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We consider membranes as fluid deformable surfaces and allow for higher order
geometric terms in the bending energy related to the Gaussian curvature squared and
the mean curvature minus the spontaneous curvature to the fourth power. The
evolution equations are derived and numerically solved using surface finite elements.
The two higher order geometric terms have different effects. While the Gaussian
curvature squared term has a tendency to stabilize tubes and enhance the evolution
towards equilibrium shapes, thereby facilitating rapid shape changes, the mean
curvature minus the spontaneous curvature to the fourth power destabilizes tubes and
leads to qualitatively different equilibrium shapes but also enhances the evolution. This
is demonstrated in axisymmetric settings and fully three-dimensional simulations. We
therefore postulate that not only surface viscosity but also higher order geometric
terms in the bending energy contribute to rapid shape changes which are relevant for
morphological changes of cells.

1 Introduction

Membranes are ubiquitous and essential in biology; they compartmentalize
biomaterials, separate the cell from its exterior and organelles from the cyto-
plasm, dynamically remodel and change conformation. Geometric properties
of the membrane have been identified as key players for such processes.' As
the typical thickness of a membrane is orders of magnitude smaller than its
lateral extension, treating the membrane as a two-dimensional surface
embedded in a three-dimensional space is a reasonable approximation. This
separation of length scales allows for a mesoscopic modeling where details
related to membrane molecular structure are considered in effective material
parameters and geometric quantities and led to the success of the classical

“Faculty Mathematics, TU Dresden, 01062 Dresden, Germany. E-mail: axel.voigt@tu-dresden.de

Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany

“Cluster of Excellence, Physics of Life, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany

+ Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00202d

454 | Faraday Discuss., 2025, 259, 454-474  This journal is © The Royal Society of Chemistry 2025


http://orcid.org/0009-0006-3154-2146
http://orcid.org/0000-0003-2564-3697
https://doi.org/10.1039/d4fd00202d
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00202d
https://pubs.rsc.org/en/journals/journal/FD
https://pubs.rsc.org/en/journals/journal/FD?issueid=FD025259

Open Access Article. Published on 03 2025. Downloaded on 14/02/2026 7:28:28 .

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

Canham-Helfrich model,*> which builds on a bending energy
Fp(H,HK) = L,kzﬁo(%’ — %0)2 + ky 14 d# with mean curvature -, Gaussian
curvature 2, bending rigidity parameters k, o and k;, ;, a spontaneous curvature
o and additional (local or global) area and volume constraints. For definitions
see Section 2.1. Assuming constant values of k, ;, the second term reduces to
a topological measure and thus a constant as long as the topology does not
change. We will therefore neglect this term.

Equilibrium shapes, resulting from minimizing the bending energy Fgg,
have been extensively studied, see ref. 6 for a review. For ##, = 0 and wide ranges
of the reduced volume, which is the ratio of the volume and the volume of an
equivalent sphere with the same area, they are dominated by prolate and oblate
shapes.” The spontaneous curvature &#,, which accounts for the asymmetry of
the membrane, is able to modify these shapes.” A wealth of studies also aims to
produce tubes as minimizing shapes. Tubes are ubiquitous in membranes and
play crucial roles in trafficking, ion transport, and cellular motility. For idealized
situations this is rather simple as Fgg = 0 if # = #,, which is achieved for an
infinite tube of radius r and ¢, = —1/r. However, this solution is not unique,
a sphere of radius 2r also leads to F g = 0. More realistic situations with finite
volume and area require further considerations, e.g., introducing a spontaneous
curvature deviator.**° Also, various ideas have been proposed to consider higher
order geometric terms in the bending energy g to enforce the stability of
tubes.>'*"** For example, fourth order terms proportional to > seem plausible
as # = 0 for tubes.

Most of these studies only focus on equilibrium shapes, comparing the
bending energy Z g of different configurations and addressing their stability.
But the dynamic evolution of the membrane and associated shape changes are
also of interest, e.g. in the context of the formation of bulges with pinch-offs,
which can be associated with endocytosis and exocytosis®*” or shape
changes associated with cell motility.'*>° All these processes require additional
phenomena, which are not considered in the Canham-Helfrich model. But
there is growing interest in the role of membranes in these processes. One
striking example where membranes at least participate are frequently forming
and retracting filopodia.** This process requires rapid shape changes in cells
and according to ref. 22 the membrane and the underlying cortex act as an
integrated system to globally coordinate such changes in cell shape. To facili-
tate these rapid morphological changes, cells maintain an excess of membrane
that is organized in membrane reservoirs and is available to the cell on the
order of seconds.”® To understand such processes thus not only requires
unveiling the secretes of equilibrium shapes but also to consider the flow of
membranes which facilitates the rapid shape changes. To model such processes
is a different story and even if various models for the cellular cortex exist>*>’
and also first attempts to couple them with membrane models to form the
mentioned integrated system have been proposed,”**® we here refrain from
such couplings and only aim first for a minimal model of the membrane alone,
which facilitates rapid shape changes.

Surface viscosity has been identified as a key player* and considering
membranes as fluid deformable surfaces®*** opened new perspectives on the
description of the dynamics of membranes. Fluid deformable surfaces can be
viewed as two-dimensional viscous fluids with bending elasticity. Due to this
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solid-fluid duality, any shape change contributes to tangential flow, and vice
versa, any tangential flow on a curved surface induces shape deformations. This
tight coupling between shape and flow makes curvature a natural element of the
governing equations. As demonstrated by numerical studies of the equations
for fluid deformable surfaces, surface hydrodynamics can significantly speed
up the evolution®** and can enhance bulging and furrow formation in
membranes."”

Combined with higher order geometric terms in the bending energy, models
for fluid deformable surfaces has the potential to enable the rapid shape changes
in the release and formation of membrane reservoirs and the formation and
retraction of filopodia. We computationally explore the effect of these terms on
the equilibrium shapes and the dynamics to reach them and analyze their impact
to facilitate rapid shape changes. Any coupling with the cortex,*” interaction with
proteins that induce curvature®® or to forces exerted on the membrane®”*® are not
considered. We also neglect any interaction with the surrounding bulk phases.
This results from the theoretical interest in exploring the membrane properties
without any additional influence and the limit of a large Saffman-Delbriick
number. This number describes the relation between the viscosities of the
membrane and the typically less viscous bulk fluid and if large allows the
decoupling of surface and bulk flows.*

The rest of the paper is structured as follows. In Section 2 we introduce the full
model and briefly mention the considered numerical approach. More details on
the derivation of the model and on the numerical approach including conver-
gence studies are provided in Appendices (Model derivation, Numerical method
and Validation). Computational results are described in Section 3. They contain
axisymmetric and full three-dimensional computations addressing the dynamic
evolution and the equilibrium shapes. In Section 4 we draw conclusions and
mention possible directions to extend the described model to enable simulations
of rapid morphological changes of cells.

2 Model
2.1 Notation

The considered mesoscale model requires basic notation from differential
geometry and geometric partial differential equations. Besides classical math-
ematical text books in these fields we refer to ref. 2 for an introduction in the
context of membranes. We follow the same notation as in ref. 17 which is here
repeated for convenience. We consider a time dependent smooth and oriented
surface & = #(t) without boundary, embedded in R’. The enclosed volume is
denoted by Q = Q(z). We denote by » the outward pointing surface normal, the
surface projection is P = I — v®v, with I the identity matrix, the shape operator
is # = —Vpr, the mean curvature # = tr#%, and the Gaussian curvature

1 . . .
H = E(sz —||#|1*). We consider time-dependent Euclidean-based n-tensor
fields in T"R?| .. We call T°R?|, = T°# the space of scalar fields, T'R?|, = TR?|,
the space of vector fields, and T°R3|, the space of 2-tensor fields. Important
subtensor fields are tangential n-tensor fields in T".#<T"R?|,. Let p € T°% be

a continuously differentiable scalar field, # € TR?|, a continuously differen-
tiable R’-vector field, and ¢ € T°R?|, a continuously differentiable R***-tensor
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field defined on .#. We define the different surface gradients by Vpp = PVp©, Vp
u=PVu°Pand V¢ o = Vo P, where p°, u® and ¢° are arbitrary smooth extensions
of p, u and ¢ in the normal direction and V is the gradient of the embedding
space R®. The corresponding divergence operators for a vector field u and
a tensor field ¢ are divp u = tr(Vp u) and dive (6P) = trV (eP), where tr is the
trace operator. The relations to the covariant derivatives V, and the covariant
divergence divy on %, with A » = div, -V, the Laplace-Beltrami operator, read
Ve p =V, p and dive u = divy(Pu) — (u-v)#, respectively.

2.2 Governing equations

The material velocity u € TR?|, can be decomposed into u = uyw + ey, with uy = u-v
and wy = Pu, the normal and the tangential part, respectively. The pressure p € T°.%
serves as Lagrange multiplier for the inextensibility constraint. The governing
equations for these unknowns read

2 .
ou+Vyu=-Nyp—pHv+ ﬁdlvca —yu+b— v (1)
divpu =0 2
J uvds —0, 3)
s

where [Vyu]; = (Vou;,w), i = 1, 2, 3, with w = u — 9,X is the relative velocity and X

1
a parameterisation of .%, o(u) = E(Vpu + (Vpu)")e T?R®  is the rate of defor-

mation tensor, Re > 0 is the Reynolds number, y = 0 is a friction coefficient, A € R
is a Lagrange multiplier to ensure a constant enclosed volume, and b denotes
a bending force, defined by

1
b= -2k, (A,,Jf + (# — Hy) (||9/;’;||2 - EW(W - .7%0)) ) v

12Ky odiv, <(Jf - .%o)zvmyf) v
—kuo ((Jf — o) ((BH + Hy)H — &w)) v
—ka2 (2divy (P — B)V yH) + HH)p, (4)

where o, is a spontaneous curvature and k, ,ks0,ks> € R are bending rigidity
parameters. The system of equations considers a model for fluid deformable
surfaces. Such models consist of incompressible surface Navier-Stokes equations
with bending forces and a constraint on the enclosed volume. The highly nonlinear
model accounts for the tight interplay between surface evolution, surface curvature
and surface hydrodynamics and allows for the modelling of membranes with
surface viscosity. For derivations of the model (with &, o = &, » = 0) we refer to ref. 17,
31, 34, 40 and 41. They consider different principles and build on a nonlinear
Onsager formalism,** thin film limits from three-dimensional models*** and
a Lagrange-D’Alembert approach.”** For a comparison of derivations for b = 0 and
without the constraint on the enclosed volume we refer to ref. 42-44.
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The mentioned solid-fluid duality of these models, which leads to a tight
coupling between shape and flow, and lets any shape change contribute to
tangential flow, and vice versa, can best be seen by rewriting eqn (1)-(3) as coupled
equations for uy = u-v and ur = Pu***>* One out of several of the resulting
coupling terms results from eqn (2), which leads to divpu = uns# + divp, = 0 and
explicitly demonstrates the relation between the mean curvature and the
tangential velocity.

Considering the overdamped limit, formally letting v — o, leads to the
classical dynamic equations

u=—-Vyp —psaHv+b— v (5)
divpu =0 (6)
J u-vdy =0, (7)

E4

for an inextensible membrane with constant volume. Using (5) in (6) provides the
equation for the Lagrange multiplier for the inextensibility constraint —Agp +
p#* + A = b-va# and corresponds to previous models, if b only contains second
order geometric terms.**™*° Further relaxing the constraint on inextensibility leads
to the classical Canham-Helfrich models with area and volume constraints.*®

In contrast to previous approaches for fluid deformable surfaces'”*"3**3>° the
bending force b also contains higher order geometric terms.

2.3 Bending forces
The bending force eqn (4) results from the bending energy

Tpe(H,HK) = J Jee(#,H)dF (8)
£

with bending energy density fgr. Formally we can derive fgg via Taylor expansion
at the spontaneous curvature 5, leading to

ﬁ
(ST
—

N
Soe(H,H) =Nk (H — Ho) A
=0 a=0

3

= k0$() +k1‘0(e7f - z%()) +k2‘0(<7f _ e”())z + kz‘lcylf

~—~
n=0 n=1 n=2

+ ks o(H — Ho) + ks (A — Ho)H

n=3

ko (H — A0t + kg ) (H — A A+ gk +

n=4
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in terms of geometric orders n = N € N for different bending rigidity parameters
kn. € R. This expression corresponds to the generalized form of the classical
Canham-Helfrich energy (n = 2) introduced in ref. 11 and also considered in ref.
2,12 and 13 if gradient terms are neglected. It can be simplified assuming certain
properties of the bending energy: as we are interested in variations of the energy,
we can omit the constant contribution k,,. We will further not allow for topo-
logical changes, thus, we can omit the k¢ term, applying Gauss-Bonnet’s
theorem. Furthermore, we only allow for terms which guarantee boundedness
from below. This excludes all odd geometric orders as well as k, ;. Considering
these points and only contributions up to geometric order N = 4 leads to the
following bending energy density

TRE(H ) = koo(H — HOY + kao(H — Ho)' + kah?,

which has been considered in ref. 14 to study the stability of tubular shapes
considering k, o > 0, k40 = 0 and k,, = 0 as parameters to stabilize cylindrical
shapes (k,,, > 0) or to enforce pearling (k4 , < 0). The same form is also considered

in ref. 12 arguing that a cylinder with radius R is stable if k,, < 0 and

2

kio = —R—kz‘o with k&, , not determined. We here restrict the parameter space to
kzo > 0, ky0 = 0 and ks, = 0. We would like to remark that more general
parameter combinations are possible, still leading to well-posed bending energies
and stable solutions. However, % = 0 is a property of a tube and thus k4%
seems to be the most plausible higher order extension in the bending energy to
stabilize tubular structures. k, o(# — #,)* is considered for completeness. In any
case the bending force b is derived as the negative of the variational derivative of
the bending energy (8)

0 ;5/7]3].:
0X

b=—

A detailed derivation of the bending force is done in the Appendix: Model
derivation.

2.4 Numerical approach

The numerical approach extends the approach used in ref. *” and ** which is
based on surface finite elements®** and builds on a Taylor-Hood element for
the surface Navier-Stokes equations, higher order surface parametrizations,
appropriate approximations of the geometric quantities, mesh redistribution,
a semi-implicit discretization in time and an iterative approach to deal with the
non-local constraint on the enclosed volume. Additional challenges emerge
from the higher order geometric terms. In the Appendix: Numerical method we
provide a detailed description and in Appendix: Validation convergence studies
for these terms. The implementation is done in DUNE/AMDIS.**** Throughout
the paper we consider Re = 1.0 and y = 0 and only vary &#,, k; o, k4,0 and k, ,.
Numerical parameters, such as mesh size 2 and time step 7 are chosen to
resolve the highest curvature values and to meet stability constraints, following
ref. 35.
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3 Results

3.1 Axisymmetric simulation without surface viscosity

We begin by describing the membrane using cylindrical coordinates (r, 6, z) and
consider a rotational symmetric tube with periodic boundary conditions. With

(@
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Fig.1 (a) Time evolution of axisymmetric simulations for different parameters for k4 , and
1

k4,0 starting from the same periodic solution ry(z) = Zsin(%z) +1 at tg. The evolution

goes from dark to light converging to a tube with r(z) = 0.5. The depicted time instances

are marked in (b). (b) Corresponding time evolution of the bending energy for different

values of k4, and k4,0. Parameters are k, o = 0.05 and #y = —2.
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14 (@ \L+ @) 7 r(1+ (0.r)7)

the bending energy density fae(#,%#) can be reformulated and considered as
a function of r(z, t), the radial distance of the axisymmetric membrane from the
cylindrical symmetry axis, where z measures the coordinate along that axis and ¢ is
time. For the evolution we consider the corresponding equations to eqn (5)—(7)
but drop the constraints on inextensibility and volume. The resulting equation to
solve reads

1 oF
0r = uy = — JBE-v:b, (10
1+ (9.r)

0X

with b = b-v. While lengthy if fully written down, the resulting model can be
solved using standard approaches. We again use finite elements in space, a semi-
implicit discretization in time, smoothing of the geometric properties and
consider DUNE/AMDIS>** for the realization. Fig. 1 shows the time evolution of
a periodically perturbed tube for different values of k, , and k, o together with the
evolution of the bending energy g over time. For ks, = 0 and k4o = O this is
a well studied problem of the stability of a tube.>*” The parameters are chosen to
remain within the stability region. The results clearly indicate a stronger damping
of the perturbations for increasing values of k4 , and k, o. However, the behaviour
slightly differs with respect to the damping of the perturbations and adjustment
of r(z). This difference is also seen in the decrease of the bending energy.

Results of a linear stability analysis® for the case of k,, = 0 and k4, = 0 but
considering surface viscosity using a Stokes approximation of eqn (1) indicate
a similar stability region as in the overdamped limit and we assume this holds
also for k,, > 0 and &, > 0 and the full problem.

3.2 Equilibrium shape of tubular cell

The shape of a tubular cell can be approximated by a cylinder with hemispherical
caps, as shown in Fig. 2. For this simple shape, we can compute the bending
energy as

@

Fig. 2 (a) As initial surface we consider a cylinder with hemispherical caps. (b) The
geometry is determined by the length of the cylinder { and the radius r of the cylinder and
hemispherical caps.
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Fig. 3 (a) Equilibrium shapes for k, o = 0.125, #¢ = —2 and k4, = 0. As initial condition we
conS|der a cylinder of radius r = 0.5 with hemispherical caps and vary the length [ of the
cylindrical part. From left to right the lengths are [ = 2, 3 and 4. The surfaces are colored by
mean curvature & (upper row) and Gaussian curvature 2 (lower row). (b) Equatorial cuts
through the equilibrium shapes for different values of k4, and [, keeping ko = 0.125 and
S = —2. (c) Equatorial cuts through the equilibrium shapes for different values of k4o and
[, keeping kp0 = 0.125 and #o = —2.

1 2 2 2
gBE = kzﬁ() (2751’1 <—; — Jfo) + 4TEV2 (—; — Jﬂo) )
1 4 2 4 4
+ kg <2ml (—; - Jfo> + 47 (—; - Jfo) ) + Ky :C

1
where r is the radius and [ the length of the cylinder. For %, = 0 the energy of
the cylindrical part vanishes and the energy simplifies to

k“°+@>.

JBE—4TC(k20+ >
I

Note that this energy is independent of the length of the cylinder. We consider
this shape as the initial configuration and the energy as a quantity for
comparison.
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Fig.4 (a) and (b) Bending energy of the final shape for fixed values of k4, (a) and k4 o (b) for
different lengths (. (c) and (d) Hausdorff distance between the equilibrium shape and the
initial shape for different lengths { = 2, 3 and 4 as a function of k4 (c) and k4o (d).

Fig. 3 shows the final configurations achieved by solving the full problem,
eqn (1)—(3), for three different values L. In all cases, the shape deviates from the
initial configuration. For k,, = 0 and k4, = 0 the resulting shapes correspond to
the equilibrium prolate shapes in ref. 7. However, for k4, > 0 and k4 > 0, these
shapes deviate. For k4 , > 0 the bending energy is reduced by increasing / and the
Hausdorff distance dy(.%,%,) to the idealized initial shape of a cylinder with
hemispherical caps #, is reduced by increasing k,,, see Fig. 4. The Hausdorff
distance is a measure of the distance between sets of points, in our case the
discretization points of the equilibrium shape and the initial shape. For a math-
ematical definition and implementation issues see Appendix: Hausdorff distance.
The observed trends are far from being general. This can also not be expected due
to the highly nonlinear coupling of the geometric terms and the considered
constraints on volume and inextensibility. However, they confirm the intuition of
the potential impact of k, ,# in the bending energy on the emerging equilibrium
shapes. The effect of k,, > 0 differs. The increased tendency to enforce # =
o, leads to undulations with a wavelength related to —2/5¢,. How well this can be
achieved strongly depends on the length [. Therefore also the Hausdorff distance
du(#,%,) to the idealized initial shape of a cylinder with hemispherical caps
%, does not decrease but leads to a non-monotonic behaviour if considered as
a function of I. The dependency of / on the bending energy Zgg is negligible for
the considered parameters. To summarize, within the stability region of the
classical Canham-Helfrich model, higher order geometric terms related to kg ,#>
seem to stabilize tubular shapes and terms related to k,o(# — #,)* seem to
destabilize these shapes.
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Fig. 5 Evolution of a perturbed sphere considering parameters k, o = 0.125, #° = 0 and
different values of k4 ». (a)—(c) Time instances for the evolution for k4, = 0, 0.06 and 0.12,
respectively. The color coding indicates movement in the normal direction (red -
movement outwards, blue — movement inwards) and the arrows indicate the tangential
velocity. The time evolves from left to right; the time instances except for the last one are
equal and are depicted in (d). (d) Evolution of the different energy contributions: #2° and
F*2 are the energies linked to the corresponding bending terms, Fis the kinetic energy.
The bending energy is #°t = #2° + 742 and the total energy # = #°F + 4" Shown is the
evolution for k4> = 0, 0.06 and 0.12 (from left to right). Corresponding videos to the
evolution in (a)—(c) are provided in the SIt using a LIC filter for visualization of the
tangential flow.

3.3 Dynamic evolution

In order to further explore the influence of the higher order geometric terms
related to k472,7p’2 and kyo(# — #,)" on the dynamics, we consider an initial
surface %, as a perturbed unit sphere

Fo = {1 +r0Y[m(¢70) : ¢€ [O,Tt}, ve [_ﬂvﬁ]}7 r0>0a (11)
21+ 1(1 —m)! )
P00) = i Pieos D) (12)
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Fig. 6 Evolution of a perturbed sphere considering parameters k, o = 0.125, #° = 0 and
different values of k4 o. (a)—(c) Time instances for the evolution for k4,0 = 0, 0.00625 and
0.0125, respectively. The color coding indicates movement in the normal direction (red —
movement outwards, blue — movement inwards) and the arrows indicate the tangential
velocity. The time evolves from left to right; the time instances except for the last one are
equal and are depicted in (d). (d) Evolution of the different energy contributions: #%° and
F*0 are the energies linked to the corresponding bending terms, X is the kinetic energy.

The bending energy is #°t = #2° + #%° and the total energy # = #°F + " Shown s the

evolution for k40 = 0, 0.00625 and 0.0125 (from left to right). Corresponding videos to the
evolution in (a)—(c) are provided in the SIt using a LIC filter for visualization of the
tangential flow.

with spherical harmonics Y7* and Legendre polynomials P/* and the case [ = 5,
m = 3 and r, = 0.5. The velocity field is initialized with u, = 0. The initial surface
has non-zero mean and Gaussian curvature and is out of equilibrium. It serves as
a prototypical example to study the rapid shape changes featuring moderate
geometric properties of a cell with membrane reservoirs. The resulting bending
force induces shape deformations in the normal direction. However, the curva-
ture terms also induce tangential flows, which also contribute to shape defor-
mations. This coupling between tangential flow and shape deformations is well
understood and shown to enhance the evolution towards equilibrium shapes.*
Here, we explore the evolution for different values of k4 , and k, o, which are k4 , =
0, 0.06 and 0.12 and k, o, = 0, 0.00625 and 0.0125, respectively. Fig. 5 and 6 show
snapshots of the evolutions. The color coding corresponds to shape deformations
(red - movement outwards, blue - movement inwards) and the arrows indicate
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the tangential velocity, where the length scales with the magnitude. Furthermore,
the energy contributions are shown over time. Here, the bending energy is
split into the different contributions g = Z, 0+ F4,0+ F 4, and the total energy
F = Jpg t Fk is the sum of the bending energy and the kinetic energy

1 . ey .
Fx = J}Euzd&ﬂ. All evolutions converge to an equilibrium shape, which for the

cases ky, = 0 and k4 o = 0 correspond to the associated Seifert shape,” which here
corresponds to an oblate. For k4, > 0 the equilibrium shapes only slightly differ.
The difference in orientation might result from the different dynamics. However,
due to the decoupling from the surrounding bulk phases and the considered
parameter y = 0, force-free rigid body rotations are also possible.”® While the
equilibrium shapes are similar, significant changes can be observed in the
dynamics. The close coupling between the bending energy g and the kinetic
energy Zx can be observed and related to significant shape changes. But their
appearance differs. The plateau in Jgg = F,, fork,, =0betweent = 2andt = 6
is reduced for ky, = 0.06 and 0.12 and already ends at ¢ = 4.5 and ¢t = 3,
respectively. It should be noted that the absolute values of the energies cannot be
directly compared as k, , varies by definition. The situation changes for k,, > 0.
The equilibrium shapes are prolate shapes. Besides this difference in the long
time behavior, the short time evolution also changes. We observe similar behavior
as for k,, > 0 with an enhanced influence of the kinetic energy and a faster
evolution towards intermediate shapes. The final convergence towards the equi-
librium shape at late times probably results form similar values for the local
minima on the oblate and prolate branch as also known for the classical Can-
ham-Helfrich model.® Again, the absolute values of the energies cannot be
directly compared as k, o varies in the definition.

Qualitatively the higher order geometric terms further enhance the evolution
and lead to alternative pathways to dissipate energy. This is most pronounced in
the inlets highlighting the initial evolution; the drastic decrease of #*? and F*°
is associated with large fluctuation of #*. This behavior increases with increasing
values of k4 , and k4 . Furthermore, while 42 is roughly one order of magnitude
smaller than #*°, the influence on the dynamics is dramatic. This is less
pronounced for #*°, which is at the same order as #>°. We expect these fast
shape changes to be even enhanced for less regular real geometries of membrane
reservoirs, due to the appearance of larger curvature gradients.

4 Conclusions

Motivated by rapid shape changes of cells, where an excess of membrane that is
organized in membrane reservoirs is made available to the cell on the order of
seconds,> we formulated a minimal mesoscopic membrane model which helps to
facilitate this behavior. This, on the one side, includes an extension of the clas-
sical Canham-Helfrich model towards higher order geometric terms, and on the
other side, includes the explicit treatment of the fluid properties of the membrane
by considering membranes as fluid deformable surfaces. The first aspect adds to
the classical bending energy F,0 = [ kyo(# — H#,)*d#, terms proportional to
the Gaussian curvature squared, #,, = ([7,k4‘2,”/ézdt¢, and the mean curvature
minus the spontaneous curvature to the fourth power,
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Fa0 = [ hao( — H#,)*d7. The effects of these higher order terms are different.
While the one related to the Gaussian curvature squared not only helps to damp
perturbations of tubes, it also has a tendency to stabilize them, the term related to
the mean curvature minus the spontaneous curvature to the fourth power has
a tendency to destabilize tubes. Both effects have been considered in idealized
rotational symmetric and full three-dimensional situations by analyzing the
evolution and the emerging equilibrium shapes. If combined with the second
aspect, which takes the surface viscosity of the membrane into account and
combines the bending in the normal direction with the properties of an inex-
tensible surface fluid, as a fluid deformable surface, the dynamic drastically
changes. Already for the classical bending energy F,o = [, ks o(# — H,y)dS an
enhanced evolution towards the equilibrium shape has been observed if the
effects of surface viscosity are taken into account.** With the higher order
geometric terms this is further enhanced. The considered numerical experiments
for the relaxation of a perturbed sphere showed alternative pathways to dissipate
energy and strong tangential flows inducing fast shape changes. However, besides
enabling rapid shape changes, the evolution and also the emerging equilibrium
shapes qualitatively differ for the considered higher order terms. While the model
with the Gaussian curvature squared term also converges to similar oblate-like
shapes as the corresponding Seifert shapes® for the classical Canham-Helfrich
model, the model with the mean curvature minus the spontaneous curvature to
the fourth power term converges to prolate-like shapes.

However, the focus of this paper is not to classify the increased phase space of
equilibrium shapes resulting from the higher order terms, but to address addi-
tional mechanisms which facilitate rapid shape changes. While certainly more
research is needed to fully explore the potential of the higher order geometric
terms, e.g., with respect to the stability of tubes extending the analysis in ref. 58
the numerical studies already clearly indicate the potential for rapid shape
changes. Even if only passive contributions of a homogeneous membrane are
considered, and a full model for morphological changes of a cell requires the
taking of inhomogeneities, active processes of the underlying cortex, adhesion
between the membrane and the cortex and probably even more phenomena into
account, the study contributes to identifying underlying general mechanical
principles which might help to predict and control the dynamics of cells.*® Surface
viscosity and higher order geometric terms in the bending energy provide
mechanical cues and probably support active processes to enable rapid shape
changes of cells.

A full model able to address the mentioned example of frequently forming and
retracting filopodia and the associated fast shape changes of membrane reser-
voirs will require the coupling of models for the cellular cortex**” with
membrane models of the considered type, which requires additional modeling
and numerical efforts. One intermediate step to link this research closer to
biology could be efforts to resolve the dynamics of membrane reservoirs and
compare them with simulations of the proposed model.

Data availability

Data are available from Zenodo at https://doi.org/10.5281/zenodo.14503545.
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Appendices
Model derivation

We here compute the variational derivatives of the higher order geometric terms
in the bending energy. We therefore write the bending energy as

Fre = J kaofai + kaofiy + kaofap ds
Es

with bending density components fas = (# — #,)" >*#“. The corresponding
forces b € TR?|, are given by

71,0 6 [ n,o
(b", W>L2(T1R3"7,) = _<§J¢fBE d?, W>

- The result for £ is well known

L2(7R?

)
for all W e TR®

1
B0 — 2 (A_¢.7€ + (o — ) (||,oz»||2 — S~ %’0)))\/.

For the remaining terms we use the deformation derivative dy°° and obtain the
deformation formula

B W) ) = | ol +fidiveWas. (13

Moreover,
POw#B)P = V., (v-VeW) — BIW, (14)
Oyt = tr(POwB)P) = divy(v-VcW) — #: VW (15)

are valid.*® As a consequence, the deformation formula (13) and integrations by
parts result in

<b4,0’ W>

(red| ) = *J¢4(W - t7£(>)36W='7£+ (# — c'/fo)4dchWd<7

LIZ(%’ — o) (V) - (v-Ve W)

+(H — H,) (AB — (H — H,)P) : VWS

Another application of integrations by parts w.r.t. V¢, yields
b = —dive(12(# — #,) v @V g + (H — A’ (4B — (H — H,)P), )

where
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dive(oP) = divy(PoP) — v-6% + (divy(v-oP) + #:0)v (16)

holds for all ¢ € TR?|,.*"*° Therefore, the tangential part of b*° cancels out and
we obtain

b0 = f(IZdiv,, ((Jf - xo)zv_w) (s — #0) (3 + ) — &ﬂ)) v.

With (14) and (15), the deformation derivative of # = 2(#° — ||#||?) reveals
6We% = %6W¢7f — AR 6We°B = (%P — e’ﬁ) : (V_g;(V‘VC W) — e@VC W)

As a consequence, the deformation formula (13), integrations by parts, and

B = H B — AP, result in

<b4’27 W>L2(

) = —J 240w + K diveWds

5
= J 2divy (# (AP — B))-(v-Ve W) + H*P - Ve WS
7

Since divy(#P — %) = 0 holds, integrations by parts yields
b = —dive (2v® (#P — B)Vyk + HP).
Using (16), the tangential part of b** cancels out and we obtain
b*? = —2div ((#P — BV 4K) + HA ).

Putting everything together yields eqn (4). For the derivation of the other parts of
the model we refer to."”*!

Numerical method

We consider a surface finite element method (SFEM)**** to solve the highly
nonlinear set of geometric and surface partial differential equations (1)—(3), using
the approaches in ref. 17 and 35.

We combine the system (1)-(3) with a mesh redistribution approach.®* These
are equations for the parametrization

0Xv=uv (17)
HV = AcX, (18]

which generate a tangential mesh movement to maintain the shape regularity and
additionally provide an implicit representation of the mean curvature #. We
consider a discrete k-th order approximation .#% of .#, with / the size of the mesh
elements, ie. the longest edge of the mesh. We use the DUNECurvedGrid library®>
and consider each geometrical quantity like the normal vector v, the shape operator
By, the Gaussian curvature %, and the inner products (-,-), with respect to the
FK. In the following, we will drop the index k. We define the discrete function spaces
for scalar functions by Vi(#5) = {y € CUFW)|¥|r € #(T)} and for vector fields by
Vi(#[H]) = [Vi(#[R])]. Within these definitions T is the mesh element and #; are the
polynomials of order k. We consider u,,X € V5(F), #5 € V3(F1), and py, € Vo(F),
which leads to an isogeometric setting for the velocity and a #; — #, Taylor-Hood
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element for the surface Navier-Stokes-like equations. We discretize in time using
constant time stepping with step size 7. In each time step we solve the surface Navier-
Stokes-like equations and the mesh redistribution together. We define a discrete
surface update variable ¥* = X" — X"~ ', which is considered as unknown instead of
the surface parametrization X". The system to solve reads:

Find (uf,pr, 0, Y") € [VsxVoxVsxV5](#4 1) such that:

1 . 2
(= a7 w), (Vo) = (pfdivem), — (o). Vom), = 7(tm),

(a0 V) 9, (0571,

h

+(2kao (], — 5 ) B v ),
(ko (o — oy ) (o — )

(45 = () = H5)P), Vo),
+(12keo (507 = 05 v @ Vs, Vem,).

+ (2]{4\}%21]271 ® (PV_r/»%?Zil ) 5 chl’)h

—(21{4121/;:_1 ® (»%n_lvf/eﬂ;:_l) 5 VC Vh)h
<k4 ( S 1) P ch/l)’

+A(V271, vh)h

(diquZq,,) ,=0

1
;( v . hh) = (”h vy - hh)

(%sz_l ? Zh)/z + (VC Y”’ ch/l)h = (VcX”7I ) VCZh)h
for all (Vs GnohinyZn) = [Vax VoxVax V3|5 ), where
1
pot = (= Sy e = oro(a))

In the above formulation we wused the identity (—Vgpy -
Drnvnvi)n = (Ph,divpry)y,. Note that the Lagrange multiplier A is unknown, which
leads to an underdetermined system. To resolve that problem, we follow the
approach introduced in ref. 35. In order to fulfill the volume constraint, A has to
be chosen such that

P(2) := J u;(A)-v,dy = 0. (19)

We consider ®(1) = 0 as an equation in A and apply a Newton iteration ¥** = ¥ —
@(X)/@'(¥). After convergence is achieved the new surface .#; needs to be
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computed by updating the parametrization X* = X*~' + Y", lifting the solutions
up, pp and o, to the new surface and computing the remaining geometric
quantities vy, 47, Vo5, #7 and V .7, for the new surface. While this approach
showed the (expected) optimal order of convergence,* with respect to computa-
tional and numerical analysis results for the underlying surface Stokes equations
on stationary surfaces®>** for bending terms up to second order, the approach is
not sufficient if higher order geometric terms are included.

We therefore introduce a smoothing step of the surface quantities
Hhy Vo, K7 and V1. For each surface quantity or its components a; =
Ay [V oHh)iy K5 and [Vauky];, | = 1, 2 we solve one time step of the diffusion
equation

as — sAe(/’as = dp,

where ¢ > 0 is a smoothing parameter and a, the smoothed surface quantity.

Validation

Instead of a full convergence study of the numerical approach we only test the
smoothing of surface quantities. We consider a surface for which the surface
quantities can be computed analytically. The surface is parametrized by X : [0,27)
x [0,m) — R?

(@

(b)

H smoothed
VH

VH smoothed
K

K smoothed
—u— VK
—u»— VK smoothed

L2 norm

——
+

6x1073 1x1072 3x1072
h

Fig. 7 (a) Reference surface for the tests. Depicted are the mean curvature »# and
Gaussian curvature <. (b) Errors of geometric quantities with and without additional
smoothing step for different grid widths h. The orders of convergence are indicated by the
dashed lines and are optimal orders for the numerical implementation.
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os® 6 sin ¢ sin

AAw

1+
4

X(¢,0) = 1

cos ¢

TN
N

3 .
+ =cos® 6 sin 0)
4
cos 0

We compute the L>-error of the surface quantities 2, #, V,# and V% for
different grid widths A. The smoothing parameter ¢ is chosen experimentally such
that it shows optimal results. Fig. 7 shows that for this test case the surface
quantities converge with the optimal orders and that the additional smoothing
step for all quantities improves the approximation. Together with the conver-
gence studies in ref. 17 and 35 these results provide enough confidence in the
numerical approach for the full problem including the higher order geometric
terms. They require an appropriate resolution of 2 and V 4, which is achieved
in O(h”) and O(h), respectively. This motivated the considered discrete function
spaces.

Hausdorff distance

For two sets X, Y C R?, we consider the Hausdorff distance given by

(X, ¥) = max{supd(x ), supd (. )}
xeX yeY
where d(x, M) = sup,ca|x — m|| and ||| is the Euclidean norm. In the imple-
mentation we use the VIK Hausdorff distance point set filter® with the target
distance method point to cell.
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