
As featured in:
  Showcasing research from Professor Sang Min Park’s 
laboratory at the School of Mechanical Engineering, 
Pusan National University, Busan, South Korea. 

 Inverse design of Bézier curve-based mechanical 
metamaterials with programmable negative thermal 
expansion and negative Poisson's ratio  via  a data 
augmented deep autoencoder 

 A novel deep learning-based inverse design framework with 

data augmentation for chiral mechanical metamaterials with 

Bézier curve-shaped bi-material rib is introduced to realize 

a wide range of negative thermal expansion and negative 

Poisson’s ratio. 

Brain image by Vector_Leart  via  Shutterstock. 

 

See Da Seul Shin, Sang Min Park  et al ., 
 Mater .  Horiz ., 2024,  11 , 2615.

Materials
Horizons

rsc.li/materials-horizons

 COMMUNICATION 
 Hu Zhang  et al . 

 Excellent thermomagnetic power generation for harvesting 

waste heat  via  a second-order ferromagnetic transition 

ISSN 2051-6347

Volume 11

Number 11

7 June 2024

Pages 2531–2762

rsc.li/materials-horizons
Registered charity number: 207890



This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 2615–2627 |  2615

Cite this: Mater. Horiz., 2024,

11, 2615

Inverse design of Bézier curve-based mechanical
metamaterials with programmable negative
thermal expansion and negative Poisson’s ratio via
a data augmented deep autoencoder†

Min Woo Cho,a Keon Ko,a Majid Mohammadhosseinzadeh,a Ji Hoon Kim,a

Dong Yong Park,b Da Seul Shin*c and Sang Min Park *a

Controlling stress and deformation induced by thermo-mechanical

stimulation in high-precision mechanical systems can be achieved

by mechanical metamaterials (MM) exhibiting negative thermal

expansion (NTE) and negative Poisson’s ratio (NPR). However, the

inverse design of MM exhibiting a wide range of arbitrary target

NTEs and NPRs is a challenging task due to the low design flexibility

of analytical methods and parametric studies based on numerical

simulation. In this study, we propose Bézier curve-based program-

mable chiral mechanical metamaterials (BPCMs) and a deep

autoencoder-based inverse design model (DAIM) for the inverse

design of BPCMs. Through iterative transfer learning with data

augmentation, DAIM can generate BPCMs with a curved rib shape

inaccessible with the Bézier curve, which improves the inverse

design performance of the DAIM in the data sparse domain. This

approach decreases the mean absolute error of NTE and NPR

between the inverse design target and the numerical simulation

results of inverse designed BPCMs on the data-sparse domain by

79.25% and 83.33% on average, respectively. A 3D-printed BPCM is

validated experimentally and exhibits good coincidence with the

target NTE and NPR. Our proposed BPCM and the corresponding

inverse design framework enable the inverse design of BPCMs with

NTE in the range of �1100 to 0 ppm K�1 and NPR in the range of

�0.6 to �0.1. Furthermore, programmable thermal deformation

modes with a fixed Poisson’s ratio are realized by combining various

inverse designed BPCM unit cells. BPCMs and the DAIM for their

inverse design are expected to improve the mechanical robustness

of high-precision mechanical systems through tunable modulation

of thermo-mechanical stimulation.

1. Introduction

Mechanical metamaterials (MMs) are artificially architected
materials that can realize distinct and exotic mechanical prop-
erties that cannot be observed in natural materials, such as
ultra-stiffness, quasi-zero stiffness, negative response to exter-
nal stimuli, and programmable response by designing periodic
unit cells constituting the entire MM structure.1–3 In particular,
MMs exhibit unusual thermal shrinkage under heating, which
is referred to as negative thermal expansion (NTE). Given that
most natural materials possess positive thermal expansion,
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New concepts
Previous studies on mechanical metamaterials (MMs) implementing
negative thermal expansion (NTE) and negative Poisson’s ratio (NPR) rely
on structures tractable with analytical methods or parametric study based
on numerical simulation, which leads to low design flexibility. To address
this issue, we demonstrate a deep learning-based inverse design
framework for Bézier curve-based programmable chiral mechanical
metamaterials (BPCMs) to realize a wide range of NTE and NPR. To
enable the inverse design of BPCMs implementing target NTE and NPR, a
deep autoencoder-based inverse design model (DAIM) is proposed. To
improve the inverse design performance of the DAIM at data-sparse
domains, iterative transfer learning with data augmentation is
conducted, which dramatically increases the accuracy of the inverse
design at the data-sparse domain. Furthermore, data augmentation
enabled DAIM to design MMs with outstanding NTE and NPR by
generating the shape of a curved rib, which cannot be defined with the
cubic Bézier curve. Moreover, by combining the inverse-designed unit cell
of BPCMs, programmable thermal deformation modes with fixed
Poisson’s ratio, are realized. Thus, BPCMs and DAIM for their inverse
design pave the way for innovative approaches in the design of
mechanical systems robust to thermal-mechanical loading.
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high-precision mechanical systems, which are exposed to high-
temperature environments such as space structures, solar cells,
and semiconductor substrates, suffer from thermal stress
induced by the thermal expansion of materials, which causes
serious damage to the sensitive components within the
mechanical system.4–6 However, MMs exhibiting NTE could
dramatically reduce the thermal stress by being integrated into
base materials with positive thermal expansion. NTE can be
achieved through deformation induced by the difference in
coefficient of thermal expansion (CTE) between the two materi-
als, and this exotic behavior can be realized through various
mechanisms such as bending deformation of the bi-material
rib, stretching behavior of the triangular unit, and an origami
structure with bi-layer plates.7–9 Furthermore, engineered MMs
can achieve negative Poisson’s ratio (NPR), which has excellent
energy absorption capacity, compressive strength, and impact
resistance to external mechanical stimuli.10–12 NPR can be
implemented by auxetic structures such as re-entrant honey-
combs, chiral, origami, kirigami, and lattice structures.10,13–18

The integration of such mechanisms for NTE and NPR
has enabled MMs with simultaneous NTE and NPR such as
chiral structures with bi-material curved ribs, structures
composed of trapezoidal units exhibiting stretching behavior,
and bi-material topology optimization with a multi-objective
function.19–22 Analytical approaches have been proposed to
design MMs simultaneously exhibiting NTE and NPR, but the
MMs tractable with analytical approaches have limited struc-
tural shapes and low design flexibility, which leads to a narrow
range of NTE and NPR.23,24 To widen the range of NTE and NPR
with increased design flexibility, more complex structures such
as hybrid design of bending and stretching behaviors, and
patterned bi-material strips have been introduced.25–27 How-
ever, such structures were designed through a parametric study
based on the iteration of numerical simulation, which roughly
infers the design parameters within the range. Studies on
utilizing topology optimization for the design of MMs exhibit-
ing arbitrary NTE and NPR have also been proposed, but
topology optimization requires an iterative optimization pro-
cess for each inverse design of MM, which entails a large
computational cost.21,22

Deep learning is a field of machine learning that utilizes an
artificial neural network that mimics a human neural network
to perform various high-level tasks such as image recognition,
natural language processing, active control, signal processing,
and manufacturing process optimization that are difficult
to solve with conventional methods.28–33 Recently, the deep
learning-based inverse design method has risen as an alter-
native to address the challenges of structure inverse design.
Several studies have been conducted to utilize deep learning for
the efficient inverse design of various structures with complex
and nonlinear mechanisms, such as thermal metamaterials,
acoustic metamaterials, electromagnetic metamaterials, com-
posites, and airfoils.34–39 Such innovations in structural inverse
design with deep learning have enabled various attempts in
MM design, such as lattice structures with superior elastic
modulus, controllable auxeticity, and the inverse design of

MMs exhibiting target stress–strain curves.40–45 However, a
deep learning-based inverse design framework for MMs with
target NTE and NPR has not yet been proposed.

In this study, we present Bézier curve-based programmable
chiral mechanical metamaterials (BPCMs) to implement arbi-
trary target NTE and NPR. BPCMs consist of a bi-material
curved rib described by Bézier curves, enabling a wide range
of NTE and NPR. However, due to the structural complexity of
the Bézier curve-shaped rib constituting a BPCM unit cell, the
inverse design of BPCMs with analytical approaches is a
challenging task. A deep autoencoder-based inverse design
model (DAIM) is introduced to enable the inverse design and
property prediction of BPCMs. To train the DAIM with the
geometric features of the BPCM and increase the design flex-
ibility of BPCMs, we utilize the 1-D shape data of the curved rib
as the input data for the DAIM instead of the control point data
of the Bézier curve. Given that the inverse design accuracy of
the DAIM deteriorated in data-sparse domains, we perform
iterative transfer learning with data augmentation on the
data-sparse domain to improve the inverse design performance
of the DAIM. The inverse designed BPCM is fabricated through
3D printing. Experimental validation is performed to confirm
the inverse design performance of the DAIM. In addition,
programmable thermal deformation with fixed Poisson’s ratio
(PR) is achieved by combining pre-defined BPCM unit cells
inverse designed through DAIM.

2. Bézier curve-based programmable
chiral mechanical metamaterials
2.1. Design of the BPCM

The structure of BPCM proposed in this study is shown in
Fig. 1. To realize the high design flexibility of the BPCM, we
define the geometric shape of the bi-material curved rib of the
BPCM unit cell as a cubic Bézier curve, as shown in Fig. 1b. The
Bézier curve is a parametric curve defined by the control points
and can be expressed as follows:12,46

X tð Þ
Y tð Þ

� �
¼
Xn
i¼0

n!

i! n� ið Þ!
xi
yi

� �
1� tð Þn�iti; t 2 0; 1½ � (1)

xi, yi, X(t), Y(t), and n represent the x-coordinate and y-
coordinate of the ith control point, the x-coordinate, and
y-coordinate of the Bézier curve, and order of the Bézier curve,
respectively. While various curves can be employed to define
curve-shaped ribs, Bézier curves can facilitate the generation of
curves that satisfy the constraints through the manipulation of
control points, which plays a significant role in dataset genera-
tion. In addition, Bézier curves ensure relatively smooth curva-
ture, which is essential for manufacturing. The number of
control points is one higher than the order of the Bézier curve.
Since we apply a cubic Bézier curve, n and the number of
control points are set to 3 and 4, respectively. The control
points at both ends of the cubic Bézier curve are fixed, and the
distance (R) between the fixed control points P1 and P4 is set to
20 mm. By manipulating the remaining two control points P2
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and P3, we define various shapes of the Bézier curve-shaped rib,
and the range of the Bézier curve control points is shown in
Table 1. A chiral structure composed of a Bézier curve-shaped
rib is defined as the unit cell of BPCM. The 2D cross-section
image of the BPCM unit cell is shown in Fig. 1a and the 3D
structure of the BPCM unit cell is shown in Fig. 1c. The width
(w) of the Bézier curve-shaped rib is a factor that can potentially
affect the mechanical properties of the BPCM. As an overly
thick width can lead to a small amplitude of NTE, while an
excessively thin width can pose challenges in the manufactur-
ing and tensile test of the BPCM, the width of the Bézier curve-
shaped rib is set to 2 mm, with the width of the inner and outer
layers set to 1 mm equally (Fig. S1 and Table S1, ESI†). The out-
of-plane thickness (t) of the Bézier curve-shaped rib is set to
2 mm. Nylon and PVA are used as the outer and inner layer
material of the Bézier curve-shaped ribs, respectively. By com-
bining the unit cells in a 5 by 5 array, the BPCM is configured,
which is shown in Fig. 1d. The BPCM is fabricated using a dual-
nozzle fused deposition modeling (FDM) 3D printer (UltiMaker
S5, UltiMaker, USA). Commercially available UltiMaker
2.85 mm NFC Nylon filaments and UltiMaker 2.85 mm NFC
PVA filaments are used for the fabrication. The representative
structure of the fabricated BPCM is shown in Fig. 2.

2.2. Mechanical properties of the BPCM

The BPCM can achieve both NPR and NTE. The equivalent PR
of the BPCM is defined as follows:

ex ¼
DX
X
¼ Dx2 � Dx1

x2 � x1
(2)

n ¼ �ex
ey

(3)

x1, x2, Dx1, and Dx2, represent the x-direction positions and
displacements at point 1 and point 2 in Fig. 1d, respectively. ex

and ey denote the x- and y-direction strains, respectively, and ey

is fixed to 0.1. Since the BPCM exhibits identical mechanical
behavior along the x- and y-directions, only the x-direction
strain under elongation in the y-direction is considered. The
equivalent CTE of the BPCM is defined as follows:

a ¼ ex
DT
¼ Dx2 � Dx1

x2 � x1
� 1

T2 � T1
(4)

The temperature is assumed to increase from T1 = 303 K to T2 =
333 K. Considering that the BPCM exhibits identical mechan-
ical behavior along the x and y-direction, the CTE is defined
only by the x-direction strain. To determine the mechanical
properties of the BPCM corresponding to different Bézier curve-
shaped ribs, numerical simulation is performed using COM-
SOL Multiphysics software. The material properties of the nylon
and PVA constituting the BPCM in the simulation are listed in
Table 2.19 We could confirm various BPCM structures exhibit-
ing distinct NPR and NTE, as shown in Fig. 3.

Fig. 1 Structure of the BPCM: (a) 2D cross-section of the BPCM unit cell, (b) Bézier curve depicting the curved rib of the BPCM unit cell, (c) 3D structure
of the BPCM unit cell, and (d) overall structure of the BPCM.

Table 1 Control point range of the Bézier curve

Bézier curve control point coordinate range

0 mm r Px1 r 20 mm
0 mm r Py1 r 20 mm
0 mm r Px2 r 20 mm
0 mm r Py2 r 20 mm
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3. Inverse design of the BPCM
3.1. Deep autoencoder-based inverse design model

Analytical methods to obtain the CTE of MMs with arc-shaped
rib chiral structures have been proposed.7,47 However, design-
ing MMs with a complex unit cell structure is still limited to
parametric studies based on numerical simulations.19,25,27,48

Since a parametric study based on the numerical simulation
can only determine the CTE and PR within limited combina-
tions of design parameters, such a design approach exhibits a
low design flexibility and requires cumbersome iterations of
numerical simulation for the inverse design of an MM with the
target NTE and NPR. To overcome the limitations of the
analytical method and parametric study based on numerical
simulations, the deep learning-based inverse design method
has attracted attention as an alternative for the inverse design
of MMs with a complex unit cell structure.13,42,44 In this study,
the inverse design of a BPCM with the target NTE and NPR is
achieved by introducing the DAIM. The autoencoder composed
of a bottleneck-shape neural network has demonstrated super-
ior performance compared with the existing simple deep neural

network in structural inverse design.39,49,50 It is also feasible to
simultaneously train a prediction model for predicting the
physical properties of the structure while training the inverse
design model.51 The overall structure of the DAIM is shown in
Fig. 4, and the training of the DAIM proceeds by minimizing
the following loss function:

Lprediction ¼
1

N

XN
i¼1

yi � ŷik k2 þ ai � âik k2 þ ni � n̂ik k2 (5)

yi, ai, and ni represent the normalized y-coordinate data of the
Bézier curve constituting the curved rib of the BPCM unit cell,
the normalized equivalent CTE of the BPCM, and the normal-
ized equivalent PR of the BPCM, respectively, and ŷi, âi, and n̂i
represent predicted data by the DAIM. The control points of the
Bézier curve determine the shape of the Bézier curve, which
implies that a deep-learning model, which utilizes the control
points as the input and output data, would generate only Bézier
curves, while the Bézier curve cannot generate all types of
curved rib. To obtain more diverse curved rib structures beyond
the Bézier curve, the 1-D shape data of the curved rib are used
as the input data of the DAIM instead of the control points of
the Bézier curve. The utilization of such 1-D shape data can
potentially expand the structure of the curve-shaped ribs to
other parametric curves such as polynomials and trigonometric
functions (Fig. S2, ESI†). The 1-D shape data of the curved
rib are defined by the y-coordinate data of the Bézier curve
calculated through that corresponding to the 32 evenly spaced

Table 2 Material properties of PVA and nylon

PVA Nylon

Thermal expansion coefficient 47 ppm K�1 121 ppm K�1

Young’s modulus (303 K) 439.4 Mpa 233.9 Mpa
Young’s modulus (333 K) 14.8 Mpa 78.1 Mpa

Fig. 2 (a) 2D cross-section image of a representative BPCM and (b)–(d) the fabricated BPCMs via dual nozzle 3D printing.
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Fig. 4 An overall architecture of the DAIM.

Fig. 3 Numerical simulation results of the BPCM for PR and CTE, scale factor = 4.5: (a) CTE =�237.356 ppm K�1, PR =�0.1327, (b) CTE =�844.864 ppm K�1,
PR = �0.0989 and (c) CTE = �31.5737 ppm K�1, PR = �0.5655 (all the scale bars are 40 mm).
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x-coordinate points. The 1-D shape data of the curved rib are
normalized by dividing by 20 mm considering the size of the
unit cell of the BPCM. The PR and CTE values, which are used
for the label data of DAIM, are Min–Max normalized to resolve
the scale differences between the mechanical properties. The
geometric features of the Bézier curve-shaped rib of the BPCM
are extracted from the 1-D shape data of the curved rib by
inputting into the 1-D convolution layer of the encoder. The
extracted geometric features of the curved rib of the BPCM are
reduced to a two-dimensional latent space by passing through a
dense layer of the encoder. A deeper neural network is required
for effective matching between the Bézier curve shape and the
mechanical properties. However, as deeper neural networks
often induce gradient vanishing problems, ResNet, which
achieves a deeper neural network without gradient vanishing
problems by exploiting skip connections is employed for both
the convolution layer and the dense layer.52 To constrain the
mechanical properties of the BPCM to the DAIM, the mean-
squared error (MSE) between each node of the latent space and
the mechanical properties of the BPCM is added to the loss
function as represented in eqn (5). The variables of the 2-D
latent space are input into the dense layer and the convolution
transpose layer of the decoder to generate the 1-D shape data of
the curved rib. The encoder of DAIM is constructed by ResNet
including 16 1-D convolution layers and 11 dense layers. The
decoder of DAIM is composed of ResNet with 11 dense layers
and 4 transposed convolution layers. To achieve stable conver-
gence without overfitting during the training process, a batch
normalization layer and dropout layer with a dropout rate of 0.2
are added. The detailed network structure of the DAIM includ-
ing the depth of layers, specific activation function, number of
convolution filters, and nodes is shown in Fig. S3 and S4 (ESI†).
The MSE between the generated 1-D shape data of the curved
rib and the input 1-D shape data of the curved rib is added to
the loss function, as shown in eqn (5).

3.2. Model training

A total of 10 927 distinct Bézier curves are defined through
random Bézier control point sampling. For the DAIM training,
such Bézier curves are transformed into 1-D shape data of the
curved rib, which consists of 32 y-coordinate data of the Bézier
curve. By performing numerical simulations on the BPCM
structures configured by the generated 1-D shape data of the
curved rib, 10 927 data of CTE and PR are generated. The
dataset for training and validation consisted of 1-D shape data
of the curved rib with the size of 32 � 1 and the CTE and PR
data corresponding to each 1-D shape data. The training and
test dataset contains 9834 and 1093 data samples, which is 90%
and 10% of the total data, respectively. As a high learning rate
induces unstable convergence and, a low learning rate results
in slow convergence, we employed the decaying learning rate
starting with an initial learning rate of 1 � 10�4 and multiplied
by 0.1 every 100 epochs until 300 epochs. The batch size is set to
512, and the training is conducted up to 500 epochs through
the adaptive moment estimation optimizer. The training is
conducted using NVIDIA GeForce GTX 1660 GPU and Intels

Coret i5-9400F CPU @ 2.90GHz 2.90 GHz. By examining the
learning curve, we confirm the stable convergence of the loss
without overfitting (Fig. S5, ESI†). After sufficient training of the
DAIM, the prediction model, the encoder part of the DAIM, can
predict the CTE and PR of the BPCM by inputting the 1-D shape
data of the curved rib, and the inverse design model, the
decoder part of the DAIM, can generate the corresponding 1-
D shape data of the curved rib by receiving the target CTE
and PR.

The coefficient of determination for the CTE and PR predic-
tion are 0.9957 and 0.9964, respectively, as shown in Fig. 5a and
b, which guarantees high accuracy for the mechanical property
prediction performance of the prediction model. The inverse
designed BPCMs are represented in the mechanical property
space with the CTE as the x-axis and PR as the y-axis, as shown
in Fig. 5c. The yellow dots represent the training dataset, the
red dots represent the target input of the CTE and PR, and the
blue dots represent the CTE and PR of the inverse designed
BPCM generated by the inverse design model of the DAIM with
the input of the target CTE and PR.

3.3. Data augmentation

In Fig. 5c, the considerable gap between the CTE and PR of the
inverse designed BPCM calculated by numerical simulation
and the target CTE and PR can be confirmed in the data-
sparse domain, which indicates deterioration of the inverse
design accuracy. The underlying cause of the deterioration of
the inverse design can be elucidated from the data dependen-
cies of deep learning, which shows excellent performances in
domains with abundant training datasets but poor perfor-
mance in unseen domains. To address this issue, iterative
transfer learning on DAIM through data augmentation was
performed to improve the inverse design performance for the
data-sparse domain of the mechanical property space.41,53,54

Transfer learning is a machine learning method that trains a
pre-trained model with additional data. Iterative transfer learn-
ing on a pre-trained model with an augmented training dataset
gradually improves the model performance in the data-sparse
domain of the mechanical property space.55,56 In the mechan-
ical property space represented in Fig. 5c, two areas exhibiting
low inverse design performance due to data sparsity are marked
as area 1 and area 2. We perform iterative transfer learning with
data augmentation for area 1 and area 2, respectively, and the
overall flow chart of the iterative transfer learning is shown in
Fig. 6. The schematic of the transfer learning process with data
augmentation for each iteration is shown in Fig. 7. The data
augmentation candidates are generated by grid sampling of
220 and 341 data for area 1 and 2 in the ranges shown in
Table 3 with 10 ppm K�1 intervals for CTE and 0.01 intervals
for PR. The data augmentation candidates are input into the
inverse design model of the DAIM to generate 1-D shape data
of the curved rib. The CTE and PR data are obtained by
performing the numerical simulation on the generated 1-D
shape data of the curved rib, and data that significantly
deviated from the corresponding data augmentation area are
excluded. The numbers of augmented data for each iteration
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are shown in Table 4. For each iteration, transfer learning is
performed on the pre-trained DAIM with the training dataset
augmented with the generated data. The above process is
repeated until all of the mean absolute error (MAE) of CTE
and PR between the inverse design target and result in the
corresponding data-sparse domain of the mechanical property
space converges to less than 20 and 0.01, which is 2.5% of the
average CTE and PR of the inverse design target in the data-

sparse domain for more than 3 iterations, respectively (Fig. S6
and S7, ESI†).

4. Results & discussion
4.1. Inverse design model performance improvement

Through iterative transfer learning, we confirm an improve-
ment of the BPCM inverse design performance of the inverse

Fig. 6 Overall flow chart of iterative transfer learning with data augmentation.

Fig. 5 (a) CTE prediction performance of the DAIM prediction model, (b) PR prediction performance of the DAIM prediction model and (c) inverse design
result of the DAIM inverse design model (blue dot), target input (red), and training dataset (yellow dot) represented on the mechanical property.
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design model in the data spare domain. In Fig. 8, as the
transfer learning iteration is repeated, the MAE of CTE and
PR between the inverse design target and the numerical simu-
lation result of the inverse designed BPCM decreased and
converged below the stopping criteria. The MAE of CTE and
PR for area 1 decreased by 87.49% and 91.33% on average,
respectively, and the MAE of CTE and PR for area 2 decreased
by 71.01% and 75.32% on average, respectively, compared
between the DAIM before and after iterative transfer learning
with data augmentation. In addition, iterative transfer learning

with data augmentation extends the design domain of the
mechanical property space of the BPCM, as shown in Fig. 9a. In
the extended design domain, a curved rib shape, which cannot be
defined with the cubic Bézier curve, is designed to realize a BPCM
with the inverse design target of CTE and PR in the data-sparse
domain. Utilizing 1-D shape data of the curved rib rather than the
control point coordinates of the Bézier curve enhances the design
flexibility, which leads to the generation of diverse curved rib
shapes. Based on the enhanced design flexibility, the DAIM could
design the BPCM, realizing the inverse design target beyond the
design domain defined with the Bézier curve-shaped rib. Through
the design domain extension, the inverse design of the BPCM
with NTE in the range of �1100 to 0 ppm K�1 and NPR in the
range of �0.6 to �0.1 is achieved.

4.2. Experimental validation

To verify the performance of the inverse designed BPCM, we
conducted experimental validation with the 3D-printed BPCM.

Table 3 The sampling range and number of data augmentation
candidates

PR CTE
Number
of dataMin Max Min Max

Area 1 �0.55 �0.65 �410 ppm K�1 �600 ppm K�1 220
Area 2 �0.1 �0.4 �1000 ppm K�1 �1100 ppm K�1 341

Table 4 The number of augmented data according to iterations

Iterations

0 1 2 3 4 5

Area 1 Number of augmented data — 218 219 216 218 158
Number of total data 9834 10 052 10 271 10 487 10 705 10 863

Area 2 Number of augmented data — 340 338 339 341 339
Number of total data 9834 10 174 10 512 10 851 11 192 11 531

Fig. 7 Details of the transfer learning process with data augmentation for the data-sparse domain.
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Since measuring the CTE of BPCM is difficult with commercial
CTE measurement equipment, such as a dilatometer, due to
the large area of BPCM, we devise the custom-made thermal
expansion coefficient experiment equipment based on the
digital image correlation method (DICM).8,57 A heating bed is
installed to heat the BPCM to the target temperature, and an
acrylic cover is installed for thermal insulation. The thermal
deformation of BPCM is observed through a CCD camera

(VR2308C, Viewrun, South Korea) with the temperature increas-
ing from 303 K to 333 K, and CTE is calculated through eqn (4).
We conducted a tensile test to confirm the PR of the BPCM. The
BPCM is elongated using a universal testing machine (RB 301
UNITECH-T, R&B South Korea), and the PR is calculated
through the vertical and horizontal strains of the BPCM mea-
sured using the DICM system (VIC-2D, Correlated Solutions,
USA). The inverse design targets, corresponding to numerical

Fig. 8 Inverse design error according to data augmentation progress: (a) MAE of CTE for area 1, (b) MAE of PR for area 1, (c) MAE of CTE for area 2 and (d)
MAE of PR for area 2.

Fig. 9 (a) Design domain of the training dataset (yellow) and extended design domain (red) represented on the mechanical property space; (b)
comparison results with other literature with respect to a range of CTEs and PRs.
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simulation results, and experiment results of the BPCM are
shown in Table 5 (Fig. S8 and S9, ESI†). We confirm that the
inverse design target, the numerical simulation results of the
inverse designed BPCM through DAIM, and the experimental
results coincide with high accuracy.

4.3. Programmable thermal deformation mode with fixed PR

The realization of programmable thermal deformation modes
with a fixed PR is a challenging task for MM with a conven-
tional arc-shaped bi-material rib, which exhibits narrow ranges

of NTE and NPR due to the low design flexibility.19 In contrast,
the high design flexibility of the BPCM enables pre-defined
BPCM unit cells with a wide range of different NTEs with
identical NPR. The combination of such pre-defined BPCM
unit cells exhibiting distinct NTE with identical NPR can
achieve programmable thermal deformation modes with a
fixed PR. As listed in Table 6, pre-defined BPCM unit cells with
NPR of�0.2 are generated through the DAIM from NTE ranging
from 0 to �1000 with 200 ppm K�1 intervals and symbolized as
0 to 5. The arbitrary target thermal deformation mode can be
defined by a code matrix representing the arrangement of the
pre-defined BPCM unit cells symbolized as 0 to 5. As the
temperature increases from 303 K to 333 K, the trapezoidal
and rhombic thermal deformation mode with NPR of �0.196
and �0.18 is achieved by the combination of various pre-
defined BPCM unit cells with NPR of �0.2 represented through
the code matrix, as shown in Fig. 10. This result demonstrates
that the combination of the pre-defined BPCM unit cells
enables an arbitrary anisotropic deformation with fixed target
NPR. For the demonstration of a more complex thermal defor-
mation mode, a sine wave-shaped thermal deformation mode
and corresponding code matrix are introduced, as shown in
Fig. 11 (Fig. S10, ESI†).

4.4. Comparison and discussion

To compare the BPCM with the MM introduced in other papers,
the CTE and PR of the BPCM and those in other papers are
represented in the mechanical property space, as shown in
Fig. 9b. In general, the design of MM has been mainly accom-
plished by iterative searching of the diverse combination of

Table 5 Numerical simulation and experiment results for a representative
inverse designed BPCM

Target Numerical simulation Experiment

PR CTE PR CTE PR Numerical

�0.4 0 �0.403 0.898084 �0.395 3.857
�0.1 �200 �0.102 �194.476 �0.0932 �196.395
�0.6 �500 �0.598 �499.397 �0.588 �484.799
�0.2 �1100 �0.202 �1092.86 �0.204 �904.678

Table 6 Pre-defined BPCM unit cells with PR �0.2 inverse designed
through DAIM

PR CTE

0 �0.208 0.789
1 �0.206 �186.235
2 �0.203 �391.941
3 �0.2 �593.747
4 �0.2 �796.586
5 �0.199 �1001.43

Fig. 10 Programmable thermal deformation mode with fixed PR, scale factor = 4.5: (a) trapezoidal thermal deformation mode with PR = �0.196 and (b)
rhombic thermal deformation mode with PR = �0.18 (all the scale bars are 40 mm).
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design parameters such as rotation angle, width, and thickness
of the ribs through an analytical approach or numerical simu-
lation. Because the MM characterized by the combination of
such design parameters has a limited number of design
options, such MM exhibited a narrow range of NTE and NPR.
In the literature,19 MM consisting of arc-shaped ribs realized the
limited range of NPR and NTE. Other studies suggested various
types of MM exhibiting simultaneous NTE and NPR but the unit
cells of such MMs depend on the combination of design para-
meters, which leads to a narrow range of NTE and NPR.7,27,58 A
wide range of CTE and PR is implemented by introducing
topology optimization.21,22 However, topology optimization
involves a cumbersome optimization process for each design of
MM with arbitrary target CTE and PR. In addition, the corres-
ponding method exhibited a narrower range of NTE compared
with our study. Our proposed BPCM and inverse design frame-
work with the DAIM can accomplish a wide range of arbitrary
NTEs and NPRs without an additional optimization process.

5. Conclusions

In this study, we propose a BPCM that enables a wide range of
programmable NTEs and NPRs. For efficient BPCM inverse

design, a data-driven inverse design method of DAIM is intro-
duced. In addition, we improve the inverse design performance
of the DAIM for the data-sparse domains of the mechanical
property space through iterative transfer learning with data
augmentation. Experimental validation is conducted to con-
firm the coincidence between the inverse design target and the
3D-printed BPCMs. Furthermore, programmable thermal
deformation modes with a fixed PR are realized by combining
pre-defined BPCM unit cells which are inverse designed
through the DAIM. Our proposed BPCM inverse design frame-
work with the DAIM enables the inverse design of BPCMs with a
wide range of arbitrary target NTEs and NPRs. The BPCM and
inverse design of the corresponding structure with the DAIM
are expected to improve the robustness of high-precision
mechanical systems under simultaneous thermo-mechanical
stimuli, such as circuit boards and flexible solar cells.

Conflicts of interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Fig. 11 Sine wave-shaped thermal deformation mode (all the scale bars are 40 mm).
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