel – MR 0.397 0.999 0.990 0.561
Grid of voxel – gasteiger 0.434 0.994 0.986 0.462

a Sensitivity, the ratio of true positive to the sum of true positive and
false positive. b Specicity, the ratio of true negative to the sum of
true negative and false negative. c Overall predictive accuracy, the
ratio of the sum of true positive and true negative to the sum of true
positive, true negative, false positive and false negative. d Matthews
correlation coefficient.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Exploration of three model containing 3D grid descriptors for building PD-L1 classification models using the RF algorithm for the
training set in an OOB estimation. The best model is highlighted in bold

Descriptors # SEa SPb Qc MCCd

Morgan FP + RDKit 3D + grid of voxel –
LogP

3008 0.935 0.999 0.999 0.948

Morgan FP + RDKit 3D + grid of voxel –
MR

0.938 1.000 0.999 0.954

a Sensitivity, the ratio of true positive to the sum of true positive and false positive. b Specicity, the ratio of true negative to the sum of true negative
and false negative. c Overall predictive accuracy, the ratio of the sum of true positive and true negative to the sum of true positive, true negative, false
positive and false negative. d Matthews correlation coefficient.

Table 7 Exploration of different ML algorithms using the 50 most
important descriptors (Morgan FPs, 3D RDKit and Molar Refractivity
grid voxel descriptors). The ML technique with the best performance is
highlighted in bold

Descriptors # SEa SPb Qc MCCd

RF Tre 0.975 1.000 0.999 0.972
Tef 1.000 0.999 0.999 0.966

dMPL Tre 1.000 0.999 0.999 0.954
Tef 1.000 0.998 0.998 0.934

SVM Tre 0.945 0.998 0.998 0.918
Tef 1.000 1.000 1.000 1.000

a Sensitivity, the ratio of true positive to the sum of true positive and
false positive. b Specicity, the ratio of true negative to the sum of
true negative and false negative. c Overall predictive accuracy, the
ratio of the sum of true positive and true negative to the sum of true
positive, true negative, false positive and false negative. d Matthews
correlation coefficient. e Training set. f Test set.
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set of descriptors (3008 descriptors) for the training set. A
comparison of three machine learning (ML) techniques using
RF, SVM and dMPL for building the PD-L1 models with the 50
most important descriptors selected by the RF descriptor
importance is shown in Table 7. Considering the better
performance of the RF technique compared to SVM and dMPL,
it was selected as our QSAR model and therefore applied to the
subsequent step, the virtual screening.

2.2. Analysis of ngerprints and descriptors

A comparison of the top twenty ngerprints (i.e. MACCS) and
molecular descriptors (i.e. 1D, 2D and 3D) selected by descriptor
importance of RF used to build the QSAR classication models,
is provided in Table 7 and these descriptors were analysed and
presented in descending order of importance in Table 8. The
twenty ngerprints (FPs), 1D, 2D and 3D molecular descriptors
are listed in decreasing order of importance according to the
‘mean decrease accuracy’ parameter. The respective variations
between these are given as 9.11–5.18, 4.95–3.09 and 5.58–3.33.
Among these, there are more FPs and molecular descriptors
that are more relevant in discriminating the active class than
the inactive class in the set of the twenty most important
ngerprints and molecular descriptors for modelling PD-1/PD-
L1 inhibition. More precisely, there are eleven MACCS FPs,
three 1D & 2D descriptors, and four 3D descriptors that are
more relevant in discriminating the active class, which are
highlighted in green in Table 8. However, the majority of FPs
© 2025 The Author(s). Published by the Royal Society of Chemistry
and descriptors (5 MACCs FPs, 14 1D & 2D, and 15 3D) are
equally important in discriminating both active and inactive
classes, as highlighted in yellow in Table 8.

Considering the MACCS FPs, functionalities like the amide
group, lactam ring or the 1,3-oxazole ring can be represented by
the 5th and 20th most important MACCS FPs, which are closely
associated with the active class. Interestingly, these moieties are
present in numerous well-known inhibitors of PD-L1, as high-
lighted in Fig. 1 (2), Table S2 (3, 4, and 7) available in the ESI,
and Fig. 2 (9, 16, 21–26).† Similarly, halogen-based substituents
of hydrocarbon rings or derivatives of heterocycles, as well as
uorine substituents, encoded by the 12th and 16th most
signicant MACCS FPs, respectively, are highly relevant to the
active class. In contrast, the hydroxyl substituent encoded by
the 10th most important MACCS FPs appears to be relevant for
both the active and inactive class. There seems to be a rela-
tionship with the number of groups containing oxygen atoms
and the activity, as represented in the 2ndmost relevant MACCS
FP, where oxygen-containing groups greater than 3 appear to be
related to the discrimination of the inactive class, as high-
lighted in red in Table 8.

In the collection of the twenty most signicant 1D & 2D
descriptors, there are ve MQNs (Molecular Quantum
Numbers) descriptors,56 which encode atom and bond counts,
polarity, and topology. The two most signicant 1D & 2D
descriptors, MQNs_17 and MQNs_31, encode cyclic moieties
specically with double bonds and trivalent nodes, respectively,
and are more relevant in discriminating the active class.
Conversely, the 9th most important 1D & 2D descriptor,
MQNs_27, encodes an acyclic moiety with divalent nodes and is
more relevant in discriminating the inactive class. The aryl
methyl and phenyl scaffolds, represented by the 4th and 5th
most relevant 1D & 2D descriptors, respectively, seem to suggest
a distinct activity pattern, with the presence of the methyl group
favouring activity. The count of hydrogen donors (e.g., –OH, –
SH, –NHR, –HF), represented by the 11th 1D & 2D descriptor,
enables the preferential discrimination of the inactive class.

There is a signicant majority of MORSE descriptors (Mole-
cule Representation of Structure based on Electron diffrac-
tion),57 i.e., 75%, among the set of the 20 most relevant 3D
descriptors in modelling the activity against the PD-1/PD-L1
axis. Specically, one is an unweighted MORSE descriptor
(MORSE32), and the rest are weighted: four, ve, three, one, and
one MORSE descriptors weighted by relative atomic mass
(MORSE45, 52, 57, 60), relative van der Waals volume
RSC Adv., 2025, 15, 2298–2316 | 2305
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Table 8 The twenty most important MACCS FPs, 1D & 2D and 3D descriptors selected in RF classification modelsa

a A – any valid periodic table element symbol; Q – hetero atoms; any non-C or non-H atom; X – halogens; F, Cl, Br, I; % – an aromatic query bond; $ –
ring bond; ! – chain or non-ring bond; @ – a ring linkage and the number following it species the atoms position in the line, e.g.@1means linked
back to the rst atom in the list. The FPs and the most relevant molecular descriptors in the discrimination of the active, inactive and both classes
were represented in green, red and yellow, respectively.
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(MORSE84, 85, 90, 92, 94), relative atomic polarizability
(MORSE141, 148, 158), relative atomic ion polarity (MORSE192),
and relative I state (MORSE205), respectively. Despite the
MORSE descriptor incorporating information about the entire
molecular structure, it has been shown that its nal value is
primarily derived from short-distance atomic pairs (up to 3 Å).57

This local effect is even more pronounced with the inuence of
weighting. It is observed that the most relevant MORSE
descriptors for activity against PD-L1 are weighted by atomic
2306 | RSC Adv., 2025, 15, 2298–2316
mass and van der Waals volume, which signicantly decreases
the inuence of hydrogen and diminishes the roles of nitrogen,
oxygen, and uorine, while increasing the inuence of sulfur,
chlorine, phosphorus, bromine, and iodine.
2.3. Applicability domain of PD-L1 QSAR model

As reported in Section 2.1, the training set was categorized into
ve structural clusters (A–D, and X), and a centroid was also
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The chemical structures of twenty test set molecules that do not belong to the applicability domain of the PD-L1 QSARmodel are shown.
Clusters A, B, C, D, and X are highlighted in blue, red, green, yellow, and gray, respectively.
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dened for each of the clusters (see Tables 1 and 2). According
to the dened criteria, a given molecule was considered not to
belong to the applicability domain of themodel if themaximum
Tanimoto coefficient obtained from this molecule with the ve
centroids corresponding to clusters A–D and X was less than
0.195. Applying this threshold, it is found that in the test set
there are 22 molecules that do not belong to the applicability
domain of the model. All these molecules are predicted as true
negatives (TN) and were grouped as follows: seven in cluster A,
eight in cluster B, two in cluster C, four in cluster D, and one in
cluster X, Fig. 3.
2.4. Virtual screening

In this study, a virtual screening campaign was conducted to
identify potential new inhibitors against PD-L1. The best model
selected for the virtual screening procedure was the RF
© 2025 The Author(s). Published by the Royal Society of Chemistry
classication model, which utilized the 50 most important
Morgan FPs, 3D RDKit, and Molar Refractivity grid voxel
descriptors. The virtual library consists of 1576 off-patent
approved drugs (from FDA, EMA, and other agencies) that are
also commercially available compounds. Using the dened
threshold for the applicability domain of the PD-L1 model (i.e.,
belonging to one of the ve clusters (A–D, and X) with
a maximum Tanimoto coefficient value with the ve cluster
centroids lower than 0.195), it was possible to prioritize the
most probable inhibitors of PD-L1 from the virtual library.
Applying this threshold, it was found that 380 molecules in the
virtual screening library do not belong to the applicability
domain of the model. These molecules were grouped as follows:
109 in cluster A, 34 in cluster B, 25 in cluster C, 167 in cluster D,
and 45 in cluster X. The best model identied only two virtual
hits from the virtual library of 1196 off-patent approved drugs
RSC Adv., 2025, 15, 2298–2316 | 2307
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Fig. 4 Chemical structures of lead-like PD-L1 inhibitors: sonidegib
(28) and lapatinib (29).
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that belong to the applicability domain of the model and were
predicted to be active against PD-L1. These hits, both clustering
in category A, were predicted with a probability of being active
greater than or equal to 0.64, Fig. 4. In this drug repurposing
strategy, two drugs used in cancer treatment were selected as
potential candidates: sonidegib (28), a hedgehog signaling
pathway inhibitor, and lapatinib (29), a reversible inhibitor of
both epidermal growth factor receptor (EGFR) and human
epidermal growth factor receptor-2 (HER2) tyrosine kinases,
shown in Fig. 4.

2.5. Molecular docking

The exploration of PD-1/PD-L1 crystal structures, along with
molecular network mapping, led to the identication of
potential hotspots on PD-L1 and highlighted three key regions:
a hydrophobic cle composed of Met115, Ala121, and Tyr123;
a hydrophobic pocket comprising the side chains of Tyr56,
Glu58, Arg113, Met115, and Tyr123; and an extended groove
involving the main chain and side chains of Asp122, Tyr123,
Lys124, and Arg125. All these regions are considered suitable
for small molecule binding to PD-L1.10,11

Molecular docking was employed to identify the most
favourable binding interactions, and the calculated free binding
Table 9 The calculated free binding energies (DGB, in kcal mol−1) and th
screening hits, sonidegib and lapatinib, as well as the positive control, B

# Name DGB
a

Interaction

Hydrophobic residues

1 BMS-200 −11.5 Ile54c, Tyr56c, Met115c, A
Tyr123b

28 Sonidegib −11.0 Ile54b, Tyr56b, Met115b, M
Ala121b, Ala121c, Tyr123c

29 Lapatinib −11.8 Tyr56b, Tyr56c, Met115b, A
Tyr123b, Tyr123c

a In kcal mol−1. b Amino acid residues of Chain A. c Amino acid residues

2308 | RSC Adv., 2025, 15, 2298–2316
energies based on the specied search space coordinates are
presented in Table 9. This includes the two resulting virtual
screening hits—sonidegib (28) and lapatinib (29) as shown in
Fig. 4—along with the positive control, BMS-200 (1) as shown in
Fig. 1, in accordance with QSAR modelling.

As shown in Table 9, the two resulting virtual screening hits,
sonidegib (28) and lapatinib (29), along with the positive control
(1), exhibited calculated DGB values less than or equal to
−11 kcal mol−1, specically −11.0, −11.8, and
−11.5 kcal mol−1, respectively. These excellent binding affini-
ties can be attributed to potential hydrophobic interactions,
hydrogen bonds, and p-stacking interactions with key residues
in chains A and B of the PD-L1 protein. In Fig. 5, the best-
docked poses for the two resulting virtual screening hits, soni-
degib and lapatinib, as well as the positive control, BMS-200, are
shown.

It is worth noting that both virtual screening hits, sonidegib
(28) and lapatinib (29), exhibit a system of four or more rings,
similar to the positive control, BMS-200 (1). Sonidegib, like
BMS-200, features a biphenyl system. Lapatinib presents
a biaryl system and has a binding pose very similar to the
positive control, sharing interactions with numerous residues,
including Tyr56, Asp122, Tyr123, and Gln66 (see Fig. 6). These
residues play important roles in ligand binding to PD-L1, as
previously mentioned.
2.6. Binding inhibition

2.6.1. Competitive ELISA. As described in Material and
methods section, puried recombinant human PD-1 and PD-L1
molecules were used to assess binding inhibition by competi-
tive ELISA assay. The ability of small molecules to bind to PD-1
or PD-L1 was tested, and the known PD-L1 inhibitor, PDI-1, was
used as positive control. In these assays we coated the plates
with 10 mg mL−1 of PD-L1 and used 15 mg mL−1 of PD-1 (which
corresponds to saturating concentration for the tested condi-
tions). The results presented in Fig. 7 show the behaviour of
tested molecules in interaction with PD-1/PD-L1 axis. Positive
inhibitor control (PDI-1) showed an initial 17.5% of inhibition
at 1.0 mM. Sonidegib, in turn, showed an initial 28.4% of inhi-
bition at the minimal concentration of 0.0005 mM. Considering
dose–response curves obtained by these results, PDI-1 inhibitor
e detailed interactions observed upon docking the two resulting virtual
MS-200, against PD-L1

H-bond residues p-stacking residues

la121c, Ala121b, Lys124b Tyr56c

et115c, Gln66b, Ala121c —

la121c, Asn63c, Gln66c Tyr123b

of Chain B.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Predicted binding poses of the two hits and positive control in
the binding site of PD-L1 (sonidegib – (A); lapatinib – (B); and positive
control – (C)). The hydrophobic interactions are shown as black dash
lines and the p-stacking interactions in green (parallel) and gray
(perpendicular) dash lines. H-bond and halogen-bond interactions are
shown as blue and green continuous lines, respectively.

Fig. 6 Interaction profiles of the best-docked poses for the sonidegib
(pink), lapatinib (blue) and positive control (gray). The hydrophobic
interactions are shown as black dash lines and the p-stacking inter-
actions in green (parallel) and gray (perpendicular) dash lines. H-bond
and halogen-bond interactions are shown as blue and green contin-
uous lines, respectively.

Fig. 7 Binding activity of soluble recombinant PD-1Fc to immobilized
recombinant PD-L1 in the presence of sonidegib (blue) and of PDI-1
inhibitor (red, positive control) as assessed by competitive ELISA.
Graphs represent binding activity (values were normalized to
percentage of PD-1/PD-L1 interaction, considering 100% the binding
without inhibitors) vs. log inhibitor concentration (mM). Values are
means ±SD of at least three independent experiments. IC50 are
indicated.
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and sonidegib showed a 50% of inhibition at 5.523 mM and
481.2 mM, respectively.

2.6.2. Sonidegib potential inhibition of binding of mAb
anti-PD-L1 to cell surface. To assess if sonidegib has the
potential to be used as adjuvant of ICIs mAbs of PD-L1-PD-1
axis, without interfering with ICIs activity, we investigated if
sonidegib binding to PD-L1 competes with the sites bound by
the ICI anti-PD-L1 mAb (mouse anti-human CD274, clone
MIH1). We used the breast cancer cell line MDA-MB-231 due to
the high levels of PD-L1 expression (shown in ESI Fig. S1†). To
do so, we mixed the uorescently labelled mAb cloneMIH1 with
possible competitors. The cells were incubated with the mAb
alone or with mAb mixed with sonidegib (500 mM) in the same
conditions. In parallel, as positive controls, Nicotiana
© 2025 The Author(s). Published by the Royal Society of Chemistry
benthamiana-derived durvalumab variant (mAb NbDL) (2 mg
mL−1), PDI-1 (21 mM) and PD-1Fc (3.4 mg mL−1) were used for
comparison. The molecule with higher ability to compete with
binding of the mAb clone MIH1 was the mAb NbDL (27.1 ±

4.3% relative MFI, 14.1± 5.6% of positive cells), followed by PD-
1Fc (55.3 ± 11.1% relative MFI, 51.5 ± 3.3% of positive cells)
and then PDI-1 (60.4 ± 11.8% relative MFI, 67.2 ± 4.2% of
positive cells) (Fig. 8). On the other hand, sonidegib did not
signicantly interfere with the binding (120 ± 7.4% MFI, 84.2 ±

11.8% of positive cells). These results show that sonidegib is not
able to displace the binding of mAb clone MIH1 most probably
because it binds to different sites on the PD-L1 molecule. It is
not unusual that small molecules occupy different binding sites
in PD-L1 when compared to ICIs mAbs. That is the case of BMS-
202 and BMS-8, that, although being responsible for the
blockade of PD-1/PD-L1 interaction, bind to non-overlapping
sites to those of durvalumab VL domain.58 Another example is
the binding of small molecule PDI-1 compared to that of nivo-
lumab. While, according to modelling of PD-L1 docking, the
probable PDI-1 ligation sites in hPD-L1 are Phe 19 and Ser 57 in
hPD-1,59 nivolumab binds to a N-terminal loop in hPD-1.60 In
RSC Adv., 2025, 15, 2298–2316 | 2309
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Fig. 8 Binding of monoclonal antibody anti-CD274 clone MIH1 to PD-L1 displayed at the surface of the cancer cell line MDA-MB-231. The
results show the ability of the represented molecules to interfere with the binding to PD-L1 and were assessed by flow cytometry-based
competition assays. (A) Representative histograms showing the binding of mAb anti-CD274 to MDA-MB231 cells, and (B) values of staining of
MDA-MB-231with anti-CD274. Results presented as MFI (mean ± SE) normalized to respective control without inhibitor (100%) and as % of
positively stained cells (mean ± SE) are from 3 to 5 independent assays. One way ANOVA was applied to assess the statistical significance of
differences between multiple treatment groups. ****: p < 0.0001, ***: p < 0.001, **: p < 0.01, *: p # 0.05.
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our experimental setting, PDI-1 was able to prevent around 40%
the ligation of the mAb clone MIH1, indicating a probable
partial overlap to the mAb target sites.

The dimeric PD-1 Fc, although competing for the mAb clone
MIH1 binding, only inhibits 45% of the total binding sites.
From these observations, we are led to conclude that there is
some overlapping in the ligations for PD-1 and the mAb clone
MIH1. The ability of NbDL mAb to bind PD-L1 and antagonize
the PD-L1-PD-1 binding is well documented.61 Moreover, dur-
valumab has a higher binding affinity compared to that of mAb
clone MIH, which may explain its great inhibition.62 Impor-
tantly, the antagonist blocking effect can be related to having
the same binding interfaces and might not depend on having
exactly same specic binding sites.45

Comparison of the mechanisms of PD-L1–PD-1 blockade in
vitro have shown that while therapeutic mAbs ICIs bind to target
extracellular domains and act as antagonist of the natural
ligand, there are other molecules such as the biphenyl-based
small molecules that cause the dimerization of the PD-L1 and
promote their internalization and degradation.45,63 Additionally
for another small molecule, the amino acid inspired compound
CA-170, a novel mechanism of action was proposed as it does
not bind to either PD-L1 or PD-1 directly. The authors suggest
2310 | RSC Adv., 2025, 15, 2298–2316
that the molecule binds to the already formed PD-L1/PD-1
complex,64 creating a “defective ternary complex” that disables
this immune checkpoint.

In virtue of their size, small molecules have an intrinsic
potential ability to penetrate the cells and target intracellular
components which presents one of their great advantages over
mAbs as ICIs.65 Given the evidence presented here, it is worth to
pursue further studies to fully depict sonidegib's molecular
interactions, functional activity and mechanisms of action.

3. Conclusion

The results suggest that the CADD approach, which combines
ligand- and structure-based methodologies and is supported by
preliminary experimental evaluation, could be used to predict
new PD-1/PD-L1 axis inhibitors from FDA-approved drugs
without prior PD-1/PD-L1 activity records. This approach could
help identify and propose lead compounds for developing new
drugs with potential in cancer immunotherapy. Based on its
observed interactions with PD-L1, sonidegib shows potential as
a modulator of the PD-1/PD-L1 axis. Although the full extent of
its interaction at the cancer cell level has not been thoroughly
studied, sonidegib appears to bind to different sites on PD-L1
© 2025 The Author(s). Published by the Royal Society of Chemistry
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compared to mAb binding and therefore can be proposed as
adjuvant of mAb actions. Further research is required to better
understand sonidegib's effects on cancer cells and to pinpoint
the specic sites where the molecule exerts its action. Addi-
tionally, more in depth mechanistic and functional assays,
using cell-based assays and animal model in vivo assays will
help to ascertain sonidegib's potential ability to be use as
immune checkpoint inhibitor.
4. Material and methods
4.1. Datasets: training and test sets

More than 29 000 small organic molecules were extracted from
several curated databases, such as ChEMBL (https://
www.ebi.ac.uk/chembl/),66 PubChem (https://
pubchem.ncbi.nlm.nih.gov/)67 and recent literature, through
searches based on activity records against the PD1/PDL1
checkpoint receptors. The search was carried out in October
2022, and the following search options were used according to
the databases used: ChEMBL (“PD-L1” or “PD-1/PD-L1” 4

Targets 4 Associated bioactivities 4 csv le) and PubChem
(“PD-L1” or “PD-1/PD-L1” 4 Proteins 4 Chemicals and
Bioactivities 4 csv le). The data set comprises 29 805
organic molecules, namely 29 763 from PubChem database,
40 from ChEMBL database and 2 from literature. Aer
collecting these datasets, duplicates were removed based on
the IUPAC international chemical identier (InChI) codes
with consideration for chirality, using the soware program
OpenBabel (version 2.3.1). For duplicates with different
activity values, the respective bioassays were consulted to
align the “active label” provided by the assays. For instance, if
a tested substance is designated as a chemical probe, active,
inactive, inconclusive, or unspecied in an experiment,
furthermore, the compounds that were subjected to the
aforementioned type of bioassay were also selected. This
curation process yielded a total of 29 197 small organic
molecules, among which only 417 exhibited activities. The
JChem Standardiser tool version 21.9 (ChemAxon Ltd,
Budapest, Hungary) was used to standardise molecular
structures by normalising tautomeric and mesomeric groups,
aromatise and by removing small, disconnected fragments.
Three-dimensional models of the molecular structures were
generated with JChem CXCALC (JChem 22.11, 2022,
ChemAxon Ltd, Budapest, Hungary).

The dataset was divided into two training sets, a training set
1 of 28 319 molecules and a training set 2 of 27 319 molecules,
and two test sets, a test set 1 and a test set 2, comprising 878 and
1000 organic molecules, respectively. The latter train and test
set 2, were used to validate the Articial Neural Network and the
Support Vector Machine models. The approximate partition of
1:0.03 for training and test sets, respectively, was carried out
randomly to ensure that both active and inactive PD-L1 activity
classes were adequately represented in both sets, capturing the
biological diversity of the dataset.

The built QSAR models were developed and externally vali-
dated using the training and test sets, respectively.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The virtual data set consisted of 1576 off-patent approved
drugs (FDA, EMA and other agencies), which are also
commercially available compounds. The virtual data set con-
sisted of 1576 off-patent approved drugs (FDA, EMA and other
agencies), which are also commercially available compounds.
These drugs were extracted from the ZINC database (https://
zinc.docking.org/) in the SMILES data format using the
following search options: Catalogs 4 Approved Drugs 4

Extrated 4 smi le. SMILES strings of the data sets, along
with the corresponding experimental and predicted
probabilities of being active, are available as ESI, Tables S3–S7.†

The protein images were created using UCSF Chimera 1.16
and the chemical structures using ChemDraw 22.00.

4.2. Calculation of descriptors

Empirical molecular ngerprints (FPs) and 1D & 2D molecular
descriptors were calculated for the datasets, using RDKit.50

Various types of FPs with different sizes were calculated and
explored, including 166 MACCS (MACCS keys), 1024 CDK
(circular ngerprints) and 2048 RDKit (RDKit ngerprints).50

The 1D & 2D molecular descriptors comprised 242 descriptors,
containing electronic, topological, and constitutional
descriptors.50

As elaborated further ahead, molecular docking against PD-
L1 protein was performed on the 29 197 small molecules from
the entire dataset. The optimal docking conformation for each
molecule, obtained by aligning the original prior-docking SDF
les, calculated with JChem CXCALC, with the SDF les ob-
tained as output from docking, was used to calculate the 3D
descriptors (Fig. 9). Several well-established 3D molecular
descriptors were exploited, such as 3D RDKit descriptors (e.g.
WHIM, MORSE), alongside the novel 3D grid descriptors. These
innovative 3D grid descriptors were calculated using GUIDE-
MOL, a Python-based computer program built on the RDKit
soware. GUIDEMOL is designed to process molecular struc-
tures and calculate molecular descriptors developed within the
framework of the DCMatters project.55 Besides calculating 3D
molecular descriptors implemented in RDKit, it also generated
grid representations of 3D molecular structures using the
electrostatic potential or voxels. For instance, it produced grids
such as grid of potential – MMFF, grid of voxel – LogP.

4.3. Optimization of QSAR models: descriptors selection

A descriptor selection was performed based on the importance
of descriptors assessed by RF (computeAttributeImportance)68

implemented in the R program.69 The objective was to achieve
an optimal QSAR model with the fewest possible descriptors.
Optimisation of QSAR classication models was performed
using ten-fold or Out-of-Bag (OOB) cross-validation method-
ology with the training set, employing subsequent statistical
metrics including true positives (TP), true negatives (TN), false
positives (FP), false negatives (FN), sensitivity (SE, prediction
accuracy for active PD-1/PD-L1 inhibitors), specicity (SP,
prediction accuracy for inactive PD-1/PD-L1 inhibitors), overall
predictive accuracy (Q) and matthews correlation coefficient
(MCC).
RSC Adv., 2025, 15, 2298–2316 | 2311
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Fig. 9 Workflow for 3D optimization: the process of generating SDF files for calculating 3D descriptors required aligning the prior docking SDF
files with those generated after docking to retain the coordinates of the latter. The processing steps for a molecule labeled as inactive from the
training set are depicted as an example.
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4.4. Balance of classes

The distribution of classes plays a very important role in clas-
sication models. The performance of machine learning algo-
rithms can be signicantly biased when the minority class,
typically the one of interest, is underrepresented in the data-
set.70 This scenario is evident in our PD-L1 activity training set,
where there exists an imbalance ratio of 3 : 200 for the active/
inactive classes, respectively. To address this issue, in the
Random Forest method, the sampsize parameter in R program
version 3.4.4 (ref. 69) was set to match the size as the less
representative class, namely the active class. By adjusting this
parameter, certain molecules from the minority class were
utilized multiple times. For the SVM algorithm, the class weight
parameter was adjusted to “balanced” to mitigate the impact of
class imbalance.

4.5. ML techniques

4.5.1. Random forests (RF). A Random Forest (RF)68,71 is
constructed as a collection of unpruned classication trees
generated from bootstrap samples of the training set. In the
construction of each individual tree, the optimal split at each
node is determined using a randomly selected subset of
descriptors. To ensure diversity in the ensemble, unique
training and validation sets are used for the creation of each
tree. Predictions are derived through a majority voting mecha-
nism among the classication trees within the forest. To eval-
uate performance, the method employs internal assessment by
calculating prediction errors for objects omitted in the boot-
strap procedure, a process akin to internal cross-validation or
OOB estimation. The approach quanties descriptor impor-
tance based on the average decrease in impurity and the count
of nodes utilizing a particular attribute.
2312 | RSC Adv., 2025, 15, 2298–2316
Furthermore, RFs provide a probability assignment for each
prediction, reecting the level of condence determined by the
number of votes garnered by the predicted class. The RFs were
built using the R program69 version 3.4.4, using the random
forest library.72

4.5.2. Support vector machines (SVM). SVM73 employs
nonlinear mapping to project the data into a hyperspace, where
it establishes a boundary or hyperplane that effectively segre-
gates the two categories of molecules: active and inactive. The
positioning of this boundary relies on instances from the
training set, commonly referred to as support vectors. When
dealing with nonlinear data, kernel functions can be applied to
transform it into a hyperspace, thereby rendering the classes
linearly separable. In this study, SVMs were implemented using
Scikit-learn74 and the LIBSVM package.75 The SVM type was
congured as C-SVM-classication, employing the radial basis
function as the kernel function. Hyperparameter tuning was
conducted through ten-fold cross-validation with the Grid-
SearchCV. The parameters C and g of the CSVM-classication
were optimized in the range of 1–50 and 0.0001–0.01 respec-
tively 3.593813663804626 and 0.007742636826811269, while
other parameters retained their default values. To address the
issue of class imbalance, the class weight parameter was
adjusted to “balanced,” ensuring replication of the smaller class
until it matched the number of molecules in the larger class.

4.5.3. Deep learning multilayer perceptron networks
(dMLP). Feed-forward neural networks were implemented
through the open-source soware library Keras76 version 2.2.5,
utilizing the Tensorow numerical backend engine.77 These
extensively used ML algorithm, written in Python, simplify the
development and application of deep neural networks.
However, designing an appropriate network architecture poses
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 10 Hyperparameter settings of the best dMLP model

Hyperparameter Setting

Initializer Glorot uniform
Number of hidden layers 4
Number of neurons in the
1st, 2nd, 3rd and 4th layers

50

Activation 1st to 3rd layers Relu
Activation 4th layer Relu
Batch size 36
Optimizer Adam
Loss Binary crossentropy
Epochs 500
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a key challenge in employing dMLP. Aer conducting several
experiments, the optimal hyperparameter settings for our study
were selected through 10-fold cross-validation experiments with
the training set, as outlined in Table 10.

4.6. Molecular docking

Each of the 29 197 small organic molecules were docked to PD-
L1, and the correlation between activity and binding energy
against PD-L1 for each molecule was analysed. The soware
program OpenBabel (version 2.3.1) was used to convert the SDF
les to PDBQT les. PDBQT les were used for docking to PD-L1
receptor (PDB ID: 5N2F, https://www.rcsb.org/structure/5N2F)
with AutoDock Vina (version 1.1). Prior to docking, water
molecules and ligands were removed from 5N2F using the
AutoDockTools (http://mgltools.scripps.edu/). The search
space coordinates were centered at X: 32.759, Y: 12.47, Z:
134.541; with dimensions of X: 20 000, Y: 20 000, Z: 20 000.
Ligand tethering of the PD-L1 receptor was performed by
regulating the genetic algorithm (GA) parameters, using 10
runs of the GA criteria. The resulting docking binding poses
were visualised with PyMOL Molecular Graphics System,
Version 2.0 Schrödinger, LLC, UCSF Chimera,78 and Protein–
Ligand Interaction Proler (PLIP) web tool.79 As a positive
control test, both the inhibitor (i.e. BMS-200, Fig. 1) from the
X-ray structure of the PD-L1/inhibitor complex and the same
inhibitor with the 3D optimisation approach (i.e. JChem
CXCALC) were docked. Docking scores of 29 197 small organic
molecules against the PD-L1 protein are presented on Table
S8, ESI.†

4.7. Biological activity evaluation

In the context of cancer treatment, PD-L1/PD-1 inhibitors
harness the immune response of T cells against cancer cells.
New approaches using small molecules are being pursued to
overcome the limitations of mAbs and improve clinical
responses.42 The biological activity of the proposed small
molecules obtained by our approach was assessed by the ability
to counteract the binding of PD-1 to PD-L1.

4.7.1. Reagents. Sonidegib (BD328430, purity, $99.93%)
and Lapatinib (BD220070, purity, $ 98%) were purchased from
BLD Pharmatech (Laborspirit, Portugal) and were dissolved in
dimethyl sulfoxide (DMSO; 472301; Sigma-Aldrich). The
© 2025 The Author(s). Published by the Royal Society of Chemistry
positive competitor control PD-1–PD-L1 inhibitor 1 (BMS1, PDI-
1, BP158531, purity $98%) was purchased from Biosynth Ltd
(Laborspirit, Portugal) and dissolved in Phosphatase-Buffered
Saline (PBS). Puried recombinant monomeric protein human
PD-L1His, the dimeric protein PD-1Fc chimera, and durvalu-
mab were produced in plants.61 The monoclonal antibodies
used were: mouse anti-human anti-CD274 (clone MIH1)
conjugated with phycoerythrin (PE) uorescent dye (cat no. 557
924. BD pharmingen) and anti-human IgG Fc – Horseradish
Peroxidase (Merck millipore, catalog no. AP113P, USA). Due to
solubility issues, only sonidegib was experimentally evaluated.

4.7.2. Competitive ELISA. Inhibition of binding of soluble
PD-1 to immobilized PD-L1 by putative blocker drug candidates
was monitored using competitive ELISA assay. Binding of PD-1
to PD-L1 was assessed in the presence or the absence of the
putative blocker at different concentrations. Serial dilutions
were prepared in PBS-0.05% (v/v) Tween using the following
protocol: for sonidegib, the stock concentration (100 mM, dis-
solved in DMSO) was submitted to 6 serial 10-fold dilutions
(500–0.0005 mM); for PDI-1, the stock concentration (2.1 mM)
was pre -diluted 2 folds followed by 3 serial 10-fold dilutions
(1050–1.05 mM). The percentage of solvent DMSO never excee-
ded 0.5% (v/v).

Briey, we used Corning®96 wells EIA/RIA assay microplates
(Merck, Corning catalog no. 3590). Coating was performed by
incubation of recombinant puried human PD-L1His in the
wells overnight at 4 °C. Then, recombinant human PD-1Fc
chimera protein and drugs were mixed and pre-incubated for
30 min at room temperature before being added to the wells
and incubated for 2 hours at room temperature. Aer that, the
microplate was incubated with Anti-human IgG Fc – Horse-
radish Peroxidase for 1 h and then washed. Then, 3,30,5,50-Tet-
ramethylbenzidine (TMB) (Life technologies, cat no. 002023)
was added for 2–3 minutes at room temperature. Aer coating,
blocking was performed with PBS-0.05% (v/v) Tween containing
3% Bovine Serum Albumin (BSA). Between incubations, the
wells were washed 5 times with PBS-0.05% Tween. The absor-
bance was measured at 450 nm and at 630 nm with mobi (m2
MicroDigital) spectrophotometer.

4.7.3. IC50 calculation. The inhibitory concentration (IC50)
(concentration that causes 50% inhibition) was calculated
based on dose response curves obtained by ELISA. The value
was determined by analysing the log of the concentration–
response curves by nonlinear regression analysis using the
GraphPad Prism 8.0.1 (GraphPad Soware, Inc., San Diego, CA,
USA).

4.7.4. Cell culture. To verify the effects on the interaction
between PD-1 and PD-L1 when these proteins are expressed on
living cells, we resorted to the human breast cancer cell line
MDA-MB-231 (kindly provided by Professor Philippe Delannoy
from the University Lille, France). These cells were grown in
Dulbecco's modied Eagle medium (DMEM; Sigma), supple-
mented with 10% (v/v) foetal bovine serum (FBS; Gibco), 2 mM
L-glutamine (Gibco), and 10 UmL−1 penicillin with 100 mg mL−1

streptomycin (Pen-Strep; Sigma). Cell cultures were kept in
a humidied incubator at 37 °C with an atmosphere containing
RSC Adv., 2025, 15, 2298–2316 | 2313
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5% CO2. Furthermore, the cells were routinely tested for
mycoplasma contamination using MycoAlertTM kit (Lonza).

4.7.5. Flow cytometry. To evaluate the PD-L1 expression in
the MDA-MB231 cell line, 3 × 105 cells were stained using the
anti-human CD274 conjugated with phycoerythrin (PE) at 2.5 mg
mL−1 and incubated for 30 min at 4 °C in the dark.

To assess the effect on mAb binding, the putative blocker
drug candidates were pre-incubated with mAb anti-CD274 (PE)
(2.5 mg mL−1) prior to the addition to MDA-MB231 cell line.
Durvalumab was used at 2 mg mL−1 PDI-1 at 21 mM, PD-1Fc at
3.4 mg mL−1. Sonidegib was dissolved in PBS with 0.5% (v/v)
DMSO (500 mM). As controls, experiments where the cells
were incubated with the mAb anti-CD274 alone, one with PBS
and other with PBS containing 0.5% (v/v) DMSO were per-
formed. Aer completing the staining protocol, all cells were
xed with ow x 2% paraformaldehyde xative kit (Poly-
sciences, Inc.) and the data was acquired in the Attune ow
cytometer (ThermoFisher Scientic, USA). The data obtained
was analysed using FlowJoTM v10.8.1 Soware (BD Life
Sciences).

4.7.6. Statistical analysis. Statistical analysis was per-
formed using the GraphPad Prism 8.0.1 (GraphPad Soware,
Inc., San Diego, CA, USA) and, unless otherwise stated, one-way
ANOVA was used.
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