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Porphyrin derivatives are key components in natural machinery enabling us to store sunlight as chemical
energy. In spite of their prominent role in cascades separating electrical charges and their potential as
sensitizers in molecular devices, reports concerning their electronic transport characteristics are
inconsistent. Here we report a systematic investigation of electronic transport paths through single
porphyrin junctions. The transport through seven structurally related porphyrin derivatives was
repeatedly measured in an automatized mechanically controlled break-junction set-up and the recorded
data were analyzed by an unsupervised clustering algorithm. The correlation between the appearances
of similar clusters in particular sub-sets of the porphyrins with a common structural motif allowed us to
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1 Introduction

Porphyrins and their related macrocycles are promising
building blocks for the construction of functional molecular
devices, as their rich and tunable optical and electrical prop-
erties can be employed in a wide range of applications,
including those in catalysis, electrocatalysis, solar energy
conversion, and photodynamic cancer therapy.'”® Furthermore,
porphyrin synthesis is well established, allowing us to fine tune
their chemical design in order to study fundamental charge
transport through single molecules.” Side groups can be added
to porphyrins in a modular way, allowing us to methodically test
various chemical designs with different anchoring, bulky and
spacer groups.’ Additionally, expanded porphyrins have been
suggested as building blocks for electronic applications dis-
playing rich transport variety depending on their topology.**
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However, it has been reported that porphyrin molecules have
a low conductance value of the order of 1 x 10> Gy, albeit with
a low B-attenuation factor especially at higher bias voltages,*>**
with only a few studies recording higher conductance (=1 x
10~* G,).**** The extensive m-system enables the formation of
molecular junctions with different stable configurations,
leading to a large spread in conductance.'®" Studies about the
influence of a coordinating metal show that the presence of
a central ion hardly alters the conductance of the parent
porphyrin structure."® However, the incorporation of Zn can
induce conformational changes that lead to the appearance of
an additional conducting state.'® This rich variety of structural
aspects reflected in their transport behaviour makes porphyrins
interesting model compounds, but limits their potential for
applications. These limitations could be overcome by an opti-
mization of the molecular design, however the identification
and characterization of the possible conductance paths at the
single molecule level is required for this.

In this study, we systematically investigate transport across
porphyrin-based compounds in order to identify the influence
of structural features. In particular, the presence of anchoring
groups, the bulkiness of the substituents, the presence of
a metal ion and the dimension of the 7-system are correlated
with the recorded transport properties. For this reason, we
synthesized seven different compounds with closely related
geometry features, and measured them using an automatized
mechanically controlled break-junction technique (MCB]J). By
employing an unsupervised clustering algorithm™?® on
a unique set of data consisting of almost 100 000 conductance
traces, we identify classes of common behaviours in the
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breaking traces and their correlation with structural features of
the molecules under investigation enables us to link each of
them to a different electron pathway across the porphyrins.

2 Experimental

The chemical structure of the porphyrin molecules included in
this study can be found in Fig. 1a and b. Compounds P1, P2 and
P3 share the same linear backbone, consisting of the porphyrin
core, phenylene-acetylene spacers and thiol anchoring groups,
but vary in their lateral bulky groups. With this series, the
influence of the steric requirement of the peripheral phenyl
subunit shall be studied. ZnP1, a variant of P1 which includes
a Zn(u) ion in the porphyrin core, is employed to investigate
variations in the transport characteristics emerging from the
presence of the metal center.

The role of the anchoring groups and of the spacers is
investigated by comparing the results of P1 with those obtained
from three derivatives that possess the same lateral bulky
groups, but have different components in their backbones
(Fig. 1b): R1 exposes only on one side the backbone structure of
P1 comprising a thiol anchor group, R2 has neither acetylene
spacers nor anchoring groups, whereas R3 has a similar back-
bone to P1, but with terminal ¢ert-butyl groups replacing the
thiol anchoring groups.

Samples consist of a thin gold constriction suspended on top
of a flexible substrate coated with an insulating layer of poly-
imide, as depicted in Fig. 1c. The sample is mounted in a three-
point bending mechanism, clamped between two lateral
supports and the head of a central pushing rod. Upon bending,
the gold wire stretches until rupture, which leaves two atomi-
cally sharp electrodes whose separation can be adjusted
mechanically. The wire can be fused back by reducing the
deformation of the substrate. The breaking-making process can
be repeated thousands of times while the conductance of the
junction is recorded. A two-dimensional (2D) histogram of the
conductance vs. displacement is built from the “breaking
traces”. The measurements were performed in an MCB]J setup at
room temperature in air. All the measurements presented in
this work have been performed with a bias voltage of 100 mV.
Each dataset presented in this work consists of 10 000 consec-
utive traces recorded on the same junction and without data
selection.

3 Synthesis

The porphyrin model compounds studied in this work were
synthesised by variations of reported procedures, which are
summarized in Fig. 2.>*** The porphyrin subunits of R2 and the
intermediates 1, 2, and 3 were assembled from the corre-
sponding bis-pyrroles and aldehydes. For the precursor 7 of the
mono-functionalized porphyrin, both aldehydes were used in
equal amounts. Condensation of literature-known 2,2'-((4-(tert-
butyl)phenyl)methylene)bis(1H-pyrrole)* with either 4-(tert-
butyl)benzaldehyde or commercially available 3-(trimethylsilyl)
propiolaldehyde provided R2 or 1 respectively. Using instead
either 2,2'-((3,5-di-tert-butylphenyl)methylene)bis(1H-pyrrole)**
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Fig. 1 (a) Structural designs of P1, ZnP1, P2 and P3; (b) structural
formula of R1, R2 and R3. The different parts of the molecule have
been coloured dividing the anchoring groups (red) and the bulky side
groups (blue). The molecules are synthesized with R = acetyl, but upon
deprotection at the electrode surface, R represents either a hydrogen
atom or the gold electrode. (c) Schematics of the mechanically
controllable break-junction (MCBJ) setup.

or 2,2-(mesitylmethylene)bis(1H-pyrrole)* in combination with
3-(trimethylsilyl)propiolaldehyde provided 2 and 3 respectively.
The less symmetric 7 was condensed from a 2/1/1 mixture of
2,2'-((4~(tert-butyl)phenyl)methylene)bis(1H-pyrrole),?  4-(tert-
butyl)benzaldehyde, and 3-(triisopropylsilyl)propiolaldehyde.>
For the condensation reactions, a protocol of Anderson et al
was adapted, which was already used for the preparation of
literature-known 2.%¢

This journal is © The Royal Society of Chemistry 2019
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Fig.2 Synthetic overview. (a) (1) BF5-OEt,, CH,Cly, rt, 45 min. (2) DDQ, CH,Cly, rt, 1 h. (b) (1) BF3- OEt,, CH,Clp, 0°Crt, 520 min. (2) DDQ, CH,Cl,,
rt, 1h. (c—e) Zn(OAc),, CH,Cly, CHzOH, rt, 1 hto 3 d. (f) (1) TBAF, 2Me-THF, rt, 1 h. (2) S-(4-lodophenyl)ethanethioate, Pd(PPhs)4, Cul, THF, NEts, rt,
1-16 h. (g—j) TFA, CH,Cl,, rt, 2 h. (k) (1) BF5-OEt,, CH,Cly, rt, 5 min. (2) DDQ, CH,Cl,, rt, 1 h. (1) Zn(OAc),, CH,Cl,, CH3OH, rt, 1 h. (m) (1) TBAF, 2Me-
THF, rt, 1 h. (2) S-(4-lodophenyl)ethanethioate, Pd(PPhs)4, Cul, THF, NEts, rt, 16 h. (n) TFA, CH,Cl,, rt, 2 h.

Condensation reactions were catalysed by BF;-OEt, in
CH,Cl, at either 0 °C or room temperature for 5 to 45 minutes
prior to oxidation by 2,3-dichloro-5,6-dicyano-p-benzoquinone
(DDQ) at room temperature for one hour. The ¢, symmetric
porphyrins R2, 1, 2 and 3 were isolated in typical yields of 27 to
31%. The less symmetric compound 7 was condensed in
a statistic fashion leading to 9% yield. Metalation of the
porphyrins by zinc(n) acetate in a CH,Cl,/CH;OH mixture for
one hour to three days at room temperature provided the Zn-
porphyrins 4, 5, 6, and 8 almost quantitatively.

Further functionalization of the porphyrins 4-6 required the
liberation of the alkyne group, which was achieved by treatment
with tetrabutylammonium fluoride (TBAF) at room temperature
for one hour in 2-methyltetrahydrofuran (2Me-THF). Without
further purification, these compounds were engaged in Sono-
gashira-Hagihara cross couplings*®> with excesses of the
iodoaryls of interest. The coupling reaction was performed in
dry and degassed THF and NEt; with Pd(PPh;), and Cul as
catalysts at room temperature with reaction periods between 2
and 16 hours. Using S-(4-iodophenyl)ethanethioate as iodoaryl
gave access to ZnP1 in isolated yields of 29%. Treatment with
trifluoroacetic acid (TFA) in CH,Cl, for two hours at room

This journal is © The Royal Society of Chemistry 2019

temperature gave the free base analogues P1, P2, P3, R1, and R3
almost quantitatively.

The identity of all porphyrin derivatives was corroborated by
'"H-NMR spectroscopy and mass spectrometry. In addition,
single crystals suitable to analyse the solid state structure by X-
ray diffraction were obtained for 1, 2, 3, 4, 5, ZnP1, P2, and R2. A
sulphur-to-sulphur distance of 2.41 nm could be extracted from
the crystallographic data of ZnP1 and P2, showing indepen-
dence of the structural variations, such as bulky groups or the
incorporated Zn(u) ion (Fig. 3). Detailed description of the
experimental procedures and the analytical data of all the
compounds are provided as ESL}

4 Results

Fig. 4a and b show the 2D histograms of two representative
measurements performed on P1 and R2, respectively. While for
P1 a clear plateau is found above 1 x 10~* G, and extending for
about 2 nm (Fig. 4a), no clear plateau is observed in the case of
R2. Examples of individual breaking traces recorded for each
molecule are presented in Fig. 4c and d. Clear and flat plateaus
above 1 x 10~ * G, are observed in the case of P1, whereas, in the
case of R2, the plateau is absent. All the molecules containing

Chem. Sci,, 2019, 10, 8299-8305 | 8301
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Fig. 3 ORTEP-representation of solid-state structures. (a) P2 and (b)
ZnP1. Thermal ellipsoids are plotted at a 50% probability level. The
dashed red line displays the main axis and the S-S distance.

two thiol groups as anchoring sites (P1, P2, P3, ZnP1) show
a similar conductance histogram to that in Fig. 4a with a very
well-defined plateau, in contrast to the measurements of the
reference molecules R1, R2 and R3 which lack this design
feature (see Fig. S17).

To further investigate the charge transport pathways, an
unsupervised clustering algorithm has been used to subdivide
the different datasets in four different classes.”® Classes A-C are
associated with the presence of a molecule inside the junction,
whereas class D (see Fig. S2t) contains the traces in which no
molecular junction has been formed and only shows the expo-
nential decay typical of tunnelling that occurs through a barrier.
The results obtained for P1 are reported in Fig. 5, as an example.
Class A constitutes 64.7% of the molecular junctions and
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Fig. 4 Two-dimensional conductance vs. displacement histograms
built from 10 000 consecutive breaking traces of (a) P1 and (b) R2; no
data selection was made. Both measurements were performed with
a bias of 100 mV at room temperature. Examples of individual
conductance breaking traces for (c) P1 and (d) R2 (with a horizontal
offset of 3 nm for clarity).
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contains the traces that exhibit a plateau of about 2.2 nm
length. A log-normal fit to the peak in the 1D conductance
histogram reveals it being centred around 2 x 10~* G, (red
colored high-conductance area in Fig. 5c). The traces grouped in
class B (28.8%) form a slightly shorter and wider plateau, cen-
tred at 3 x 107> G, (green colored medium-conductance class in
Fig. 5¢). Finally, class C (6.5%) shows a broad feature centred at
2 x 107° G, (blue in Fig. 5d). The three classes together
constitute 12.6% of the total traces. The same clustering anal-
ysis has been applied to all the datasets and four groups with
similar features have been found. Table 1 summarizes the
occurrence of each class for the various molecules.

Conductance [

3 "2 3
Electrode displacement [nm]

d) c L) A (62.7%)

102 10t 10°

10 107
Conductance [G,]

Fig. 5 Clustering analysis of the conductance properties of P1. (a—c)
Two-dimensional histograms of the three different categories of
breaking traces obtained from the reference-free cluster analysis
applied to P1. (d) One-dimensional conductance histograms corre-
sponding to classes A, B and C. By fitting a log-normal distribution to
the one-dimensional histograms, we can extract the conductance
peak positions at 2 x 107 G for class A (64.7% of the molecular
traces), 3 x 107> G for class B (28.8%) and 2 x 10~° Gg in the case of
class C (6.5%).

Table 1 Summary of the occurrence of the three molecular classes
for each molecule. Class A corresponds to the high-conductance
class, class B corresponds to the medium-conductance class and class
C corresponds to the low-conductance class

Molecule Class A Class B Class C
P1 v v v

P2 v v v

P3 v v v
ZnP1 v v v

R1 v

R2

R3 v v

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Two-dimensional conductance vs. displacement histograms
for (a) P1, (b) ZnP1, (c) P2 and (d) P3. The histograms only include
breaking traces with the behaviour present in class A. All datasets have
similar length and conductance values.

5 Discussion

While class A is present only in the four compounds containing
two thiol anchoring groups (P1, P2, P3 and ZnP1), class B is also
found in R3. Class C, on the other hand, is present in all the
measurements except those of R2. The 2D conductance histo-
grams of class A obtained in the case of the molecules

a) b)

Class A Class B
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containing the same backbone exposing two terminal thiol
groups (P1, ZnP1, P2 and P3) are displayed in Fig. 6. The
observed differences in plateau conductance or length are
within the variations typically found in MCB]J experiments even
when performed on the same molecule.”” For this reason, we
attribute this feature to the junction configuration in which the
molecule is connected to both electrodes via the thiols and
transport occurs from sulfur to sulfur. This is supported by the
average trace length of about 2 nm, which is in good agreement
with the estimated length from the crystallographic measure-
ments of the sulfur-to-sulfur distance (Fig. 3). Noticeably, the
presence of the Zn atom does not affect this plateau, indicating
that the electron paths involved in transport are mainly local-
ized on the aromatic system of the ligand." We further note that
for P3, class A exhibits the least slanted conductance plateau
with the narrowest distribution (see Table S17). In addition, the
breaking of the molecular junction around 2 nm occurs in
a more abrupt way compared to the other derivatives. In this
respect, it is interesting that the bulky groups of P3 are more
spatially localized above and below the porphyrin system than
for the other molecules P1 and P2, thus reducing access to the
system of the porphyrin core.

The correlation of the presence/absence of particular classes
with the structure of the studied porphyrin allows us to assign
possible transport paths of the molecular junction (Fig. 7 and
S17t). Class A is assigned to the molecule bridging the elec-
trodes via the thiol anchor groups, as intended by the molecular
design (Fig. 7a). The matching length of the plateau with the
dimension of the structure and the fact that exclusively the
porphyrins with terminal thiol-exposing backbones show that
this class corroborate the assignment.

Both classes B and C are not observed for the porphyrin
compound without phenylene-acetylene spacers (R2), suggest-
ing that their presence introduces additional charge transport
pathways. Compared to that observed in class A, the plateau in
class B has a lower conductance, and it is shorter, more spread
out and observed less frequently. In the case of R3, not con-
taining any thiol groups, this plateau is more slanted. Hence,
the presence of the thiol groups seems to stabilize the junction,
yielding more defined plateaus even if the electron injection
does not occur through the sulfur atom. The charge transport
pathway could thus involve the acetylene spacer or the phenyl

c)

Fig. 7 Suggested transport pathways corresponding to the 3 different classes through the molecular structure displayed with P1. Au represents
the electrode. The contact to the corresponding subunit is schematically drawn.

This journal is © The Royal Society of Chemistry 2019
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ring on both sides of the molecule, as it is not observed in
molecules that do not contain these groups (Fig. 7b).

Class C, on the other hand, can be related to the path that
results from injection in the m-system of the acetylene group
and ends at one of the lateral phenyl rings (Fig. 7c). This is
suggested by the fact that this class is also observed in molecule
R3 that does not have sulfur atoms in its structure but
comprises the components suggested for the current path. In
this case, however, the plateau is more slanted, again suggest-
ing that the sulfur plays a role in the stability of the junction
configuration. The role of sulfur in mechanically stabilizing the
junction configuration is also corroborated by the reduced
conductance spread in R1, which does expose a thiol as
a potential mechanical anchor, compared to R2 and R3, which
do not. To check the stability of the different classes, self-
breaking measurements were performed in the case of
compound P1 (see Fig. S61 for more details). While class A
showed high stability (up to 5 minutes at room temperature),
the lifetime of classes B and C did not exceed the tens of
seconds. These observations confirm the hypothesis about the
mechanical stabilization role of the thiol anchors.

The pathways attributed to classes B and C can be compared
to the “para” and “ortho” paths found by Li et al. in the case of
porphyrins without acetylene spacers and with pyridine
anchoring groups. While in their experiments the two path-
ways resulted in conductances that differed by a factor of 1.4, in
our case the difference is about an order of magnitude.

Finally, apart from tunnelling traces (class D), none of the
classes found in R2 exhibits a clear molecular signature. This
confirms that the bulky groups do not form an efficient injec-
tion point for charges and that the transport path from one
bulky group to another is ineffective.

6 Conclusion

In this study, we report an unprecedented dataset of almost
300 000 traces measured on seven different porphyrin deriva-
tives. We identified transport pathways by methodically and
purposefully modifying the chemical design of these porphyrin-
based compounds and by applying an unbiased clustering
algorithm for the analysis of the breaking traces. By introducing
phenylene-acetylene as the spacer and thiols as anchor groups,
we achieved very stable molecular junctions with a high
conductance up to 2 x 10~* G,. The observed high-conductance
plateau is related to the thiol-to-thiol conduction path. Both,
bulky groups and the Zn ion as a metal center did not have
a significant influence on the junction properties, suggesting
that the conductance through the molecule is mainly localized
on the conjugated porphyrin system. Other classes with lower
conductance were found and were related to the presence of
phenylene-acetylene spacers.
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