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A transformation of the chemicals
industry driven by a need for the design
of more efficient and sustainable
chemical processes is underway.1,2 This

fourth industrial revolution involves
rethinking traditional approaches to wet
chemistry laboratories, scale-ups, and
production.3 Advancement in
automation with artificial intelligence
algorithms have created new
opportunities for chemical reactors to
work synchronously with digital
twins,4–6 and although there has been
an upswing in the number of papers on
deep learning methods, few have
explored their design and application in
chemical reaction engineering. Featured
in this themed issue, “Digitalization in
Reaction Engineering”, are key studies
centered around the convergence of
deep learning methods, data science,

automation, and spectroscopic analysis
for reaction engineering.

The development of predictive
reaction kinetic models, critical for the
design of chemical reactors, historically
depends on laborious experimentation
often generating significant quantities
of chemical waste that results in models
limited to the range of tested
conditions. The vast number of
chemical reactions used in industrial
applications7,8 further motivate
versatility in the computational
methodology, and ideally, one should
be able to validate their models from a
limited amount of data. An automated,
computational approach to reaction
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network identification could accelerate
kinetics development and catalyst
selection, while requiring only a handful
of experiments for validations (10.1039/
d1re00098e). New approaches to the
design of experiments for selecting a
“fit for purpose” kinetic model could
improve the efficient use of limited data
and the design of the next set of
experiments to advance early
understanding of kinetics (10.1039/
d1re00222h). Catalyst stability, its
dependence on the composition and
reaction conditions, yielding optimal
kinetics are fundamental challenges
that computer-aided design of
experiments can help to discover
(10.1039/d1re00441g).

Chemical reactions are without a
doubt complex, which only adds to the
arduous endeavour of designing
chemical reactors. Reactor dynamics and
phase behaviors have traditionally
complicated industrial-scale reactor
designs and operations,9 but with recent
developments in deep learning methods
their transient interplay can be exploited
in the laboratory for a faster mapping of
the reaction space topology. For instance,
synchronous analysis during unsteady-
state operation can enable quicker, data-
rich exploration by comparison to

steady-state experimentation (10.1039/
d1re00350j). On the other hand,
Bayesian based self-optimization of gas–
liquid–solid multiphase reactions can
help decipher the influence of
multivariate conditions for exceptionally
complicated reactions, and with
improved computational performance
over conventional optimization
algorithms (10.1039/d1re00397f). For
multiphase gas–liquid or liquid–liquid
reactions, where the mass transfer rate
influences the process, often it is
difficult to have an estimate of intrinsic
rates and using lumped models tend to
bring more empiricism than accuracy as
the scale of production increases.
Digitalizing such processes with an
accurate estimate of all limiting
parameters helps reduce the downtime
or test time to wait for the desired steady
state operations even for sensitive cases
where multiple steady states are
expected.

This themed issue highlights
investigations that have the potential to
impact applications across the reaction
engineering discipline. Reactions of
longstanding industrial significance,
such as the Fischer–Tropsch (10.1039/
d1re00351h), or multiphase
nanomaterials syntheses and their

designs (10.1039/d1re00247c) can be
explored for improved manufacturing
efficiencies. Generally speaking,
benchtop digitalization integrated with
chemical process design, e.g.,
manufacturing with renewable
feedstocks such as biomass (10.1039/
d1re00560j), is a step towards more
sustainable chemicals manufacturing
and better life-cycle assessments. We
would like to thank all authors for their
remarkable work, with each
contributing insightful concepts that
are foundations to the emerging field of
digitalization in reaction engineering.
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