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Non-Maxwellian viscoelastic stress relaxations in
soft matter†

Jake Song, *abc Niels Holten-Andersen ade and Gareth H. McKinley *b

Viscoelastic stress relaxation is a basic characteristic of soft matter systems such as colloids, gels, and

biological networks. Although the Maxwell model of linear viscoelasticity provides a classical description

of stress relaxation, it is often not sufficient for capturing the complex relaxation dynamics of soft

matter. In this Tutorial, we introduce and discuss the physics of non-Maxwellian linear stress relaxation

as observed in soft materials, the ascribed origins of this effect in different systems, and appropriate

models that can be used to capture this relaxation behavior. We provide a basic toolkit that can assist

the understanding and modeling of the mechanical relaxation of soft materials for diverse applications.

Soft matter systems are characterized by dynamic fluctuations
and rearrangements within the microstructure, which play an
important role in the function of a wide range of soft materials,
such as cell-matrix interactions in biology,1,2 or energy dissipa-
tion and self-healing in engineered soft materials.3,4 These
rearrangement events give rise to a time-dependent response in
the mechanical properties, i.e., viscoelasticity.5 The measurement

of viscoelasticity can thus provide meaningful information into
the dynamics of the soft material of interest. This is most
commonly done at bulk scales using a dynamic mechanical
analyzer6 or a rheometer,5 though microscopic-scale measure-
ments can also be made via microrheology7 and scattering.8

The dynamics of soft matter systems are non-trivial, and are
characterized by a viscoelastic response that is often more
complex than the Maxwell model of linear viscoelasticity (hence
the term ‘‘complex fluids’’). The Maxwell model is a canonical
model introduced in elementary studies of linear viscoelasti-
city, which is characterized by a single characteristic relaxation
time. However, measurements on real soft matter systems
commonly exhibit a viscoelastic response that underscores a
broad distribution of relaxation modes. These distributions of
relaxation processes are generally interpreted as arising from a
wide range of structural length-scales or relaxation mechan-
isms by which stress can relax, though the exact origins of these
mechanisms are often not clear. Indeed, there is a vast
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literature on the microscopic origins of the broadly distributed
relaxation modes observed in a wide range of soft matter
systems, as well as on the modeling strategies to capture such
viscoelastic responses. Navigating this literature to distill
meaningful insights from, and appropriate models for, rheolo-
gical measurements of different soft materials can therefore be
a considerable challenge.

The aim of the Tutorial is to provide an overview of non-
Maxwellian viscoelastic relaxation in soft matter, including the
microscopic origins of the relaxation responses observed in
different classes of soft materials, and for making an informed
choice on suitable models to capture these relaxation
responses. We first briefly recall the properties of the Maxwell
model, and establish some of the basic physical scenarios in
which a single Maxwell model succeeds in capturing the essential
physics underlying the stress relaxation of soft matter (Section 1).
We then illustrate deviations from the single-mode Maxwell
model in soft matter and summarize the putative origins of such
effects which have been proposed across different systems
(Section II). We next establish a basic mathematical language
for describing viscoelastic relaxation in soft matter (Section III).
We highlight common relaxation functions (Section IV) and
corresponding mechanical models (Section V) that can be used
to model non-Maxwellian viscoelasticity in soft matter, and lastly,
outline basic statistical considerations when applying these
models to experimental data (Section VI).

I. Maxwell model of
linear viscoelasticity

Exponential decays of the form f = f0 exp(�t/tc), where f is an
observable thermo-physical property and f0 is the initial value
at t = 0, are often used to model relaxation events arising from
simple dynamical processes. For instance, exponential decays
are exact solutions to describe the correlation of Brownian
motion of particles, the correlation of dipoles in the rotational

diffusion of a polar molecule (giving rise to the Debye dielectric
relaxation9,10), and the kinetics of first-order reactions. The
characteristic time-constant for the relaxation process is denoted
tc in this review, though l is also often used in the complex fluids
literature.11

In linear viscoelasticity, exponential decays in stress are
exact solutions to step strain deformations applied to the
Maxwell model.12 This model is eponymously named after
James C. Maxwell, who showed that a linear mechanical
combination of a Hookean spring and dashpot in series give rise
to a viscoelastic stress relaxation governed by a single time-scale,
tc. We recall the essential results of the model here, but defer a
detailed discussion of the Maxwell model to ref. 5 and 11.

The Maxwell model (Fig. 1A) has a constitutive relation:

sðtÞ þ Z
G

dsðtÞ
dt
¼ Z

dgðtÞ
dt

(1)

where Z is the (linear) Newtonian viscosity of the dashpot, G is the
(linear) Hookean elasticity of the spring, and their ratio describes
a characteristic relaxation time Z/G = tc. The Maxwell viscoelastic
model is often used to model stress relaxation processes arising
from step strain perturbations, gðtÞ ¼ g0HðtÞ (where HðtÞ is the
Heaviside step function), or small-amplitude oscillatory strain
perturbations, g(t) = g0 sin(ot) (Fig. 1B and C). Solving the con-
stitutive relation in the case of a step strain experiment, we find
that the relaxation modulus G(t) of a soft material system
described by eqn (1) exhibits an exponential decay (Fig. 1D):

G(t) = G0 exp(�t/tc) (2)

where G0 is the plateau modulus of the material. Solving the
constitutive relation for the Maxwell model in the case of a linear
oscillatory strain, the storage G0(o) and loss G00(o) components of
the complex shear modulus G*(o) have the forms (Fig. 1E):

G�ðoÞ ¼ G0ðoÞ þ iG00ðoÞ ¼ G0

1þ iotc
(3)

or by separating the real and imaginary components:

G0ðoÞ ¼ G0
otcð Þ2

1þ otcð Þ2

G00ðoÞ ¼ G0
otc

1þ otcð Þ2

(4)

These materials functions exhibit a characteristic cross-over at a
frequency of oc = 1/tc, with terminal power-law slopes at low
frequency (o { oc) of 2 and 1 for the storage and loss moduli,
respectively. The Maxwell model response for oscillatory strain is
thus dictated by the Deborah number arising from the oscillatory
strain protocol, De = otc. The Deborah number helps character-
ize the importance of linear viscoelastic effects in the system at
different deformation rates, with De { 1 indicating a viscous
liquid-dominated response, De c 1 indicating an elastic solid-
dominated response, and De = 1 indicating the point of cross-
over between the two response regimes.

In addition to the typical frequency sweep plot showing the
storage and loss moduli as a function of frequency (Fig. 1E),
there are other methods for representing G0(o) and G00(o) data
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which are used in the literature. For instance, the storage and loss
moduli are also sometimes represented in a cross-plot, i.e., G00(o)
vs. G0(o) – in similar vein to the plotting methods used for real and
imaginary values of the electrochemical impedances (the Nyquist
plot) and dielectric constants (the Cole–Cole plot). This cross-plot
of the real and imaginary response to oscillatory strain for a
Maxwell material is a perfect semicircle (Fig. 1G); this provides a
useful and demanding test of the accuracy of the Maxwell model
when analyzing the dynamical response of soft materials. Another
useful plotting strategy for oscillatory strain data is to plot the loss
tangent tand = G00(o)/G0(o) versus the mangnitude of the complex
shear modulus |G*(o)|, which is often referred to as the van Gurp–
Palmen plot.14 The van Gurp–Palmen plot is essentially a simpler
representation of the dynamic modulus data, which reveals the
solid or liquid-like response of the system (since tand = 1/otc = 1/
De) without needing to decompose the modulus into a storage and
loss component as done in Fig. 1E.

Yet another useful representation for describing the viscoe-
lasticity of soft matter is the continuous relaxation spectrum
H(t), which encodes the distribution of relaxation modes in a
given system (more detail in Section III).15,16 The continuous
relaxation spectrum is encoded in the hereditary integral for-
mulation of linear viscoelasticity (via the Boltzmann super-
position principle),17 and describes the relaxation modulus via:

GðtÞ ¼
ð1
�1

HðtÞ expð�t=tÞd ln t (5)

and the storage modulus G0(o) and loss modulus G00(o) via:

G0ðoÞ ¼
ð1
�1

HðtÞ otð Þ2

1þ otð Þ2
d ln t

G00ðoÞ ¼
ð1
�1

HðtÞ ot

1þ otð Þ2
d ln t

(6)

As the implication of the Maxwell model is the existence of a
single characteristic relaxation time, tc = Z/G, the continuous
relaxation spectrum of the Maxwell model is a delta function
centered at tc, and can be written in the compact form H(t)/G0 =
d(t � tc), where the integral over the delta function is equal to 1

such that
Ð 0þ
0�dðxÞdx ¼ 1 (Fig. 1F).

Finally, in response to a step stress of amplitude s0, the
Maxwell model exhibits an instantaneous increase in creep
compliance J(t) = g(t)/s0 (thus exhibiting a retardation time of
zero), followed by a linear increase in creep compliance J(t) with
time that is given by the relation:

JðtÞ ¼ 1

G
þ t

Z
(7)

To keep the Tutorial concise and focused on viscoelastic
relaxation phenomena, we omit extensive discussion of creep
behavior (which measures the retardation response of the
material). However, the topic of this review still applies broadly
to creep responses, as linear viscoelastic properties such as G(t),
G*(o), and J(t) are interconvertible via the Boltzmann super-
position theorem.11,15 It is also noted that creep tests can be quite
a natural choice for measuring time-dependent mechanical
properties in soft matter when using stress-controlled devices
(i.e. most commercial rheometers). Using creep compliances can
also be particularly advantageous in certain situations, for
instance in analyzing entanglement plateaus in polymers18 or
analyzing microrheological data.19

Though most viscoelastic stress relaxation responses of soft
materials are more complex than a single exponential decay
(eqn (2)), there are a few exceptional cases where essentially
Maxwellian behavior is observed. A prototypical example of
materials exhibiting Maxwellian viscoelasticity are transient poly-
mer networks, such as those consisting of star poly(ethylene
glycol) (PEG) which are end-functionalized with diverse binding

Fig. 1 The Maxwell model of linear viscoelasticity. (A) The Maxwell model consists of a spring with an elasticity of G, and a dashpot with viscosity of Z,
arranged in series. (B) and (C) Illustration of the step strain and oscillatory strain input for studying viscoelastic properties of soft matter, and (D) and (E)
corresponding linear viscoelastic responses of the Maxwell model under step strain and oscillatory strain (G0 = 1). (F) The relaxation spectrum of H(t) for
the Maxwell model, represented by a delta function centered around t = tc. (G) A Cole–Cole plot of the loss modulus G00(o) as a function of the storage
modulus G0(o). (H) Transient polymer networks as an example of soft materials exhibiting near-Maxwellian viscoelasticity. This particular example shows
the viscoelastic response of a metal-coordinating transient polymer network consisting of histidine-functionalized poly(ethylene glycol) with Ni2+ ions.13

Here we also demonstrate this fitting process using three different weights in the residual function – see eqn (26) in Section VI and discussion thereof –
which leads to a statistical difference in the values of the final fitting parameters.
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motifs such as metal-coordinating end-groups (Fig. 1H),20

dynamic-covalent end-groups,21,22 and ionic end-groups.23 These
materials are of interest due to the biocompatibility of the PEG as
well as the shear-thinning behavior that arises from the disruption
of the network that arises at high shear rates, which facilitates
applications ranging from injectable hydrogels to cell culture.24,25

Maxwellian behavior is also observed in other network materials as
long as they are governed by first-order kinetics, such as DNA
nanostars with controlled base-pair interactions,26 telechelic poly-
mers with hydrophobic domains such as the hydrophobic-
ethoxylate urethane (HEUR) system,27,28 and worm-like micelles,
which are dimer networks where the interaction lifetimes define a
single relaxation time between an entangled solid and a fluid.29–31

The relaxation dynamics of these Maxwellian networks can be
most readily understood within the framework of transient net-
work theory.32–39 This theory describes the relaxation of polymer
chains which are reversibly cross-linked by non-covalent bonds
that serve as junction points of a rubbery network. In this picture,
the polymer chains become affinely stretched when the network
is rapidly deformed (e.g. via step strain); the accrued stress is
relaxed when bond dissociation occurs, allowing the stretched
polymer chains to re-associate with other polymer chains in a
relaxed configuration. The relaxation process is thus governed by

the bond dissociation time (which is often modeled by an
Arrhenius-type expression), as well as by the density of elastically-
active chains, the elastic force-extension response of the chains,32,35

and cooperative effects arising from having several interaction sites
on a single polymer chain.40

II. Deviations from Maxwellian
relaxation in soft matter

Soft materials commonly exhibit complex non-Maxwellian rheolo-
gical behavior. We present a selection of such responses in Fig. 2,
which illustrate deviations from Maxwell viscoelasticity that can
occur in a diverse range of soft matter systems such as polysac-
charide networks,41 muscle tissues and food systems, polymer
glasses,42 mucin hydrogels,43 cytoskeletal networks,44 colloidal
gels,45 supramolecular polymers,46 worm-like micelles,29 and
foams.47 The extent to which the viscoelastic response of system
deviates from the Maxwellian prediction can vary substantially
depending on the specific microstructural features of the system.
Here, we present a short survey of some of the microstructural
features that have been associated with non-Maxwellian visco-
elastic responses in different soft matter systems.

Fig. 2 A partial survey of deviations from Maxwellian viscoelasticity across different forms of soft matter. The single-mode Maxwellian viscoelastic
predictions are shown for comparison as solid lines for the relaxation modulus G(t) and the storage modulus G0(o), and dashed lines for the loss modulus
G00(o). All single-mode representations are obtained by non-linear fitting, and setting the weighting function wi = yi (see Section VI). Shown here are the
rheological behaviors of alginate reversibly cross-linked by Ca2+,41 muscle tissue of Yellowfin tuna, m-toluidine molecular glasses,42 porcine gastric
mucin,43 actin-fascin networks,44 silica colloidal gels,45 supramolecular polymers bound by ureido-pyrimidinone moieties,46 worm-like micelles of
cetylpyridinium salicylate and sodium salicylate,29 and shaving foam.47 All data are digitized directly from original references, and are within the linear
viscoelastic range as determined by the authors. The muscle tissue data are measured directly by performing shear rheology on a thin section of
myotome of a Yellowfin tuna at room temperature (step strain g0 = 0.5%).

Tutorial Review Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

1/
10

/2
02

5 
3:

21
:2

2 
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sm00736g


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 7885–7906 |  7889

A. Non-first-order reaction kinetics

Deviations from Maxwellian viscoelastic relaxation can arise in
telechelic networks when the bond interactions between polymers
do not follow first-order reaction kinetics. A representative example
of these kinds of interactions come from host–guest interactions,
which are often structurally complex and can give rise to a complex
dissociation pathway with many intermediate steps.48 Indeed,
studies have shown that multi-arm PEGs functionalized with
cyclodextrin and cholesterol exhibit strong deviations from Max-
wellian rheology,49 in contrast to multi-arm PEGs functionalized
with dynamic covalent linkages which exhibit Maxwellian linear
viscoelastic responses.21,25,50 The use of such complex interaction
moieties provides an interesting, chemically-oriented approach to
tuning the relaxation spectrum of the polymeric network.

B. Chain dynamics

Deviations from single-mode Maxwell viscoelastic responses are
also expected based on classical models of polymer dynamics.
In the Rouse model, the relaxation dynamics are assumed to
arise from the Brownian motion of beads connected by springs,
wherein the terminal relaxation time depends on the polymer
chain length. This leads to a stress relaxation response arising
from a linear summation of individual (exponential) Rouse
relaxation modes, which results in a power-law scaling of the
relaxation modulus preceding a terminal relaxation, of the
form:51

G(t) B G0(t/t0)�1/2 exp(�t/tR) (8)

where t0 is the shortest relaxation mode (of an individual Rouse
segment) and tR is the longest relaxation mode of the entire
chain. The Zimm model includes additional hydrodynamic
interactions between individual segments of the bead-spring
chain (and thus is more appropriate for dilute solutions of
macromolecules where hydrodynamic effects are not screened).
This changes the power-law scaling in eqn (8) from Bt�1/2 to
Bt�1/3v where v is the Flory scaling exponent that is related to
the solvent quality.51

Non-Maxwellian stress relaxation becomes more prominent
for polymer melts with long entangled chains, in which Rouse
and Zimm modes are followed at longer times by entanglement
effects.52 This can result in the addition of stress relaxation
mechanisms, such as reptation, contour-length fluctuations
and constraint release.53 More complex relaxation processes
can also arise specifically due to entanglement effects in poly-
mer systems of more complex topologies, such as entangled
star polymers54 and entangled ring polymers.55

Semiflexible polymers such as cytoskeletal polymers and
extracellular matrix polymers have been shown to exhibit
unique chain relaxation dynamics – distinct from Rouse and
Zimm dynamics of polymers – which arise due to the signifi-
cant thermal undulations of the semiflexible polymer back-
bone. Studies have shown that in such systems, the viscoelastic
moduli exhibit a power-law scaling of G0(o) B G00(o) B on, in
which n = 3/4 in the high frequency regime.56–58

C. Sticky chain dynamics

Though Rouse dynamics are expected to occur even in swollen
gels such as the Maxwellian transient networks introduced in
Section I, these relaxation modes occur at much shorter time-
scales than those arising from the reversible interactions in
these systems, and are often not measurable. However, when
there is a sufficient concentration of interacting stickers per
polymer chain in such transient networks, we may instead
observe the emergence of sticky chain dynamics.

One such manifestation is the sticky Rouse model,36,40,59 in
which the associations between neighboring polymer chains are
understood to constrain the polymer chains and lead to a Rouse-
like dynamical regime at long times. This results in the observa-
tion of power-law relaxation of the form G(t) B t�1/2 in associative
polymers, most commonly in systems where the main chain has
been functionalized by binding motifs such that multiple stickers
exist per chain.59–62 In similar vein, the concept of sticky dynamics
have also been applied to reptation dynamics for studying asso-
ciative networks with longer entangled chains.63–65

Sticky dynamics can also give rise to non-Maxwellian visco-
elasticity in semiflexible polymer networks. Modeling studies
have shown that dissociation events along the backbone of a
semiflexible polymer generate transverse relaxation modes, in
which successive relaxation modes become progressively slower
as more dissociation events need to occur; this leads to a terminal
power-law relaxation of G(t) B t�1/2, which is commonly observed
in semiflexible polymer networks.66 Experimentally, this power-
law region has also been shown to be characterized by stress
fluctuations indicative of collective dynamics.67

D. Multiple relaxation modes

Non-Maxwellian viscoelastic responses are a natural outcome
for systems which intrinsically have multiple relaxation modes,
such as those with chain length polydispersity, sticker hetero-
geneity, or multiple relaxation mechanisms.

Polydispersity in the chain length can result in heterogeneous
chain dynamics, and thus a broad distribution of relaxation
modes. The observation of non-Maxwellian stress relaxations can
be leveraged to gain insight into the polydispersity of polymer
systems. For instance, for melt systems undergoing reptation, the
observed distribution of relaxation modes (from H(t)) can be
retraced to the molecular weight distribution of the system.68

For associative polymers, multiple relaxation modes can arise
due to factors such as the sticker distribution on chains69 and
sticker clustering.70 Stickers can also introduce spatial mismatches
in the binding of two chains, resulting in formation of defects such
as chain loops. This can generate energetic penalties in the chain
and cause broadening in the viscoelastic relaxation curve.71 These
effects – especially in tandem with chain length polydispersity –
can lead to complicated linear viscoelastic responses which can be
challenging to ascribe to a single factor.

For composite materials such as polymer–particle systems,
non-Maxwellian viscoelastic responses can arise due to multi-
ple relaxation mechanisms that arise intrinsically from the
composite microstructure. For instance, latex particles which
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are bridged by HEUR micelles exhibit a composite response of
Rouse dynamics, bridging interactions, and large-scale cluster
dynamics, the sum of which can lead to complex non-Maxwellian
viscoelastic behavior.72,73 Furthermore, each of these relaxation
mechanisms can be governed by a distribution of relaxation modes.
For the contribution arising from Rouse dynamics, such distribu-
tion can arise as a result of chain polydispersity. For the bridging
dynamics, it is well understood that the number of bridging linkers
can significantly change the terminal relaxation time of a pair of
particles due to cooperativity.74 As such, a Poisson distribution of
linkers in associating particle systems can lead to a significantly
non-Maxwellian viscoelastic response, which can be useful for
understanding the dynamics of particle-polymer systems such as
latex and HEUR, metal-coordinating nanoparticle hydrogels and
coordination cage hydrogels.75 Finally, cluster dynamics can also be
influenced by a distribution in cluster sizes, which we treat sepa-
rately in Section IIE.

Lastly, a broad distribution in relaxation modes can arise in
systems which are characterized by a distribution of activation
energies. For instance, a Gaussian distribution in the activation
energy of relaxation can facilitate a log-normal distribution in
the stress relaxation time (see Section IVA). This approach has
been taken to model the relaxation of a metal-coordinate
polymer material76 (in which bond strengths are assumed to
be distributed in a Gaussian manner) as well as glassy systems
(in which relaxation is assumed to arise from local domains
with a Gaussian distribution of activation energies).77,78

E. Convolution of relaxation processes

A stretched exponential relaxation of the form

G(t) = G0 exp[(�t/tc)b] (9)

is observed ubiquitously in soft materials such as glasses,79–81

gels,82 tissues,83 and surfactants.29 Several studies have shown
that this stretched exponential relaxation function is a direct
outcome of relaxation processes which are convolved by a
structural distribution of the relaxing unit. Mathematically,
this can be expressed by an integral convolution of relaxation
processes, such that:84

GðtÞ ¼ G0

ð1
0

FðtÞQðt; tÞdt (10)

where Q(t,t) is a function describing the relaxation, and F(t) is
a probability function for a given relaxation time t that is
convolved with Q(t,t). In the framework of soft matter relaxa-
tion, Q(t,t) directly describes the exponential relaxation of the
primary unit of a given system (e.g., reptation time of a chain or
relaxation time of a cluster), and F(t) is related to a distribution
in the topological features such as the length or size of the
relaxing unit, which weights the size-dependent relaxation
function Q(t,t).

An example of this idea is the work of Douglas et al.,85–87

which evaluates the relaxation function of polymeric systems
that form clusters. In these works, it is assumed that the cluster
relaxation time depends on diffusion processes that scale with
the size of the cluster. It is thus shown that the relaxation time

scales as t B L2/D0 with L being the characteristic length of the
cluster and D0 being the diffusivity of the cluster. Assuming
that clusters take a Boltzmann (exponential) size distribution,
one can derive the convolution function F(t) = exp(�L) =
exp(�t1/2). A steepest descent approximation of eqn (10) with
this convolution function results in the following derivation:

GðtÞ ¼ G0

ð1
0

exp �tA
� �

expðt=tÞdt ¼ G0 exp �ðt=tÞb
� �

(11)

where A = 1/2 and the stretching exponent b = A/(A + 1) = 1/3.84

Thus, cluster size polydispersity itself can lead to a stretched
exponential of the form G(t) B exp(�(t/t)1/3), a form commonly
seen in the stress relaxation of polymeric systems such as
gels.85–87

A similar derivation has been proposed by Cates et al. for
wormlike micelles undergoing reptation,29 with the main
difference being an additional assumption that the diffusivity
D0 B 1/L arises due to the curvilinear diffusion of the chains
along their confining tubes. The convolution function thus
becomes F(t) = exp(�L) = exp(�t1/3), resulting in a final stretched
exponential function of G(t) B exp(�(t/t)1/4). Overall, the exam-
ples by Douglas et al., and Cates et al., show that the stretched
exponential stress relaxation is a mathematical outcome of
convoluted relaxation events in which there is a size polydisper-
sity of the relaxing units, for instance clusters or tubes.

Finally, a related approach is the work of Curro et al.,88 who
have shown that permanently cross-linked systems such as
elastomers can also exhibit a power-law stress relaxation. This
relaxation is ascribed to dangling chain ends in the system,

such that GðtÞ �
P1
k¼1

skðtÞPðkÞ; where k is the length of the chain

branch, sk(t) = k � l(t) describes the stress arising from parts of
the dangling chains which have not relaxed (l(t) is the
lognormally-dependent relaxation rate of dangling chain ends
as derived by de Gennes), and P(k) is the probability of having a
dangling chain of length k. The convolution of the probability
of k by the time-dependent stress arising from k is shown to
result in a power law relaxation G(t) B t�(q/a) where q is the ratio
of cross-link density to monomer density, and a is a material
constant related to the reptation time of the chain.88 This idea
of the disentanglement of dangling chain ends has also been
utilized by Rubinstein et al. to explain the power-law stress
relaxation in block copolymers, see ref. 89.

F. Criticality and fractals

The rheological response of an associating soft material near
critical points are often characterized by a power-law response
in the frequency-dependent viscoelastic moduli such that
G0(o) B G00(o) B on. This is observed in cross-linking polymers
approaching gelation,90 in soft colloidal systems approaching
jamming,91 and in fiber networks approaching critical
connectivities.92 Though these studies have canonically pre-
dicted n = 1/2 across the different systems, the actual exponent
underlying the power-law relaxation has been shown to vary
significantly depending on the specific nature of the system.
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One important factor that appears to govern n is the under-
lying fractal structure of the associated material. In branched
polymeric materials, Muthukumar et al. has shown that n can
be related to the fractal dimension df of the polymer network
that forms at the percolation threshold.93–95 Other works have
shown that the fractal nature of the percolating system remains
in the gel structure well beyond the percolation threshold, and
that these structures result in remnant signatures in the loss
modulus96 and the relaxation spectrum of the resulting gel.97,98

In marginal spring networks, the underlying fractal structure
has also been associated with a value of n that is substantially
lower than 1/2 at high frequencies,99 though a direct relation
between df and n is not yet clear in those systems.100

Another important factor is viscous coupling and hydrody-
namics. In polymeric systems, hydrodynamic interactions lead
to a different expression of n as a function of df.

95 Through
normal mode analysis of weak colloidal gels it has been shown
that hydrodynamic interactions can drive a power-law relaxa-
tion response.101 Finally, the viscous coupling of spring net-
works with solvents have also been shown to affect the value of
n.102 In all of these studies, it has been shown that hydrody-
namic interactions result in an increase in n, accelerating the
stress relaxation of soft materials.

G. Colloidal gel dynamics

Several studies have also reported unique factors that give rise
to the non-Maxwellian relaxation dynamics of colloidal gels. It
has been shown in prior work that the density correlations
within a single cluster of the gel follows a stretched exponential
response.103,104 A microrheological conversion19 of this effect
using the generalized Stokes–Einstein approach results in a
Kelvin–Voigt like mechanical response, wherein the material
acts like a solid at long times (low o) and a liquid at short times
(high o). In such permanent systems there is another collective
relaxation mode at longer times that can also manifest as a
result of mutual constraints imposed by steric hindrance; this
leads to subdiffusive dynamics, and thus a power-law decrease
in G0(o) and G00(o).105

Zaccone et al., have shown that relating the cluster size
distributions arising from attractive gelation of colloids to the
continuous relaxation spectrum H(t) can result in different
relaxation spectra based on the fractal dimension of the asso-
ciative colloidal gel (for instance, from gelation that proceeds
via reaction-limited aggregation or diffusion-limited aggrega-
tion). Using this approach, a stretched exponential form of the
continuous relaxation spectrum H(t) (see additional detail on
H(t) in Section IVA) is obtained for diffusion-limited aggrega-
tion, and a power-law H(t) is obtained for reaction-limited
aggregation and chemical gelation.106

H. Non-linearity, non-affinity, and intermittency

A popular approach to understand non-Maxwellian relaxation
in soft systems (particularly those that show aging dynamics) is
through the soft glassy rheology (SGR) model,107,108 in which a
power-law relaxation is obtained as a result of activated local
yielding processes governed by an exponentially-distributed

energy landscape. A ‘‘noise temperature’’ exponent can be
extracted from the exponent of the power-law relaxation x from
G0(o) B ox�1, which indicates how close the material is to a
glass transition. The exponentially-distributed energy land-
scape is motivated by a trap model used for weakly aging
systems.109 This local yielding process can also be interpreted
in terms of shear-transformation zones,110–114 which has since
become a popular method for interpreting relaxation dynamics
of glassy and disordered systems.115,116

Studies have also shown the importance of non-affine defor-
mations on the power-law viscoelasticity of soft matter. This has
been explored in particular detail in spring networks, which
experience an increase in non-affine deformations near critical
connectivity.117 Studies have shown that such non-affine defor-
mations can therefore directly affect the scaling response of the
power law exponent governing G0(o) B G00(o) B on.92,118 Recent
works have also shown that such non-affine deformations can
also arise in dense suspensions,119 suggesting that the under-
lying physics governing spring networks and dense colloidal
suspensions may be similar. In emulsions, it has also been
shown that the power-law response in the loss modulus G00 can
arise due to dissipation arising from non-affine motions.120

Other studies have also demonstrated the importance of
non-linear mechanical driving on the non-Maxwellian rheology
of soft materials. For instance, non-linear mechanical stresses
can significantly slow down the power-law relaxation observed
in semiflexible polymers, with a corresponding decrease in the
exponent n in the relation G(t) B t�n from n = 1/2 as discussed
previously in sticky semiflexible polymers, to a value as low as
n = 1/10.121 Our recent studies also support the picture of a
non-linear mechanical process, where we show that the
characteristic relaxation time tc of dynamically arrested soft
materials such as gels are governed by internal stresses, and
that mechanical driving leads to intermittent avalanches
which result in a significant broadening in the continuous
relaxation spectrum H(t).122 In this picture, the stretched-
exponential-like stress relaxation of dynamically arrested
solids are a manifestation of local viscoplasticity arising from
the marginal stability of these systems under imposed
mechanical deformations.123–125

Studies have also shown that the scaling exponent governing
the displacement trajectories of intermittent avalanches in
materials that exhibit such marginal behavior (with power-law
free energy landscapes) can be quantitatively linked to the
scaling exponent of power-law stress relaxation of soft materi-
als. In this framework, the superdiffusive exponent a obtained
from the mean-square displacement relation Dr2(t) B ta can be
related to the power-law exponent n obtained from G(t) B t�n.
This requires the knowledge of the power spectrum of stress
fluctuations hDs2(t)i B tD; derivations for arrested materials
that exhibit spontaneous and random localized motion due to
force dipoles (for instance, due to internal stresses126,127) result
in D = 1,128 and a similar value is directly observed in coarsen-
ing foams129 and cells.130 The power-law exponent n can be
derived via a generalized Stokes–Einstein approach to obtain
n = (a�D)/2.129
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III. Introduction to modeling
non-Maxwellian relaxations

The various proposed origins of non-Maxwellian relaxation
processes in Section II invoke various functional forms of stress
relaxation. We now introduce a basic mathematical toolkit to
describe these non-exponential relaxation processes.

A. The relaxation spectrum H(s)

The relaxation time spectrum H(t) reveals the underlying relaxa-
tion modes governing the stress relaxation response. Each indi-
vidual relaxation mode is assumed to be exponential, though
strictly speaking they can be modified to take other forms, for
instance a compressed exponential form.122 It is also possible to
interconvert H(t) into a retardation spectrum L(t),18 and either of
these spectra can be used to evaluate G(t) or any other linear
viscoelastic functions through the Boltzmann superposition inte-
gral (see eqn (5) and (6)).131–134 Thus, H(t) encodes the distribu-
tion of relaxation modes which drive the linear viscoelastic
behavior of a system. A Maxwellian system exhibits a single
characteristic relaxation time tc corresponding to a d function
representation of H(t) (Section I), while a non-Maxwellian system
will exhibit a broader distribution of H(t), thus allowing one to
diagnose the statistical origins of non-Maxwellian responses in
the rheological responses of the soft material in question.

Deriving the expression for G(t) from a known distribution of
H(t) is fairly simple, and involves a simple numerical integration of
the known functional form of H(t). The reverse is not true, however.
Obtaining H(t) from measurements of G(t) or G*(o) (which are
inherently of limited temporal or frequency ranges) is challenging
as it requires inverse Laplace transformations. This procedure is ill-
posed, meaning that small variations in G(t), including those
arising from measurement uncertainties, can cause large variations
in H(t). This has mandated the use of approximation-based
methods to obtain estimates of H(t) from experimental data. There
are various strategies to perform this operation,132,134–136 but the
use of Tikhonov regularizations is arguably the most established.
This was first demonstrated in problems of viscoelasticity by
Honerkamp et al.,137 but the regularization method is commonly
used in other disciplines as well.138 The regularization method
works by finding the optimal solution for H(t) that minimizes the
square error of the solution as well as a measure of the roughness
of the resulting solution; for the sake of brevity we defer to
references for more detailed instruction on the application of the
method.137–139 Regularization-based methods for obtaining H(t) are
now readily available for users via commercial rheometer software
and independent codes.139

The relaxation spectrum can be used in the form of discrete
modes – in which the relaxation curve is deconstructed into a ‘‘line
spectrum’’ of Maxwell modes140 – or in the form of a continuous
curve.131,132 Using discrete relaxation modes can be advantageous
when the viscoelastic relaxation can be associated directly with
well-known underlying relaxation processes, for instance in tele-
chelic metal-coordination-based polymer networks with multiple
metal–ligand complexes.13 Otherwise, discrete modes can lead to
an unnecessarily large number of fitting parameters, as we show in

the next section. A continuous parameterized curve for H(t) is a
more compact method for studying the underlying relaxation
processes arising from a stress relaxation curve, though directly
estimating the distribution a priori from experimental data can
be challenging due to the errors incurred from the inverse
Laplace transformation process.137,141 Alternatively, fitting the
experimental data to common functional forms utilized in
rheology (see Sections IV and V) and obtaining their analytical
solutions of H(t) can sometimes provide a clearer description of
the relaxation dynamics that underlie an observed non-
Maxwellian viscoelastic response in soft materials.

B. Discrete relaxation spectrum and the generalized Maxwell
model

The most straightforward method to model non-Maxwellian
relaxation is to assume the presence of discrete Maxwell modes
in the relaxation function. A mechanical arrangement in which
i Maxwell elements are arranged in parallel gives rise to a Prony
series of the Maxwell relaxation equation in eqn (2) such that:

GðtÞ ¼
XN
i¼1

Gi exp �t=tið Þ (12)

and

HðtÞ ¼
XN
i¼1

Gid t� tið Þ (13)

As discussed previously, this modeling strategy is most useful
when there is a known number of relaxation modes. Otherwise,
statistical approximations must be made to determine the
number of relaxation modes in the system.142

A useful heuristic approach is to assume the presence of a
relaxation mode per decade of time.143 We demonstrate the
application of this from the relaxation data of a nanoparticle-
crosslinked hydrogel which follows a stretched exponential
relaxation behavior (Fig. 4A).122 As shown in the data, taking
N = 5 Maxwell modes results in an excellent fit to the data, but the
utility of this method is poor as we now have 10 fitting para-
meters with no discernible physical meaning. One can employ
more sophisticated methods to determine a ‘‘parsimonious’’
relaxation spectrum144 with the minimal number of modes, for
instance by adding a penalty factor for overfitting via a Bayesian
information criteria.145 Of course, a purely statistical approach to
model selection will be agnostic to the plausibility of the implied
physics of the system and therefore must be used with care.
There is ongoing research to incorporate such physical insights
into statistical models (for instance, increasing the statistical
likelihood of models in which the parameters can be restricted
to a narrower range of values based on physical insight).142

C. Continuous relaxation spectrum

A continuous relaxation spectrum provides a quantitative basis
for interpreting the underlying physics of the relaxation phe-
nomenon. Obtaining the continuous relaxation spectrum can
be challenging, however, as the regularization process to con-
vert rheological data to H(t) as described above can lead to
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noisy results unless the collected data cover a wide range of times
or frequencies. Thus, a useful strategy is to fit the rheological data
to analytical solutions of microscopic models with well-known
forms of H(t). For some functional forms of H(t) that do not have
a simple analytical function for G(t) or G*(o), a direct numerical
integration via eqn (5) and (6) can provide the relaxation modulus
or the real and imaginary components of the complex shear
modulus. A demonstration of this can be seen in the ref. 76,
where a log-normal distribution in sticker strength is assumed to
model the rheological response of an associative polymer system.

D. Mittag–Leffler functions

We lastly introduce here the Mittag–Leffler (ML) functions,
which are a family of generalized functions that include the
exponential function. This function occurs frequently as a
solution to fractional order differential and integral equations
in areas such as diffusive transport, chemical kinetics and
viscoelasticity (see Section V for detail on fractional models of
viscoelasticity).10,146–154 The ML function of the variable z can
have up to three parameters {a, b, c}, and takes the form:155,156

Ec
a;bðzÞ ¼

1

GðcÞ
X1
n¼0

zn

Gðanþ bÞ
Gðcþ nÞ

n!

� �
(14)

where G(x) is the complete gamma function. We obtain the two-
parameter ML function when c = 1, the one-parameter ML function
when b = c = 1, and the pure exponential function when a = b = c = 1.
All of these variants of the ML function feature commonly in
relaxation phenomena. The one parameter ML function represents
an exact solution to anomalous diffusion,157 the dielectric relaxa-
tion of the Cole–Cole model,151,158 and the stress relaxation
response of the fractional Maxwell gel model.150,152 The two-
parameter ML function features in the analytical solution for the
stress relaxation of the fractional Maxwell liquid model and the
general fractional Maxwell model.159,160 The three-parameter ML
function features in solutions of the relaxation dynamics of Cole–
Davidson and Havriliak–Negami dielectric models.151,158 Detailed
mathematical descriptions of different Mittag–Leffler functions
which are relevant for modeling complex relaxations are discussed
in ref. 146–148, 151, 156 and 158.

IV. Common relaxation functions

We apply the fundamentals laid out in Section III to highlight
common functions used to model non-Maxwellian relaxation
processes: the log-normal function, the Cole–Cole or fractional
Maxwell gel function, the stretched exponential function, and
the Cole–Davidson function. All functions here are valid under
normalized conditions such that the initial modulus G0 = 1.

A. Log-normal function

A log-normal distribution of relaxation times has an analytical
solution of the form:161–164

HðtÞ ¼ G0

s
ffiffiffi
p
p exp � ln t=tcð Þ

s

� �2
" #

(15)

where tc is the characteristic relaxation time (i.e., the most
probable value) and s is the width of the distribution; analytical
solutions for different s values are illustrated in Fig. 3. The
log-normal relaxation time spectrum is useful in describing
non-Maxwellian relaxation because it represents a direct
solution of a Gaussian distribution of activation energies. This
function may therefore be useful for describing spatially
heterogeneous local activation energy of glasses,77,78,165 as well
as modeling the polydisperse relaxation of reversible
networks.76 It may also be useful for modeling systems for
which there is a Poisson distribution of relaxation modes, such
as multivalent associative gels.75

The main challenge with using the log-normal function is
the absence of easily implementable analytical solutions for the
relaxation modulus or the storage and loss moduli. Therefore,
G(t) or G*(o) are usually evaluated by numerical integration of
H(t) in eqn (15) using eqn (5) and (6);145,161,162,166–168 see Fig. 4C
and D for demonstration.76 We have also included a simple
MATLAB protocol for performing these fitting procedures (see
Resources).

B. Cole–Cole and fractional Maxwell gel functions

The one-parameter version of the ML function with z = �(t/tc)a

and a = a occurs frequently in the modeling of broadly
distributed relaxation phenomena that can be described by
fractional differential equations.151,154 This ML function pro-
vides an analytical solution to the Cole–Cole model, which is a
classical model used to describe deviations from the Debye
dielectric relaxation model (the dielectric analogue to the
Maxwell viscoelastic model), given by w*(o) = 1/(1 + (iotc)a).169

An exact mathematical analogue to the Cole–Cole model exists
in viscoelastic models in the form of the fractional Maxwell gel
model, which we introduce in greater detail later in the review.

The analytical description of the Cole–Cole or fractional
Maxwell gel relaxation follows:150,152

G(t) = G0E1
a,1[ � (t/tc)a] (16)

where the one-parameter Mittag–Leffler function Ea[�(t/tc)a]
interpolates between a stretched exponential relaxation at short
times (t { tc) and a power-law decay in time at long times
(t c tc).

154 It can be shown using a Stieltjes transform (a complex
generalization of the Laplace transform) that the relaxation
function has a corresponding relaxation spectrum:146,151,152

HðtÞ ¼ G0

p
t=tcð Þa�1sinðapÞ

t=tcð Þ2aþ2 t=tcð ÞacosðapÞ þ 1
(17)

which represents a symmetric distribution with power-law tails
about the characteristic relaxation time.

The storage and loss moduli can also be derived analytically.
The complex shear modulus G*(o) is described by the
form:150,152,153

G�ðoÞ ¼ G0
iotcð Þa

1þ iotcð Þa (18)
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By separating the real and imaginary part of (iotc)a in eqn (18),
it can be shown that the storage modulus G0(o) and loss
modulus G00(o) take the form:150

G0ðoÞ ¼ G0
otcð Þ2aþ otcð Þacosðap=2Þ

1þ otcð Þ2aþ2 otcð Þacosðap=2Þ

G00ðoÞ ¼ G0
otcð Þasinðap=2Þ

1þ otcð Þ2aþ2 otcð Þacosðap=2Þ

(19)

where, in the limit of a = 1, eqn (19) reduces to the Maxwellian
response of eqn (4).

We show numerical evaluations of the relaxation modulus,
the dynamic moduli, and the relaxation spectrum for different
values of a in Fig. 3. This relaxation function proves to be highly
useful in capturing the viscoelastic relaxation of gel-like sys-
tems, as we discuss in Section VB and show in Fig. 6B.

C. Stretched exponential function

The stretched exponential function is widely used to model
relaxation in soft and disordered materials. It is a direct
solution to convolution-based integrals (Section IIE), and is
most commonly known in the form of eqn (9). The Fourier
transform of the stretched exponential does not have an
analytical solution, and thus fitting the stretched exponential
function to storage and loss moduli G0 and G00 also requires
numerical integration of H(t).25 The relaxation spectrum can be
expanded in a power series of the form:170

HðtÞ ¼ �G0

p
tc
t

X1
k¼0

ð�1Þk
k!

sinðpakÞGðakþ 1Þ t
tc

� �ak
" #

(20)

where tc is the relaxation time and a is the stretching exponent
of the KWW function described in eqn (9). The result of the
series expansion for various a values are illustrated in Fig. 3, as
well as the normalized G(t) and G*(o) responses which can be

Fig. 3 The viscoelastic response of common relaxation functions for modeling non-Maxwellian viscoelastic responses introduced in the main text. All
moduli are normalized by the initial modulus G0, and horizontally scaled by the characteristic relaxation time tc. Dashed lines illustrate the viscoelastic
response of the Maxwell model (Fig. 1).
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derived from the numerical integration of H(t) using eqn (5)
and (6). A demonstration of this numerical process can also be
seen in the MATLAB code repository (see Resources). As can be
seen in the graphical representation of H(t), decreasing a from
a = 1 (which is the Maxwell limit) causes the spectrum to
broaden, and deviate from a single discrete response to an
asymmetric distribution. At t o tc, the KWW function has a
heavy tail, which cuts off upon approaching tc. This functional
form indicates that the KWW function is an excellent choice
for capturing asymmetric relaxation in systems which show
non-Maxwellian relaxation dynamics at short times below the
characteristic relaxation time of the system, but which become
progressively Maxwellian at long times. The stretched exponen-
tial function is commonly utilized for strongly arrested and
glassy systems; we illustrate the application of this function for
modeling the viscoelastic relaxation of polymer-nanoparticle
gels in Fig. 4A.122

D. Cole–Davidson function

A similar function to the stretched exponential function, the
Cole–Davidson function is also sometimes used to capture
asymmetric relaxation in materials which show a heavy-tailed
distribution in relaxation modes at short times, and an abrupt
single Maxwell relaxation mode at long times.170,171 The func-
tion is less utilized than the stretched exponential function in
modeling viscoelastic relaxation, but this function is commonly
used in the modeling of dielectric relaxation.151,170,172 We out-
line the analytical solutions below.

For mechanical relaxation, the Cole–Davidson function is
most commonly known through the functional form below:

G�ðoÞ ¼ G0 1� 1

ð1þ iotÞa

� �
(21)

which has an analytical solution for the storage and loss moduli
of the form:173

G0ðoÞ ¼ G0 1� cosðayÞ cosaðyÞð Þ

G00ðoÞ ¼ G0 sinðayÞ cosaðyÞ
(22)

where y = arctan(otc). The underlying relaxation spectrum H(t)
has the form:151,170

HðtÞ ¼ G0

p
sinðpaÞ t

tc � t

� �a

(23)

Lastly, the Cole–Davidson function also has an analytical
solution for the relaxation modulus G(t):149,151

G(t) = G0(1 � (t/tc)a)Ea
1,a+1(�t/tc) (24)

where Ea
1,a+1 is the three parameter Mittag–Leffler function in

eqn (14). The analytical solutions for the normalized G(t), G*(o)
and H(t) for the Cole–Davidson function at various values of a
are illustrated in Fig. 3. As shown in the behavior of H(t),
this form of the Mittag–Leffler function allows modeling
of relaxation behavior with abrupt transitions between a
power-law response at short times, and an exponential decay
at long times.

V. Fractional mechanical models

We now introduce a family of mechanical models which are
particularly useful for capturing the myriad of power-law relaxa-
tion responses in soft materials. This entails the use of a spring-
pot mechanical element, which can interpolate between a spring

(which has a constitutive equation s ¼ G
d0g
dt0
¼ Gg) and a dash-

pot (which has a constitutive equation s ¼ Z
d1g
dt1
¼ Z _g). This is

done through a fractional differentiation of strain with respect
to time, such that:

s ¼ V
dag
dta

(25)

where 0 r ar 1. s ¼ V is a ‘‘quasi-property’’174 which interpolates
between a spring-like response in G and dashpot-like response in Z,

Fig. 4 Demonstration of common relaxation functions for modeling
non-Maxwellian viscoelastic responses. (A) Stress relaxation modulus G(t)
of nitrocatechol-functionalized poly(ethylene glycol) networks reversibly
cross-linked by Fe3O4 nanoparticles (time temperature superposition of
data taken at temperatures 25 1C r T r 55 1C).122 Shown alongside the
data are the predictions of a generalized Maxwell model with N = 5
elements (one element per decade of time, as demonstrated in the
classical ref. 143), and a stretched exponential function. Both functions
capture the relaxation behavior well, though the stretched exponential
function3 contains substantially less fitting parameters than the general-
ized Maxwell model.10 (B) The obtained discrete relaxation spectrum H(t)
of the generalized Maxwell model used for fitting the data. The asymmetry
in H(t) is in agreement with the good fit of the data to the stretched
exponential function which also has an asymmetric H(t) (Fig. 3). (C) Storage
modulus G0(o) (solid symbols) and loss modulus G00(o) (open symbols) of
spiropyran-functionalized polymer networks with transition metal cross-
linking junctions.76 A fitting procedure based on the log-normal distribu-
tion of relaxation modes H(t) results in a good fit to the storage and loss
modulus (solid and dashed lines, respectively). (D) Corresponding log-
normal H(t) underlying the fitted results in (C). All fitting parameters are
shown in Table S1 in the ESI.†
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and has the units of Pa sa (an excellent polar representation of
the quasi-property in terms of G and Z can be found in p. 68 of
ref. 175). Though the exact physical meaning of the spring-pot
may appear nebulous, it has been shown that the fractional
constitutive behavior of the spring-pot can be derived exactly
with an infinite ladder arrangement of springs (with spring
constants of G1, G2,. . .GN) and dashpots (with viscosities Z1,
Z2,. . .ZN) with N - N (Tables 1 and 2).10,16,85,160,176–178 In the
ladder arrangement, the fractional exponent a is dictated by the
scaling of G and Z as a function of N, such that G B Z B
N1�2a.178 It has also been shown that a fractal network of spring
and dashpots can also fulfill this kind of power-law relaxation
(the ladder model can be interpreted as a variant of a fractal
system).85,178 This makes the spring-pot particularly appealing
for describing relaxation processes driven by fractal structures,
such as in critical gels. Other effects that result in power-law
relaxations have also been linked to fractional models, such as
Rouse dynamics.179

This mechanical model is also convenient as one can
incorporate spring-pots into any conventional spring-dashpot
mechanical configuration. The constitutive mechanical beha-
vior then can be directly solved with fractional calculus opera-
tions (through either Riemann-Liouville or Caputo operators),
the details of which we defer to ref. 10, 150, 152, 153 and 159.
The relaxation functions for many of the fractional models
feature the Mittag–Leffler functions introduced in Section IIID,
which represents a natural solution to fractional differential
equations, and is also encountered in other dynamical pro-
blems ranging from anomalous diffusion154,157 to infectious
disease modeling.180 Fractional mechanical models thus repre-
sent a natural choice for modeling the relaxation of soft
materials exhibiting fractional kinetics.181

We introduce the more commonly used models below. All
analytical results – the constitutive relation, responses to
common rheological perturbations such as G(t), G0(o), G00(o),
and J(t), as well as the relaxation spectrum H(t) are listed in
Tables 1 and 2, with representative forms shown in Fig. 5.
We also defer the readers to the references for more detail
on the mathematical properties and applications of these
models.10,153,154,159,160,182 Finally, we provide a basic repository
of MATLAB codes which demonstrates the application of these
models in the fitting of viscoelastic relaxation data (Resources).

A. Spring-pot

The spring-pot represents the basic building block of fractional
mechanical models.10,159,160 Individually, it can produce a power-
law response in the relaxation modulus (Tables 1, 2 and Fig. 5).
The model is thus quite useful in the modeling of critical gels, in
which both G0(o) and G00(o) share a common power-law.90 It is
noted that critical gels are often also described by a gel strength
parameter S;183 this term can be described by S ¼ V=G 1� að Þ
where G(x) is the complete Gamma function. The spring-pot is a
natural choice for modeling critical gels, due to the fractal nature
of both the mechanical configuration of the spring-pot as well as
the fractal microstructure of critical gels. A spring-pot indeed

provides an excellent fit to a critical mucus gel network, as we
show in Fig. 6A.184

B. Fractional Maxwell gel

When a spring-pot is used in place of a dashpot in the Maxwell
model, we obtain the fractional Maxwell gel model. The visco-
elastic response of the fractional Maxwell gel model follows
exactly the Mittag–Leffler function described in Section IVB and
Fig. 3.150,152 In this sense, the fractional Maxwell gel is an exact
mechanical analog to the Cole–Cole model186 which has been
historically used in modeling anomalous dielectric relaxation
in complex materials.151,154,158,187

The fractional Maxwell gel model enables the modeling of
the stress relaxation response of materials that exhibit a plateau
modulus in a dynamic frequency sweep, and interpolates between
a stretched exponential relaxation at short times and a power-law
relaxation at long times.154 It is thus useful for modeling gel-like
materials45,97,182 and we demonstrate the application of the
fractional Maxwell gel model for fitting the G0(o) and G00(o) of
a colloidal gel, see Fig. 6B.45

C. Fractional Maxwell liquid

When a spring-pot is used in place of a spring in the Maxwell
model, we obtain the fractional Maxwell liquid model. This
model is useful for capturing the response of viscoelastic liquids
which may exhibit a power-law relaxation mode preceding near-
exponential relaxation (for instance, Rouse-like dynamics). We
demonstrate this application on polyelectrolyte complexes in
Fig. 6C.185 It is worth noting, however, that the terminal relaxa-
tion in this model is not an exact exponential – because the
relaxation follows a two-parameter Mittag–Leffler relaxation, the
terminal slope of the storage modulus at low frequencies is
G0(o) B o2�b where b is the fractional exponent. Because the
model contains a dashpot, the relaxation spectrum is integrable
and yields a constant zero-shear viscosity.188,189

D. Fractional Maxwell model

When both the spring and the dashpot are replaced by spring-
pots, we obtain the fractional Maxwell model. This represents
the most generalized linear viscoelastic model to capture
mechanical responses to controlled strain (e.g., G(t), G0(o),
G00(o)) as it combines the benefits of the fractional Maxwell
gel and the fractional Maxwell liquid models; the fractional
Maxwell model can easily be reduced into either of these
models by setting one of the fractional exponents to 0 or 1,
respectively. The stress relaxation response follows a two-
parameter variant of the Mittag–Leffler function in eqn (14),
and is useful for modeling viscoelastic materials which exhibit
a smooth transition between two power-law regimes. This
model is also particularly useful in modeling complex materials
such as tissues and food composites.190,191 We show a repre-
sentative example of this in modeling the rheological response
of the muscle tissues of Yellowfin tuna, which is more accu-
rately modeled by the fractional Maxwell model than other
functions such as the stretched exponential function, the log-
normal function, and the generalized Maxwell model (Fig. 6D).
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In the limit of a = 1 and b = 0, the model reduces to that of the
single spring-pot.

E. Fractional Kelvin–Voigt model, fractional Zener model, and
beyond

We also provide a short introduction to the fractional analog
of the Kelvin–Voigt model, which is the counterpart of the
fractional Maxwell gel model for studying controlled stress
responses. Indeed, just as the G(t) response of the fractional
Maxwell model followed a two-parameter Mittag–Leffler function,
the creep compliance J(t) follows a two-parameter Mittag–Leffler
function. In terms of modeling strain-dependent functions such as
G0(o), and G00(o), the fractional Kelvin–Voigt model may be useful
in modeling rheological responses of soft materials exhibiting a
high-frequency power-law. The fractional Kelvin Voigt model can
be further modified by adding an extra spring-pot to one of the
arms to create the fractional Zener model. For strain-dependent
measurements (e.g., G(t), G0(o), G00(o)), the constitutive response of
the fractional Zener model involves the simple addition of the
response of the fractional Maxwell model and another spring-
pot.175 The fractional Zener model is quite useful in modeling
viscoelastic responses of gels and tissues as well.192,193 Overall,
in the same way that traditional spring-dashpot configurations
can be generalized into larger structures, fractional models can
be generalized into larger structures, allowing flexible and
customizable modeling of non-Maxwell viscoelastic relaxation
in soft materials.

VI. Statistical considerations in
modeling rheological data

Using the many models introduced in the tutorial review to fit a
given set of rheological data is a process which is inherently
governed by statistical methods. When the functional form of a
model is known a priori, a common method to obtain the
‘‘right’’ parameters for the model that best describes a given set
of data is to minimize the weighted residual sum of squares
(RSSwi

):

RSSwi
¼
Xn
i¼1

yi � f ðxiÞ
wi

� �
2 (26)

which computes the sum of the difference between data y and
model f (x) which is then scaled by a weighting factor w. The
choice of wi plays an important role in dictating the final
parameters of a model, and we illustrate this idea using the
Maxwellian viscoelastic data in Fig. 1H. Though the RSSwi

can
be used without a weighting factor (i.e. wi = 1), since rheological
data is often logarithmic, the RSSwi

is conventionally rescaled
by the magnitude of the data point such that wi = yi. However,
statistical arguments suggest194 that the most fundamental
weighting factor is wi = ei, where the absolute error term ei

can be obtained from the absolute uncertainty of measurements
arising from a rheometer. Though the latter can be difficult to
implement since ei needs to be measured directly on a rhe-
ometer through repeat measurements, Singh et al. have recently

Fig. 5 Illustration of the viscoelastic response of the fractional mechanical models discussed in the main text. All analytical functions corresponding to
these graphic representations are listed in Tables 1 and 2. The values of the characteristic modulus Gc and characteristic relaxation time tc are set to unity
for clarity.
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introduced an analytical estimation of ei based on rheometer
specifications which simplifies the implementation of correct
weighting factors in modeling rheological data.194 In Fig. 1H, we
illustrate the different outcomes of using wi = 1, wi = yi, and
wi = ei to fit rheological data to the Maxwell model, which results
in differences in the obtained fit values.

When the expected form of the relaxation process is not known
a priori, one can infer the most likely model for a given set of
rheological data using an appropriate statistical information
criterion. Though the most straightforward method is to simply
minimize the RSSwi

, this method can be prone to overfitting.142

This overfitting problem can be compensated for by adding a term
that penalizes large number of parameters. One such approach is
the Bayesian information criterion (BIC):

BIC = �2 ln(L̂) + np ln(ni) (27)

where L̂ is the maximum of the likelihood function, np is the
number of fitting parameters, and ni is the number of data
points. For data arising from a Gaussian process with a known
variance (for instance, ei), this relation simplifies to:195

BIC = RSSwi=ei + np ln(ni) (28)

We can obtain the BIC values of the fractional Maxwell model,
the generalized Maxwell model (with 5 elements), the stretched
exponential function, and the log-normal function used to fit the
stress relaxation data of Yellowfin tuna in Fig. 6D (see attached
MATLAB demo and Fig. S1 in the ESI†). We see that the fractional
Maxwell model has the lowest BIC value of the four models, and
thus represents the most statistically likely model. A similar
operation on the small-amplitude oscillatory shear measure-
ments on the metal-coordinating polymer network of Epstein
et al. (from Fig. 4C) shows that the log-normal function is the
most statistically likely model (Fig. S2, ESI†).

These analyses also show that the effect of the penalty term is
relatively small compared to the likelihood term; the generalized
Maxwell models (np = 10 for the tuna data and np = 6 for the metal-
coordinating polymer network data) have a lower BIC value than
the stretched exponential models (np = 3) in both cases, despite
the stretched exponential exhibiting reasonably good fits to the
data. This may be because the ei values used to assume the
absolute error in this analysis – obtained from uncertainties
arising from measured variables on the rheometer194 – provides
an under-estimation of the actual errors of the obtained data.
More realistic estimations of errors must also consider uncertain-
ties arising from experimental setup (for instance, sample under-
filling and overfilling, step strain equilibration time) and from
intrinsic heterogeneities in the samples, which would be challen-
ging to quantify. Using larger weighting functions with eqn (27)
will lower the magnitude of the likelihood term of the equation
and increase the relevance of the penalty term.

Conclusions

We have provided a summary of non-Maxwellian viscoelastic
relaxation processes in soft materials, reviewing their diverse
origins in different soft materials, and introducing mathematical
models and statistical tools to model the observed relaxation
responses. The review is aimed at guiding the readers on select-
ing appropriate mathematical and mechanical models for cap-
turing non-Maxwellian relaxation responses, and drawing
meaningful conclusions on the underlying physics of the system
based on knowledge of microstructural features of the system
(which we have also highlighted in the review). A deep under-
standing of the principles of soft matter relaxation will have
widespread implications in understanding and engineering nat-
ural and synthetic soft matter systems, respectively.

Resources

We have uploaded a collection of MATLAB codes to demonstrate
fitting small-amplitude oscillatory strain and step strain data to
continuous relaxation spectra and fractional mechanical
models to the File Exchange at https://www.mathworks.com/
matlabcentral/fileexchange/111170-analysis-of-non-maxwellian-
viscoelastic-data. Fitting results using these demonstrations can
also be found in the ESI† (Fig. S1 and S2).

Fig. 6 Demonstration of the use of fractional mechanical models for
modeling non-Maxwellian linear viscoelastic responses. Viscoelastic
responses of (A) pig gastric mucin at pH = 4,184 (B) a colloidal silica
gel,45 (C) a poly(4-vinylpyridine) complex coacervate network (time-
temperature superposition of data at T = �7 1C and T = 25 1C),185 and
(D) myotome (muscle) tissue of Yellowfin tuna (see Fig. 2 caption for
experimental protocol). Excellent fits to these data are obtained using a
spring-pot, a fractional Maxwell gel (FMG), a fractional Maxwell liquid
(FML), and a fractional Maxwell model (FMM) (solid and dashed lines for
G0(o) and G00(o) respectively), and solid line for G(t). In (D) we compare the
fit to the fractional Maxwell model with fits to the stretched exponential
function, the log-normal function, and the generalized Maxwell model; the
fractional Maxwell model is deemed to be the most statistically likely as
inferred from Bayesian information criteria (see ESI†). All fitting parameters
are shown in Table S1 in the ESI.†
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