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The value of reaction kinetic models for manufacturing APIs (active pharmaceutical ingredients) has been

well established in the quality by design (QbD) paradigm. Creating such models during the early phase of

development when data and material are scarce is challenging. In this work, we present a model-based

design of experiments framework for selecting a “fit for purpose” kinetic model from limited data. The

framework leverages an estimability analysis to facilitate parameterizing candidate models. The essential

elements can be applied in other domains where model selection is required, but an illustrative case study

is presented for selecting the best of three proposed kinetic models for the 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU)-catalyzed N-methylation of a key intermediate in an API process using dimethyl carbonate

(DMC). The case study concludes by selecting a mechanism that invokes an N-methylated DBU species as

a key intermediate over other plausible mechanisms previously suggested in the literature. The framework

is conceptually straightforward and requires minimal coding and computational time to execute.

1. Introduction and background

During the early phase development of new pharmaceutical
molecules, there is usually a significant gap in experimental
data availability and prior knowledge, which hinders the
development of robust kinetic models and decreases the
overall efficiency of chemical development. Kinetic models
are highly useful in early phase API development as they
facilitate the understanding of the effect of reaction
conditions (temperature, initial concentrations) on the rates
of formation of both products and impurities, which is key
information for developing the reaction chemistry and
identifying potential process operating ranges.

A comprehensive review of the classical statistical
techniques for discriminating among candidate chemical
reaction models was provided by an earlier publication by
Reilly and Blau.1 Specifically with regards to Bayesian
methods,2–4 which are widely used, the Bayesian parameter
estimation requires a large amount of background on the
part of the practitioner to know that they are appropriately

sampling the posterior, even with modern samplers in tools
like STAN.5 This problem is exacerbated when the data set is
insufficient to estimate all the model parameters. It is very
common not to be in possession of informative priors during
the early phases of API process development. The sampling,
if it ever reaches stationarity, is just expected to reproduce
the priors with such limiting data sets.

Similarly, there are several recent publications where
various statistical or mechanistic methods for identifying,
developing, and parameterizing kinetic models have been
proposed. Galvanin et al. developed a model-based design of
experiment (DOE) approach for kinetic model identification
in continuous flow reactors.6 Hone et al. used statistical DOE
for developing and parameterizing a kinetic model for a
Friedel–Crafts type reaction.7 Olofsson et al. developed a
model discrimination using the Jensen–Rényi divergence
criterion on Gaussian process surrogate models.8 Violet et al.9

and Schaber et al.10 used statistical and dynamic optimization
techniques respectively for designing experiments to
discriminate among very simple kinetic expressions, however
such simple kinetic expressions cannot always capture an
actual industrial API manufacturing chemistry, which usually
involves a network of reactions comprised of multiple
chemical species. In another work by Quaglio et al., an
artificial neural network was used to identify kinetic models
from experimental data.11
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While all the above approaches were successful in solving
their specific problems, most of these methods do not
explicitly address a practical and very real scenario seen in
early phase API development consisting of complex reaction
networks with little prior information and very limited
provision of running additional experiments. These
approaches either require extensive experiments when there
is limited time and material to perform such experiments, or
they require specially trained personnel to implement and
manage the computations. Therefore, they are more
applicable during the later phases of development when
more resources and material are available for
experimentation, but by then the opportunity to intercept the
early phase decision making with regards to the target
chemistry and operating conditions is lost. Even in this era
of QbD,12 developing models for chemical reactions is often
seen as a time intensive task that requires specialized
resources and is not widely or regularly implemented in the
early phase development work.7

To optimize the efforts for chemical development, more
mechanistic approaches like molecular modeling can be
applied. Xu and Zhu employed a DFT-based adaptive Monte-
Carlo model for developing a complete reaction network for
kinetic modeling.13 The method does not require any
assumptions regarding the reaction mechanism or estimates
of the kinetic parameters, but it does require complex and
expensive calculations. In addition to the heavy computing,
some form of experimental validation is still necessary to
validate the mechanistic calculations and would certainly be
expected should the model be a part of a control strategy or
regulatory filing.

During early phase API process development, a “fit for
purpose” model14,15 is required that can capture how the
different chemical species (product, byproducts, and
impurities) change as a function of the reaction conditions.
In this work we present a simple, systematic, and low
computational cost framework for the identification and
development of a fit for purpose kinetic model structure
that is applicable in the early stages of API process design
and development. This framework requires an assumption
regarding reaction mechanisms and prior estimates of the
kinetic parameters. It is expected that at this early stage the
available models cannot be uniquely identified and
therefore a parameter estimability analysis as proposed by
Wu et al.16 is employed. Parameter estimability doesn't
necessarily improve the parameter estimates, however it
constrains the fitting exercise to the subset of parameters
that can be estimated from the available data and provide
the best possible predictions. This procedure certainly
introduces bias in the parameter estimates, but still allows
a practitioner to use the model to design the next batch of
experiments.

2. Methodology

Fig. 1 presents the kinetic model (structure) identification
framework, which includes all the steps starting from
proposing the candidate models to arriving at the final fit for
purpose model. The steps can be described as follows:

1) Preliminary data: Experiments in the early development
phases are rarely formally designed (e.g., DOE) but are

Fig. 1 Proposed scheme for kinetic model structure identification and development.
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executed simply with convenient conditions (i.e.,
temperature or initial concentrations) selected to get a
broad understanding of the reaction's performance. This
preliminary data is very limited in most cases because
only a few grams of material are available for use at that
time. One could argue that with all the advancements
made in lab automation, there are smaller scale
instruments and high throughput screening devices17 that
can be used to generate sufficient data even from few
grams. However, these technologies may not be always
accessible for every project due to cost, resourcing, and
scheduling.

2) Propose candidate models: Based on a theoretical
understanding of the chemistry and the available data,
process chemists/scientists propose a set of potential reaction
pathways and the associated kinetic rate expressions for each
of these proposed schemes. These kinetic expressions are the
candidate models.

3) Preliminary model parameterization: Since the
preliminary data is lean, it may be difficult to estimate all the
model parameters simultaneously. As reviewed by McLean
and McAuley,18 estimability analysis can be applied to highly
non-linear models to obtain the rank ordering of estimable
parameters to help select which parameters to estimate for a
given model with a given set of experimental measurements.
The performance of parameter estimation algorithms can be
greatly improved by fitting only the high ranked parameters
(with high estimability) and fixing the low ranked parameters
to reasonable values. While fitting only the estimable
parameters results in biased fits that are certainly not
unique, it allows for easier convergence of the fitting
algorithm and facilitates rapid model development, as the
aim here is to quickly build a fit for purpose model for the
early process development stages. The result of this workflow
is a model that gives reasonable visual agreement to the
available data; a formal lack of fit test would be inappropriate
given the test assumptions and the biased parameter
estimates.

4) Model-discrimination-design of experiment (MD-DOE):
In this step, optimization approach is used to design
experimentĲs) that maximize the difference in predictions of
the candidate models and therefore contains the
information required to select the best model. An important
activity in this step is to identify the response (manipulated)
variables and determine which of these can be measured.
Only those response variables that can be measured using
the current experimental setup can be included in the DOE.
Moreover, the measurement uncertainty will play an
important role in determining the ability to discriminate
between the candidate models. For example, if the
measurement uncertainty is higher than the difference in
prediction by the models then they can't be discriminated.
The discriminatory experimentĲs) will help select the most
representative model structure within the region of interest.
The formulation of the optimization problem is detailed
later.

If none of the proposed models can satisfy the
discriminatory experiment, then new candidate models
should be proposed and steps 2–4 repeated.

5) Execute the experiments and evaluate the candidate
models: Following execution of the MD-DOE, compare the
experimental observation with the predictions by each
candidate model. The candidate model with the closest
prediction is the best model (survivor). Since the state of the
model is still premature at this point, an accurate
quantitative agreement shouldn't be expected. If there is more
than one survivor, then the MD-DOE can be added to the pool
of experiments and the whole exercise of model
parameterization followed by model discrimination among
the survivors (steps 3–5) can be repeated until one survivor is
left. If it is impossible to discriminate between the candidates
after a few iterations, then careful review of the models
should help determine if a new intermediate concentration or
other response should be quantified to help improve the
MD-DOE. If there is no practical way to augment the dataset
with discriminating information, then the modeler can
choose one model to proceed with, as they are equivalent.
The outcome of this exercise is a simple fit for purpose
model.

2.1. Parameter estimation with Estimability analysis

For each candidate model, the estimability analysis is
completed as follows:

1) Define a set of initial guesses for the parameters. As a
starting point, the initial guesses were obtained from
chemical intuition and other related reactions. McLean and
McAuley18 point out that the rank order of the parameters
may change with change in the initial parameter values for a
given set of experiments. Therefore, in case of any
discrepancies, they advise to repeat the estimability analysis
with a different set of initial guesses and check the reliability
of the parameter ranking.

2) Identify the response variables that can be measured
and obtain the sensitivity matrix.18 A summary of the
calculation is provided in section S1 of the ESI.†

3) Apply a deflation algorithm to rank the parameters
from the most to least estimable. The input to this algorithm
is the scaled sensitivity matrix.16

4) The next step is to select the subsets of parameters that
should be estimated or fixed so that the objective of the
parameter estimation algorithm improves. Ranking the
parameters is easy, however determining which parameters
to estimate/fix is a difficult problem to solve. Researchers
have tackled this problem in different ways as reviewed by
Wu et al.16 In this work, we followed a similar methodology
as Littlejohns et al.19,20 where we decided the number of
parameters to be fixed based on the improvement observed in
the objective function of the parameter estimation algorithm.
We followed a brute-force method by fixing the parameters one
by one starting with the lowest ranked parameter and moving
up if a significant improvement in the objective function was
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observed. We stopped at a point where there was no further
improvement in the objective function. While this process is
tedious, it is easily implemented and for models of
moderate size can be managed with some careful
bookkeeping. A motivated practitioner could very easily
script this process.

2.2. Model discrimination

The model discrimination was performed by executing a
dynamic optimization of the non-linear problem as shown
in eqn (1). Our discrimination criterion does not consider
the model prediction uncertainty, since with a new API in
the early phase of development there's not enough data/
information available to understand it completely.
Therefore, instead of making complex assumptions about
the model prediction uncertainty, we are looking for gross
differences in the model output, such that the simple
criterion of finding the largest difference will find an
experiment with a high likelihood of discriminating
between the models.

δ ¼ Maxu
X
i>j

XD
k¼1

wk

XnT
t¼0

gi;k u; tð Þ − gj;k u; tð Þ
� �2

Such that: uL ≤ u≤ uU

(1)

here gik and gjk are the kth response variable that can be
measured (g), of the ith and jth candidate models
respectively, u is the set of control variables (reaction
conditions or experimental settings: temperature, initial
concentration etc.), t is time, D is the total number of
response variables, nT is the total number of time points,
wk is a weight assigned to each response variable, uL and
uU are the lower and upper limits of the control variables
(which may come from the experimental constraints or
limitations of the experimental setup). A physical
interpretation of this objective function is that it is
looking for the point in experimental space that
maximizes the differences in the predicted concentrations
obtained by the different candidate models for all
measured chemical species. It is important to focus the
time range to the dynamic portion of the concentration
profile as candidate models often show similar long-term
equilibrium or steady state.

The steps of the model discrimination can be summarized
as follows:

1) Use optimization techniques to solve eqn (1) and
determine the experimental conditions, which will give the
maximum difference between the predictions for the
response variables by the candidate models.

2) Execute the MD-DOE.
3) Compare the model predictions with the actual

experimental results.
4) The candidate models that cannot fit the discriminatory

experiment are rejected.

3. Case study: identifying the best
kinetic model structure from the
proposed mechanisms of
N-methylation of a compound

The methylation of heteroatom-containing molecules is an
essential reaction in the preparation of countless bioactive
compounds.21 The use of DMC (dimethyl carbonate) as a
methylating agent has become increasingly popular as it
offers a safer and eco-friendly alternative to toxic and unsafe
reagents such as methyl halides and dimethyl sulfate.22

One of the earlier limitations for the widespread use of
DMC as the methyl source was that high temperatures and
long reaction times were often required. However, in 2001,
Shieh et al. reported that DBU (1,8-diazabicycloĳ5.4.0]undec-7-
ene) was an effective catalyst that enabled the O- and
N-methylation of phenols, indoles and benzimidazoles under
milder conditions.23 Shortly after, Shieh et al. expanded this
chemistry to the methylation of benzoic acids and conducted
a mechanistic investigation demonstrating that the DBU-
catalyzed O-methylation of benzoic acids by DMC followed a
mechanism that involved a DBU methyl carbamate 1 as the
active methylating species, and not alternatives such as 2
(Fig. 2a).24 However, very recent findings indicate that any
intermediates 1–4 could be plausible for the N-methylation
and N-methoxycarbonylation of indoles (Fig. 2b).25,26

Given that multiple mechanisms have been proposed
and evidence supporting one or another has been
brought forth, our own experience with a DMC-based
and DBU-catalyzed N-methylation of an API intermediate
compound would provide an ideal case study to evaluate
our kinetic model identification framework elaborated in
section 2.

For our case study, three possible mechanisms for the
conversion of compound 5 (starting material) into compound
6 (product) were considered and are shown in Fig. 3. Major
portions of the molecule are undisclosed to protect
intellectual property, however the relevant functional groups
have been shown. In short, the three mechanisms explored
here involve a) the direct alkylation of the starting material
by DMC, b) the intermediacy of N-methoxycarbonylated DBU
species (compound 1) and c) the presence of N-methylated
DBU species (compound 2) as key to the kinetics of the
reaction. Even though other variations to the three pathways
depicted in Fig. 3 are possible, but were not comprehensively
explored in this work since our objective is not to screen
mechanisms, but to arrive at a suitable kinetic model
structure that is predictive within our process space of
interest. Moreover, in accordance with the work by
Vendramini et al., that discredits species 3 and 4 as
responsible for the N-methylation of indoles,25 other
pathways including these species were not considered.

Fig. 3 depicts the first mechanism (a), where 5 is
reversibly deprotonated by DBU, followed by a direct
N-methylation with DMC by a BAL2 mechanism to afford
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compound 6 along with concomitant release of methanol
and CO2. This mechanism as formulated is catalytic in DBU
and could not explain the DBU consumption observed in the
preliminary data, so it was removed from further
consideration. The model fit results for this candidate are
provided in Fig. A1 (section S2) in the ESI.†

A mechanistic alternative is shown in Fig. 3 mechanism
(b). The same acid–base equilibrium exists between 5 and
DBU. However, in this case, DBU is proposed to react with
DMC to generate the methylcarbamate ion pair 1 by a BAC2
mechanism. The methoxide component of this ion pair
then reacts with the DBU conjugate acid to form a new ion
pair composed of deprotonated 5 and the positively
charged carbamate. This intermediate would then undergo
N-methylation by a BAL2 mechanism to form the desired
compound 6, release CO2 and regenerate DBU. The kinetic
expression developed from this mechanism is the first
candidate (model 1).

A third mechanistic hypothesis is presented in Fig. 3
mechanism (c). A different reaction between DBU and DMC
is proposed, where CO2 release drives the formation of a
N-methylated DBU/methoxide ion pair 2 by a BAL2 pathway.
This ion pair could then react in two modes: first to
deprotonate 5 and generate methanol and an ionic pair
which would then undergo N-methylation to generate the
desired compound 6 and release DBU. Alternatively, ion pair
2 could also undergo methoxide O-methylation to form
dimethyl ether and DBU. The kinetic expression developed
from this mechanism is the second candidate (model 2).

3.1. Experimental protocol

During the initial assessment, the available starting material
was enough for conducting three controlled experiments at
lab scale. The reactions were carried out in a batch mode
under isothermal conditions. The molar fractions of the
species have been monitored with flow NMR.27

Analytical methods for measuring the concentration of
compounds 5, 6 and DBU were developed. The
concentrations of these three compounds will be referred to
as the response or measured variables. Only these three
compounds were profiled during the reactions. The control
variables (or experiment settings) are the reaction
temperature, and initial charge of the reactants. For
simplicity, the initial volume of the reaction was assumed as:
initial volume of reaction = initial volume of compound 5
charged + initial volume of DBU charged + initial volume of
DMC charged.

Preliminary data. The preliminary data was obtained over
a range of temperatures and initial concentrations, but no
systematic DOE was designed. The experimental settings of
the three experiments (experiment 1, 2 and 3) are
summarized in Table 1. These three experiments were used
for the preliminary parameter estimation.

3.2. Model equations

Propose candidate models. The mass balance for a batch
reactor can be written as given in eqn (2) and (3) below.

Rate of

acumulation

of species j

0
B@

1
CA ¼

Rate of generation

of species j

through chemical reaction

0
B@

1
CA

−
Rate of consumption

of species j

through chemical reaction

0
B@

1
CA

(2)

dCj

dt
¼ Rj (3)

here Cj is the concentration (mol per liter) and Rj is the
overall reaction rate (mol per liter per s) of the jth
species. There are a total of 9 species in each of the

Fig. 2 a. Shieh's mechanism for the DBU-catalyzed O-methylation of benzoic acid using DMC.24 b. Other possible reactive species in the
N-methylation of indoles.25,26
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models. A per species mass balance was written for 8 out
of 9 species. Each reaction present in the reaction
network of models 1 and 2 as given in Fig. 3 was
modeled as elementary reaction. The concentration profile
of the 9th species was calculated from the overall mass
balance given by eqn (4).

Overall Mass Balance:
Xnspecies
j¼1

M j; 0ð Þ −
Xnspecies
j¼1

M j; tð Þ ¼ 0 (4)

where M( j,0) is the mass at time = 0 and M( j,t) is the
mass at time = t of the jth species, nspecies is the total
number of species present in the reaction.

Fig. 3 Proposed N-methylation mechanisms for compound 5.
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The rate constants: k1, k−1, k2, k−2, k3 and k4 in model 1,
and k1, k2, k−2, k3 and k4 in model 2 were expressed as a
function of temperature using the Arrhenius equation.

The unknown model parameters of model 1 are:
Frequency factor: A1, A−1, A2, A−2, A3 and A4.
Activation energy: E1, E−1, E2, E−2, E3 and E4.
The unknown model parameters of model 2 are:
Frequency factor: A1, A2, A−2, A3 and A4.
Activation energy: E1, E2, E−2, E3 and E4.
The candidate models were coded in gPROMS Formulated

Product® (gFP®, Siemens Process Systems Engineering,
London, UK) version 1.4.1. In some cases, estimating the
frequency factor (A) directly may result in numerical
instabilities. However, in our case this wasn't observed. gFP®
has robust and powerful numerical solvers based off a variable
step integration methodology that allows it to handle
numerical stabilities very well. It can efficiently handle a
complex model consisting of a large number of equations. This
is a licensed and proprietary software developed by Siemens
Process Systems Engineering, so more information is available
in their documentation that comes with the software, but some
basic information is available on their webpage.28

Note that the user may need to use an alternate
formulation of the Arrhenius equation, e.g., a reference rate
(kref) and temperature (Tref) as given by

k ¼ kref exp
−E
R

1
T

− 1
T ref

� �� �
in order to avoid any potential

numerical instabilities depending on the platform they are
using.

The purpose of this manuscript is to present the
workflow on developing fit for purpose kinetic models
during early phase pharmaceutical drug development with
limited prior data and provisions to run experiments.
Although the authors have implemented this workflow in
gFP®, the users are free to use any platform/software of
their choice.

3.3. Preliminary parameter estimation with estimability
analysis

Several parameters (12 for model 1 and 10 for model 2) need
to be estimated from only three experiments reported in
Table 1 and only three measured responses (concentration of
compound 5, DBU and compound 6). The parameter
estimability code was written in MATLAB® 2019a
(Mathworks, MA, USA). The parameter estimation was
performed by using the built-in algorithm within gFP®

version 1.4.1 that minimizes a modified form of the
likelihood function.

Parameter estimability. The rank of the parameters
obtained from the estimability analysis is reported in
Table 2. The first parameter is the most estimable and the
last parameter is the least estimable. This ranking was
obtained based on the values of the initial parameter
estimates used in this work. In model 1, all the activation
energies have a comparatively higher estimability compared
to the frequency factors. Similar observation was made in
case of model 2 where all activation energies except E−2 have
a higher estimability compared to the frequency factors.

Parameter estimation of model 1. All the low ranked
parameters: the frequency factors (A1, A−1, A2, A−2, A3 and A4)
were fixed and the activation energies were estimated. The
frequency factors were fixed at values obtained from an initial
parameter estimation that was run without fixing any
parameters. The parameter estimation was re-run after fixing
the frequency factors as indicated by the estimability analysis.
The final set of parameter values obtained after incorporating
estimability is reported in Table A1 in the ESI.† At this stage
of analysis, accuracy in the parameter values cannot be
achieved due to insufficient data. However, the estimability
analysis helped improve the performance of the parameter
estimation algorithm and yielded a model capable of
describing the available data as shown in Fig. 4a–c. The
concentration of all the species has been expressed in
equivalents (i.e., ratio of the concentration of a species at any
time to the initial concentration of the starting material
(compound 5)). The small number of discontinuous jumps in
the experimental data are within the analytical error
associated with the batch processing of large amounts of

Table 1 Experimental settings

Compound 5 (initial mass)
(mg)

DBU (initial volume)
(μL)

DMC (initial volume)
(μL)

Temperature
(°C)

Initial volume of reaction
(mL)

Experiment 1 36 (1 equivalent) 85 (5.3 equivalent) 750 (83 equivalent) 75 0.87
Experiment 2 72 (1 equivalent) 170 (5.3 equivalent) 760 (42 equivalent) 55 1.002
Experiment 3 72 (1 equivalent) 170 (5.3 equivalent) 760 (42 equivalent) 75 1.002
MD-DOE 64 (1 equivalent) 24.9 (0.9 equivalent) 9160 (572 equivalent) 90 9.25

Table 2 Rank from estimability analysis of model parameters: A
(frequency factors) and E (activation energies)

Rank Model 1 Model 2

1 E2 E1
2 E1 E3
3 E−2 E2
4 E4 E4
5 E−1 A1
6 E3 E−2
7 A2 A3
8 A1 A2
9 A−2 A4
10 A−1 A−2
11 A3 —
12 A4 —
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NMR data. An attentive reader may also notice that in some
cases, the experimental data indicates a slight decrease in the
product concentration over time after full conversion of the
starting material. This can be interpreted as diagnostic of a
minor product degradation pathway. However, product
degradation pathways were not considered in our kinetic
models because no significant levels of any relevant
degradant impurities were detected in our experiments at this
stage. This will be evaluated further as we move forward to
the later phases of process development and scaleup.

Parameter estimation of model 2. Similarly, a subset of
the low ranked parameters (A−2 and A4) was identified and
fixed at values obtained from an initial parameter estimation
carried out without fixing any parameters. The final
parameter values after incorporating estimability are reported
in Table A2 in the ESI.† An acceptable model fit was obtained,
as seen in Fig. 5a–c.

3.4. Model discrimination

In this section, the mathematical formulation of the
optimization problem for model discrimination has been
presented followed by a detailed description of the MD-DOE.

Mathematical formulation of the model discrimination.
Due to constraints on API availability at the early
development stage, the aim here is to minimize the number
of experiments to run, so the objective function was
formulated to design the single best experiment to
discriminate among the candidate models as described by
eqn (1). If there remains more than one survivor model, one
may attempt to design a discriminatory experiment by re-
formulating eqn (1) among the survivor candidates and
repeat this step until a satisfactory model structure is
obtained. Since there are two candidates under consideration
in this work, eqn (1) can be written as eqn (5) below. At this

Fig. 4 Fit of the experimental observation by model 1 (post-estimability).
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stage, it is too early to have a preference for one model over
the other, therefore both the models have been considered
equally likely.

δ ¼ Maxu
XD
k¼1

XnT
t¼1

Ck model2 u; tð Þ
PD
k¼1

Ck model2 u; tð Þ
− Ck model1 u; tð Þ
PD
k¼1

Ck model1 u; tð Þ

0
BBB@

1
CCCA

20
BBB@

1
CCCA
(5)

Subjected to:

Temperature (T): TL ≤ T ≤ TU

Initial charge of Compound 5 (Cocpd5): Co
L
cpd5 ≤ Cocpd5 ≤ CoUcpd5

Initial charge of DBU (CoDBU): Co
L
DBU ≤ CoDBU ≤ CoUDBU

Initial volume of reaction (VoR): Vo
L
R ≤ VoR ≤ VoUR

here C is the predicted molar concentration of the indexed
species as a function of time, the total number of
concentration profiles of the chemical species (D) is equal to
3 (where k = 1 stands for concentration of compound 5, k = 2
is concentration of DBU and k = 3 is concentration of
compound 6). The scientist should use their judgement to
decide the right time horizon (nT) to be considered such that
the concentration profile from the different models can be
discriminated. The above objective function δ maximizes the
sum of the squared differences between the prediction of the
molar concentrations by models 1 and 2. The solution of this
problem is the set of experimental conditions which will
result in the most discriminating experiment. The control
variables (u) are the temperature (T), initial concentration of
compound 5 (Cocpd5), initial concentration of DBU (CoDBU)
and the volume of reaction (VoR). The upper and lower limits
(represented by the superscripted ‘U’ and ‘L’) on the control

Fig. 5 Fit of the experimental observation by model 2 (post-estimability).
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variables were decided based on material availability and
equipment constraints. Since we chose the actual molar
concentrations of the chemical species as the response
variable of interest, the terms in eqn (5) were normalized in
order to bring them to the same unit basis. Additional
weights weren't necessary as the normalization took care of
it.

MD-DOE for model structure discrimination. The obtained
discriminatory experimental setting is given in Table 1.
Interestingly, the discriminatory experiment obtained by
solving eqn (5) was outside the range of the preliminary
experiments (experiments 1–3 in Table 1). It is more dilute
and to be conducted at a higher temperature. Clearly, both
model structures provided acceptable fit of the preliminary
experiments as seen from Fig. 4 and 5. However, as per the
MD-DOE, the discriminatory information lies outside the
experimental space where the preliminary experiments were
conducted. From a chemistry standpoint, designing the
discriminatory experiment so far from the original
experiment space may result in new impurities or side
reactions that were not considered in the original models. In
our case no such significant new impurity formation or side
reactions were detected. If the chemistry changes drastically
while executing the discriminatory experiment, then all the
proposed mechanisms/models are invalidated and new
mechanisms/candidate models need to be proposed as
shown in Fig. 1. If one wants to identify a model structure
that only applies within a certain experiment space, then
simply adjust the bounds of the control variables accordingly
while solving the optimization problem in eqn (5).

3.5. Experimental evaluation of MD-DOE and comparison
with model predictions

The MD-DOE supplies new information that can be used to
improve the parameter estimates and model fit. Therefore,
the estimability analysis was repeated after incorporating the
MD-DOE along with the preliminary experiments. There was
no significant change in the parameter ranking. The
frequency factors continued to be ranked lower than the
activation energies in the case of model 1. In the case of
model 2, the parameters A2 and A3 inverted, but the
remaining parameter ranks were as listed in Table 2. The
parameter estimation was re-executed for both models with
the MD-DOE added to the data pool. Fig. 6a and b illustrate
the fit of the concentration profile of compound 5 obtained
from the discriminatory experiment by model 1 and 2
respectively. Model 1 approaches an equilibrium at nearly
70% conversion, which is inconsistent with the experimental
data. No improvement in the fit of model 1 was achieved
even after incorporating estimability. Table A3 provided in
the ESI† lists the final parameter values of model 1 after this
exercise. The standard errors of the parameter estimates were
small relative to the estimated parameter values. However,
the model does not capture the reality observed in the MD-
DOE experiment and can therefore be excluded on the

grounds that the structure of the model equations is
inconsistent with the data.

Model 2 goes to completion and is consistent with the
experimental data. Model 2 is therefore deemed the sole
survivor model and is clearly applicable within a wider
range of experimental conditions. Table 3 below presents
the final parameter estimates of model 2. Parameters A2,
A−2, A3 and A4 were fixed since these were low ranked
parameters. As seen from the table, the standard errors of
E−2 and E3 are very high, which means that these estimates
can be improved further. The initial guesses, and the lower
and upper bounds were also varied with no change in the
results. To further improve the parameter estimates (i.e.
reduce the standard errors of the parameters) one must
add more diverse experiments to the data using methods

Fig. 6 Model fit of the discriminatory experiment.
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described in the literature: Schwaab et al.,29

Shahmohammadi and McAuley,30 Quaglio et al.31 or
Franceschini and Macchietto.32

While beyond our present scope, we point out that
improving parameter precision can be a very time consuming
and costly endeavor and the decision to invest in that activity
should depend on the model's purpose. For example, if the
model is to be used as a part of the process control strategy
to be filed as regulatory commitment, then precise model
predictions are necessary that may require precise parameter
estimates. However, if the model is used for providing
guidance for process development and scaleup, the
prediction accuracy from an early model may be sufficient
with the expectation that further experiments will inform and
confirm the process. In this work, model 2 was used in the
later context to generate a process map to identify a suitable
operational space. As an example of further application of
the model, this process map is provided in Fig. A2 (section
S6) in the ESI.†

4. Conclusion

Efficient use of available data and design of the next
experiment to advance early understanding is a common
industrial problem. As we have demonstrated with this case
study, the procedure to design experiments to obtain a fit for
purpose model in early process engineering can be readily
implemented with standard software available to
computational scientists and engineers and executed on
standard issue hardware. The key aspect of the framework is
application of estimability analysis to ensure that well posed
parameter estimation problems are solved for the candidate
models to allow for predictions that are acceptable for the
purpose of designing discrimination experiments and
guiding further experiments while the reaction is explored. In
this case study, we have illustrated that three mechanisms
proposed from chemical intuition for an N-methylation
reaction can be reduced to a single model in a single cycle.
This very real example showcases how adding modeling tools
results in enhanced understanding even with very little
available data. The framework discussed here can be easily
extended into other unit operations where model

discrimination or parameter estimation has proved
intractable due to insufficient experiments.

As a future endeavor, the authors would consider
developing an open source generic framework to put the
engineering tools as discussed in this work in the hands of
other scientists (e.g., chemists) who play a key role in API
process development. It is important that there is a smooth
exchange of information between the engineering and other
scientific communities. With the differences in general
training and curricula among these respective communities
there is a need to find an easy way to do so.
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