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Plasmonic nanocavities are able to engineer and confine electromagnetic fields to subwavelength volumes. In

the past decade, they have enabled a large set of applications, in particular for sensing, optical trapping, and the

investigation of physical and chemical phenomena at a few or single-molecule levels. This extreme sensitivity

is possible thanks to the highly confined local field intensity enhancement, which depends on the geometry of

plasmonic nanocavities. Indeed, suitably designed structures providing engineered local optical fields lead to

enhanced optical sensing based on different phenomena such as surface enhanced Raman scattering,

fluorescence, and Förster resonance energy transfer. In this mini-review, we illustrate the most recent

results on plasmonic nanocavities, with specific emphasis on the detection of single molecules.
Introduction

Single-molecule spectroscopy is a central topic in nanoscience,
and tremendous applications have been developed so far, from
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sequencing and trapping1 to sub-nm control of quantum
effects.2–5 In parallel, during the last decade, metallic plasmonic
nanocavities were extensively investigated as transducers for
enhanced sensing,6,7 optical trapping,8 single-molecule
imaging9 and extreme nanophotonics.10 Plasmonic
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nanocavities enable the connement of visible and near-
infrared light to subwavelength volumes (typically a few tens
of nm3) simultaneously, and the amplication of optical eld
intensity by several orders of magnitude.3,11 This local eld
intensity enhancement is possible thanks to the resonant exci-
tation of surface plasmon polaritons generated from the
coupling between the external electromagnetic (EM) radiation
and the conduction electrons inside the metallic material.
Thus, plasmonic nanocavities provide a powerful solution for
reducing effective mode volumes and achieve, at the sub-
nanometer scale, spatial control of the coupling with a single
molecule in close proximity.12,13 Conning light to a cavity is
then used to enhance the interaction between the optical eld
and low dimensional materials, including small molecules,14

2D materials,15 quantum dots,16 nanoparticles17,18 or quantum
emitters5 passing through or diffusing within the cavity.

A typical plasmonic nanocavity can be realized by coupling
two nanostructures in a dimer-like fashion with a nanometer (or
even sub-nanometer) gap. Alternatively, a dimer-like nanocavity
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can be achieved by placing a nanostructure above a metallic
layer and separating the two building blocks by using a very thin
(few nm) dielectric spacer. In this arrangement, also known as
a nanoparticle-on-mirror (NPoM)10,19 cavity, the metallic nano-
structure interacts with its image induced on the other side of
the metallic layer. This image-charge conguration generates
a plasmonic hotspot centered between the nanoparticle and the
metallic substrate. NPoM nanocavities, which can support
multiple resonances, exhibit deep sub-diffraction mode
volumes below 10�7 (l/n)3 (where l is the incident radiation
wavelength and n is the refractive index of the cavity).20,21

Finally, nanocavities can also be fabricated by engraving
nanoholes of different shapes such as bow-tie, rectangular or
circular, in thin metallic lms.22 These geometries have been
proved to be powerful platforms for many applications such as
trapping and manipulation of nano-objects,8,23 bio-sensing,24–26

enhancement of the Raman signal of small molecules,27 and the
realization of strong light–matter interactions.2,28 The present
mini-review aims to collect the most recent results on various
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plasmonic nanocavity architectures, such as apertures in
metallic lms and zero-mode waveguides, pico-cavities with an
atomic resolution, and nanocavities realized by using DNA-
based nanofabrication techniques. In particular, we focus our
attention on these architectures' extreme sensitivity capabilities
to achieve single-molecule resolution.

Apertures in metallic lms: from zero-mode waveguides to
plasmonic nanopores

In this section, we target a particular type of plasmonic nano-
cavity, which is oen used to perform single-molecule detection
by means of uorescence. This architecture, a dubbed zero-
mode waveguide (ZMW) since it operates at wavelengths
longer than its cut-off wavelength, is realized by engraving an
aperture, usually a square- or circular-like nanohole (typically
with a lateral size of 50–100 nm), in a thin metallic lm. This
conguration allows guiding visible EM radiation into a volume
smaller than its wavelength and conning it at the bottom of
the aperture (Fig. 1). This extreme EM eld connement can
reduce the effective detection volume down to 10�21 liter,
allowing parallel and rapid sensing of molecules at concentra-
tions in the micromolar range,22,25,29–31 since the excitation of
molecules outside this detection volume is screened by the
metallic lm. Furthermore, besides affecting the excitation rate
Fig. 1 Various architectures of zero mode waveguide (ZMW) plas-
monic nanoapertures. (a) Deep ultraviolet plasmonic enhancement of
single protein autofluorescence in an Al ZMW. This figure has been
reproduced from ref. 31 with permission from ACS Publications,
copyright 2019. (b) A hybrid Au–Si zeromodewaveguide for enhanced
single molecule detection. This figure has been reproduced from ref.
30 with permission from the Royal Society of Chemistry, copyright
2019. (c) Enhanced single molecule fluorescence detection with
a plasmonic nanowell–nanopore device architecture made of
a nanowell fabricated in a gold film (orange) with a nanopore drilled in
a freestanding Si3N4 membrane (light green). This figure has been
reproduced from ref. 40 with permission from Wiley, copyright 2017.

© 2021 The Author(s). Published by the Royal Society of Chemistry
of the molecules inside the zeptolitre detection volume, ZMWs
can also modify the uorescence photokinetics decay rates,32,33

improving the net detected photon count rate per molecule.22,34

Although the most explored ZMW geometry is a circular hole
prepared on a metallic lm,35 recently several groups investi-
gated alternative ZMW designs. In particular, rectangular
ZMWs realized either on Al or Au–Si bilayers (Fig. 1(a) and (b),
respectively), have been proved to yield signicant enhance-
ment both in terms of uorescence signals and volume
reduction.22,29,30

Alternatively, the use of apertures in metallic lms and
whose depth is partially engraved in a transparent substrate
have been proved as a potential approach to increase the uo-
rescence of molecules.34 Current efforts in ZMW optimization
are also devoted towards extending their working spectral range
down to the UV, where several bio-molecules have intrinsic
uorescence, thus enabling label-free detection.26,31 Thanks to
ZMW technology, a wide range of applications have been
enabled, from DNA sequencing36 to enzymatic reactions.25

Moreover, the development of sensing architectures based on
the ZMW concept paved the way for the realization of a new
class of sensing platforms, so called solid-state nanopores,37

and consequently the subclass of plasmonic nanopores.1

Nanopore technology recently got massive attention, in partic-
ular for single molecule detection and sequencing.38–40 In the
last few years, several groups investigated different congura-
tions of plasmonic nanopores. A very smart as well as simple
geometry has been proposed by Meller and co-workers, who
realized a ZMW on a transparent thin Si3N4 membrane in
a ow-through conguration by drilling a sub-10 nm hole in the
membrane using a high-resolution transmission electron
microscope40 (Fig. 1(c)). This platform enables enhanced single-
molecule uorescence detection and can be integrated with an
electrical read-out of DNA translocation through the nanopore.
Several optimizations or variations of this design have been
reported. In terms of both local eld connement and
enhancement, an outstanding example is represented by
a bowtie antenna (dimer made of Au triangles) fabricated in
close proximity to a solid-state nanopore.38
Spectroscopic techniques used in plasmonic-based single-
molecule sensing

Although uorescence is the most used spectroscopic method
in ZMW and nanopore-based single-molecule experiments,
other phenomena have been investigated with very interesting
outcomes. For instance, Förster resonance energy transfer
(FRET) enhancement has been demonstrated in a ZMW.25,26,41

The exploitation of the FRET mechanism in plasmonic nano-
pores has been recently proposed as an efficient approach to
multiplex maximum uorescence wavelength channels by
means of life-time/intensity multiplexing.42,43 The latter can nd
application in nanopore protein sequencing, where the high
number of distinct amino acids to be discriminated (20) makes
the uorescence-based sequencing far more challenging.
Moreover, plasmonic nanocavities have been demonstrated to
enable forbidden dipole–dipole FRET exchanges.24,44,45
Nanoscale Adv., 2021, 3, 633–642 | 635
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In the case of non-uorescent molecules, surface-enhanced
Raman scattering (SERS) spectroscopy performed on plas-
monic nanocavities has been demonstrated to enable single-
molecule sensitivity.46–51 The ability of SERS to detect these
ngerprints with single-molecule sensitivity can be of para-
mount importance in plasmonic-based sequencing applica-
tions. In fact, by probing the SERS signals of four nucleotides
and DNA oligonucleotides, the vibrational modes of single
molecules very close (�1 nm) to a metallic nanopore can be
detected, owing to the enhanced electromagnetic elds.52 It is
well-known that every molecule has its own Raman ngerprint,
which is related to the building blocks of bio-molecules such as
DNA, RNA, and proteins. In attempts to reach high and repro-
ducible SERS signals, several types of plasmonic pores have
been tested in recent years showing that the approach is
potentially a winning strategy. As a signicant example, recently
van Dorpe and colleagues were able to detect DNA adsorbed
inside a plasmonic nanoslit, reporting a spectroscopic library of
nucleotides identied with single-molecule sensitivity.52
From nano to picocavities for high-resolution single-molecule
imaging and spectroscopy

Visualizing single molecules with chemical recognition repre-
sents a fundamental target in nano-biotechnology. Vibrational
spectroscopy based on tip-enhanced Raman scattering (TERS)
allows accessing the spectral signals of molecular species very
efficiently via the strong localized plasmonic elds produced at
the tip apex.53 In this context, recently Jaculbia and co-workers
reported nanocavity-based TERS as a versatile tool for single
molecule chemical analysis at the nanoscale.47 Similarly,
nanocavities can be exploited to reconstruct single molecules'
spatial locations within a plasmonic hotspot with an accuracy of
1 nm, thus enabling nanoscopy of their vibrational signatures.54
Fig. 2 Ångström-resolved Raman images of vibrational modes for
a single molecule by scanning Raman picoscopy (SRP). (a) The nano-
cavity defined by the silver tip and substrate generates a strong and
highly confined plasmonic field, which is used for the excitation and
emission enhancement of the Raman signals from a single molecule.
(b) SRP image at 3072 cm�1 used for the estimation of spatial reso-
lution. (c) Line profile of Raman signal intensities corresponding to the
dashed line in (b), exhibiting a lateral spatial resolution down to 1.5(1) Å.
This figure has been reproduced from ref. 55 with permission from
Oxford Academic, copyright 2019.

636 | Nanoscale Adv., 2021, 3, 633–642
Recently, Hou and colleagues were able to image individual
vibrational modes at the Ångström level for a single Mg-
porphine molecule, revealing distinct characteristics of the
vibrational modes in real space (Fig. 2).55 The same group also
demonstrated spatially and spectrally resolved photo-
luminescence imaging of a single phthalocyanine molecule, as
well as the local mapping of the molecular exciton energy and
linewidth, coupled to nanocavity plasmons in a tunnelling
junction with a spatial resolution down to �8 Å.56 Similarly, Lee
et al. reported similar results using TERS at the precisely
controllable junction of a cryogenic ultrahigh-vacuum scanning
tunneling microscope, showing that Ångström-scale resolution
is attained at subatomic separation between the tip atom and
a molecule in the quantum tunneling regime of plasmons.57

They were able to record the vibrational spectra of a single
molecule, obtain images of normal modes and analyse at the
atomistic level the intramolecular charges and currents driven
by vibrations.

In this context, in pioneering work Baumberg and colleagues
were able to place a self-assembled monolayer of biphenyl-4-
thiol molecules sandwiched in a picocavity made of a gold
nanoparticle on top of a gold lm and able to localize light to
volumes well below 1 nm3. This architecture was then used to
experimentally record time-dependent Raman spectra from
individual molecules at cryogenic temperature.58 They reported
extreme optical connement yielding a 100-fold enhancement,
thus enabling optomechanical coupling between the cavity eld
and the vibrations of individual molecular bonds. In the same
year they also showed that by scaling the cavity volume to less
than 40 nm3, they could achieve room temperature strong
coupling at the single-molecule level.59 Recently, the same
group reported large-scale room-temperature single-molecule
detection by using nanocavities to retrieve either the
enhanced Raman scattering of the molecules (Fig. 3)60 or their
uorescence emission.4

Finally, it is worth mentioning here that narrow ngerprint
Raman peaks are promising for biomedical analysis. Raman
sensing based on a ow-through scheme is desirable for many
practical applications, including lab-on-chip diagnostics.
Recently, Huang et al. introduced a new scheme to achieve on
demand control and delivery of single plasmonic nanoparticles,
which can be functionalized with Raman tags. Using an anal-
ogous strategy and exploiting the enhanced optical eld in
a picocavity formed by translocating a gold nanoparticle
coupled to a plasmonic nanohole, they were able to discrimi-
nate the SERS signal of single DNA bases in single oligonucle-
otides by an electro-plasmonic trappingmechanism.27 They also
used this approach to detect single amino acid residues in
polypeptides.61
Nanocavities realized by using DNA-based nanotechnology

Over the last decade, the DNA origami technique has been
consolidated into the state-of-the-art approach for the self-
assembly of nanophotonic structures.62,63 DNA origami is
fabricated in a bottom-up manner by folding a “long” single-
stranded DNA (ss-DNA) sequence (termed “scaffold”, �8000
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0na00715c


Fig. 3 Room-temperature optical picocavities below 1 nm3 for
accessing single-atom geometries. (a) Schematic of a nanoparticle-
on-mirror (NPoM) geometry. The inset shows the formation of
a picocavity by themovement of the surface atom to the adatom. (b, c)
Schematic of picocavity adatoms on the Au substrate and nanoparticle
facet, giving different interactions with 4-cyanobiphenyl-4-thiol (NC-
BPT). (d) Consecutive SERS spectra showing transient peaks resulting
from both forms of the picocavity. (e) SERS spectra for the picocavity
adatom on the Au substrate and (f) picocavity adatom on the nano-
particle facet. This figure has been reproduced from ref. 60 with
permission from ACS Publications, copyright 2018.

Fig. 4 DNA origami based nanocavities. (a) Basic principle: a “long” ss-
DNA sequence (Scaffold) is folded with the help of hundreds of “short”
ss-DNA sequences into the predesigned shape. MNPs, previously
functionalized with DNA, can be incorporated through DNA hybrid-
ization. (b) Bowtie antennas self-assembled onto DNA origami struc-
tures fabricated based on two rectangular DNA origami structures. A
single Cy5 Raman active molecule is incorporated at the bowtie hot-
spot. (c) Corresponding TEM image (scale bar 50 nm) and (d) Raman
spectra of an individual bowtie with a single Cy5 (red) and a bulk
solution of Cy5 (black). (b)–(d) have been reproduced from ref. 76 with
permission from Wiley, copyright 2018.
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bases long) into a predesigned shape with the help of approxi-
mately 200 “short” ss-DNA sequences (termed “staples”, �40
bases long and complementary to the scaffold sequence – see
Fig. 4(a)). These structures can be used as breadboards where
different species, including single-photon emitters such as
organic uorophore molecules and quantum dots, together
with colloidal metallic nanoparticles (MNPs) of different
shapes, materials and sizes, can be incorporated with nano-
metric accuracy and stoichiometric control64 to form
nanocavities.

Compared to conventional “top-down” nanofabrication
techniques, i.e., electron or ion beam lithography, the DNA
origami technique has three main advantages. First, it is
a bottom-up self-assembly process in which billions of struc-
tures can be fabricated in a parallel fashion without the need of
costly equipment. Second, it employs colloidal MNPs, which are
less prone to surface defects and can be fabricated with higher
uniformity than evaporated metallic structures leading to
improved reproducibility and performance.65 Finally, with this
technique, a single-photon emitter can be routinely placed in
the hotspots of MNPs with nanometer precision, a key factor in
controlling the coupling between single molecules and nano-
cavities.66,67 These advantages were initially exploited to revisit
experiments on uorescence-enhanced spectroscopy68,69 and
SERS70–72 using dimer nanocavities made of Au or Ag, achieving
enhancement values outperforming in some cases those
© 2021 The Author(s). Published by the Royal Society of Chemistry
obtained by using nanocavities fabricated with more complex
top-down lithographic techniques.73 While most DNA origami
based dimer nanocavities are based on spherical MNPs, aniso-
tropic geometries such as gold nanorods were also demon-
strated.74,75 One step further was recently taken by Ding's group
by positioning and orienting triangular gold nanoplates onto
two rectangular DNA origami structures in order to fabricate
bowtie antennas76 (see Fig. 4(b) and (c)). The advancement
introduced by the DNA origami fabrication technique is re-
ected by smaller and more homogenous gaps between the
triangular plates reaching 5 � 1 nm, which represents an
extremely challenging gap to fabricate with lithographic tech-
niques. Moreover, smaller gaps translate into a 200-fold higher
electric eld enhancement. However, the main advantage of
this approach is that single Cy3 and Cy5 Raman active mole-
cules could be placed at the hotspot of the bowtie antenna in
order to demonstrate single-molecule SERS (Fig. 4(d)).

Another improvement recently enabled by the DNA origami
technique is the possibility to tune the gap of dimer nano-
cavities. The groups led by Liedl and Lohmüller showed that the
distance between two Au 40 nm MNPs self-assembled onto
a DNA origami structure can be adjusted by increasing the
cavity temperature, see Fig. 5(a). An increase of approximately
200 �C leads to a shrinking of the DNA molecule and thus to
a reduction of the gap size from 2.5 to 1.4 nm.49 The gap thermal
shrinking was monitored by studying the redshi in the scat-
tering cross-section of the dimer nanocavity (Fig. 5(b)) and by
Nanoscale Adv., 2021, 3, 633–642 | 637
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Fig. 5 Gap control and NPoM nanocavities. (a) Sketch of the Au MNP
dimer bound to a rectangular DNA origami structure for thermal
control of the nanocavity gap. (b) Scattering cross-section as the dimer
gap is reduced by increasing the temperature. (c) Scattering spectra of
an individual dimer structure modified with a single Cy3.5 molecule
placed at the hot spot before (black) and after a first (green) and
a second (red) round of a 10 s laser excitation (612 nm, �60 kW cm�2).
This figure has been reproduced from ref. 49 with permission from
ACS Publications, copyright 2016. (d) Fluorescence measurements on
different samples in which the single molecule was laterally displaced.
Values were normalized to the emission on bare glass. Inset: sketch of
the fabrication approach of the NPoM using a DNA origami as a spacer.
A single molecule can be placed at the NPoM hotspot with nanometer
precision. This figure has been reproduced from ref. 77 with permis-
sion from ACS Publications, copyright 2018.
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SERS measurements of a single Cy3.5 molecule placed at the
hotspot.

An alternative approach for the fabrication of nanocavities,
using the NPoM geometry, was proposed by Chikkaraddy and
co-workers.77 A rectangular DNA origami structure was used as
a spacer in order to self-assemble a single spherical Au MNP
onto an Au layer forming an NPoM nanocavity (Fig. 5(c)). This
approach enabled the subsequent incorporation of single
molecules at a well-dened position within the NPoM cavity gap
in contrast to initial studies where neither the position nor the
stoichiometry of uorescent molecules could be controlled.78

This level of position control was exploited to map the hotspot
of the NPoM cavity by placing single Cy5 molecules at different
positions within the 5 nm gap between an 80 nm gold MNP and
a thick gold layer using a rectangular DNA origami (Fig. 5(d)). By
performing uorescence measurements at each position, the
638 | Nanoscale Adv., 2021, 3, 633–642
spatial prole of the local density of optical states was estimated
with a resolution of approximately 2 nm.77
Conclusions

In summary, since their development, plasmonic nanocavities
have gained growing interest due to their unique capabilities to
conne and concentrate the EM eld in the nanometer and sub-
nanometer range. This effect has been exploited to apply spec-
troscopic techniques (e.g., SERS and uorescence) to detect
single molecules with a strong impact on biomedical applica-
tions such as real-time DNA sequencing. ZMWs and plasmonic
nanopores still represent the most valuable platforms for single
diffusing/translocating molecule detection at high concentra-
tions in the micromolar range. They can be used not only in
single-molecule spectroscopy, but also integrated with addi-
tional functionalities such as optical trapping and thermo-
electro-phoretic effects. Moreover, advanced nanofabrication
approaches enable the preparation of hybrid devices that inte-
grate both solid-state and biological elements (such as organic
coatings or functional proteins).79,80 Future development in
nanocavities engineering might include the exploration of high-
index dielectric materials for the fabrication of dimers,81,82 and
their integration with MNPs.83 Other directions might include
the combination of dimers and NPoM structures, so called
dimers-on-lm, in order to obtain narrow resonances through
the superposition of bright and dark modes.84,85 DNA nano-
technology might also play a fundamental role in optimizing
nanocavity hotspots. This paves the way for the combination of
nanocavities with, for example, bio-assays for DNA sensing and
diagnostics.86 Finally, we also envision a synergistic combina-
tion of the DNA origami technique with nanoapertures87,88 in
order to control and address their occupation.
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