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ivity of nitriles using Cu(II) catalysis
– potentially prebiotic activation of nucleotides†

Ziwei Liu, a Angelica Mariani, a Longfei Wu,a Dougal Ritson,a Andrea Folli,b

Damien Murphyb and John Sutherland*a

During the transition from prebiotic chemistry to biology, a period of solution-phase, non-enzymatic

activation of (oligo)nucleotides must have occurred, and accordingly, a mechanism for phosphate

activation must have existed. Herein, we detail results of an investigation into prebiotic phosphate

activation chemistry using simple, prebiotically available nitriles whose reactivity is increased by Cu2+

ions. Furthermore, although Cu2+ ions are known to catalyse the hydrolysis of phosphodiester bonds, we

found this deleterious activity to be almost completely suppressed by inclusion of amino acids or

dipeptides, which may suggest a productive relationship between protein and RNA from the outset.
Introduction

For over half a century the search for a simple prebiotic reagent
which is capable of efficiently activating inorganic/nucleoside
phosphate(s) has been largely unsuccessful.1 Yet, it stands to
reason that an abiotic means of activating nucleotides (to allow
replication by non-enzymatic polymerisation/ligation) was
available on Earth in order to progress toward a more advanced
chemical system. To circumvent this impasse, generally
speaking, two approaches have been taken. In the rst, N,N-
dialkyl carbodiimides, not considered to have been available on
early Earth but ubiquitous in synthetic chemistry, are used as
phosphate activating agents, oen at high concentration, in the
presence or absence of other catalysts.2 A parallel has been
drawn between N,N-dialkyl carbodiimides and carbodiimide
(HN]C]NH), the tautomer of cyanamide, a presumed pre-
biotically abundant molecule.1b However, this tautomeric
equilibrium lies overwhelmingly in favour of cyanamide,
meaning that only trace amounts of carbodiimide are available
for reaction with phosphate, which is reected in the vast
excesses of cyanamide that have to be employed to achieve
moderate yielding but sluggish reactions.3 Consequently,
arguments describing N,N-dialkyl carbodiimides as suitable
prebiotic surrogates for cyanamide are not convincing. In the
second approach, preformed (puried) phosphorimidazolides
are used in the desired reaction, oen with multiple rounds of
addition thereof. Orgel found imidazole was a likely prebiotic
molecule,4 produced by photochemical isomerization of b-
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aminoacrylonitrile.5 Furthermore, realising that nucleoside-50-
triphosphates are kinetically stable in the absence of enzyme
catalysis, Orgel suggested that nucleophilic displacement of
pyrophosphate from a nucleoside 50-triphosphate by imidazole
would give the corresponding phosphorimidazolide, a molecule
with a similar free energy of hydrolysis to the parent triphos-
phate but also kinetically labile.6 Nucleoside 50-phosphor-
imidazolides are known to be capable of efficiently extending
a primer–template complex.7 However, absent from the litera-
ture is a prebiotically plausible, high-yielding, solution-phase
synthesis of these activated monomers. The obvious require-
ment for prebiotic phosphate activation coupled with the
obstinate problem of how prebiotic phosphate activation was
achieved, is likely why the use of implausible activating agents
and preformed phosphorimidazolides have been ‘tolerated’ in
origins of life research – in order that ‘downstream’ prebiotic
chemistry can be investigated. Current studies suggest that if
non-enzymatic RNA replication was achieved via sequential
monomer addition to a primer–template complex, phosphor-
imidazolides were required.8 If a convincing prebiotic synthesis
of phosphorimidazolides cannot be found, it would suggest that
non-enzymatic RNA replication was achieved via ligation of
oligonucleotides on a template, as suggested by the work of von
Kiedrowski.9 Furthermore, the chemistry which leads to acti-
vated (oligo)nucleotides could provide valuable insight into the
geochemical scenario in which phosphate activation, and
previous prebiotic synthesis, took place.

The early phase of high energy chemistry which must have
taken place on primitive Earth, would be expected to generate
a signicant amount of small, multiple bond-rich molecules.10

If the potential energy locked in these multiple bonds could be
harnessed, plentiful sources of prebiotic activating agents could
have been available. This was recognized many years ago and
was partly why molecules such as cyanate (NCO�), cyanogen
Chem. Sci., 2018, 9, 7053–7057 | 7053

http://crossmark.crossref.org/dialog/?doi=10.1039/c8sc02513d&domain=pdf&date_stamp=2018-09-07
http://orcid.org/0000-0002-1812-2538
http://orcid.org/0000-0002-2547-4224
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc02513d
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC009035


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
 2

01
8.

 D
ow

nl
oa

de
d 

on
 2

9/
10

/2
02

5 
3:

57
:3

9 
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
((CN)2) and cyanamide (NH2CN) were investigated as prebiotic
activating agents.1 It is noteworthy that a large number of
(proto)biomolecules are accessible in prebiotically plausible
syntheses using, or producing, these same, small, high energy
molecules.10,11 These chemical networks are consistent with
a geochemical scenario.10b,11c,12 Given that these molecules are
omnipresent in our protometabolic network, we were curious if
their re-evaluation, in the context of our developing geochem-
ical model, could provide a means to overcome inherent kinetic
barriers and ‘switch on’ their reactivity by nitrile coordination.
Thus, our attention turned to Fe2+, Fe3+, Ni2+, Cu2+, Co2+ and
Zn2+ ions. Intriguingly, work from the Dronskowski group had
shown that a variety of transition metal cations form complexes
with cyanamide 1. Being azophilic Cu2+ is expected to associate
strongly with cyanamide 1,13 but this is in contrast to oxophilic
metal ions such as Mg2+. We began to examine the effect of
these ions on reaction of adenosine 30-phosphate (2, A30P)
with 1.
Results and discussion

Over the past few decades, nucleoside 30-phosphates have been
employed as a model system to study prebiotic phosphate
activation chemistry.1a,9,14 In 1968, Orgel rstly recognized that
transiently activated nucleoside 30-phosphates would rapidly
Table 1 Cu2+-nitrile-mediated activation of A03P and effect of Gly or G

Entry Nitrile R

Yield of 3 or 20-trans

CuCl2

3b 20-add

1 1 84 n.d.c

2 4 n.d. n.d.

3 5 n.d. n.d.

4 6 5 n.d.

5 7 24 15

6 8 53 6

7 10 75 n.d.

8 11 35 n.d.

a Standard reaction conditions: nitrile (100 mM), 2 (50 mM), CuCl2 (25 mM
and 8) or pH 5.5 (entries 2, 3, 4, 6 and 7), heated at 40 �C for 20 hours.
assuming that when 3 hydrolyses it always gives 2 and 12 in 1.8 : 1 ratios

7054 | Chem. Sci., 2018, 9, 7053–7057
react intramolecularly with the adjacent nucleophilic 20-OH
group, consequently yielding nucleoside 20,30-cyclic phosphates
(e.g. A > P 3).1a More recently, we demonstrated the divergent
reactivity of the transiently activated intermediate, as the 20-OH
group can attack either phosphorus or carbon, with the
formation of the cyclic phosphate or a 20-transferred product,
respectively.9,14a,15 Hence, we began our study by investigating
the effect of different metal ions (including Fe2+, Fe3+, Ni2+,
Co2+, Cu2+ and Zn2+) on the cyanamide-induced activation of
A30P 2. In a typical experiment, cyanamide 1 and 2 were incu-
bated at 40 �C with, or without the metal ion, and the reaction
was monitored aer 20 h. While neither Fe2+ nor Fe3+ displayed
any detectable catalytic effect on the cyclisation reaction and
only a small improvement could be found when Zn2+ or Ni2+ or
Co2+ were included in themixture, Cu2+ efficiently promoted the
formation of adenosine 20,30-cyclic phosphate (Table S1†). The
catalytic effect of copper was signicant even at concentrations
as low as 1% relative to 1 (yield: 52% in 20 hours), whilst no
competing 20-transfer was observed under all the conditions
tested. This cyanamide-Cu2+ system proved to be able to activate
not only 3'-, but also 50-phosphates, as demonstrated by the
formation of adenosine pyrophosphate (A50PP50A, yield: 9%),
following incubation of adenosine 50-phosphate (A50P) under
similar conditions. But we have been unsuccessful in attempts
to form the imidazolide of A50P by in situ nitrile group activation
lyGly

fer adductsa (%)

CuCl2 and Gly CuCl2 and GlyGly

uct 3b 20-adduct 3b 20-adduct

85d n.d. 80 n.d.

n.d. n.d. n.d. n.d.

n.d. n.d. n.d. n.d.

2 n.d. n.d. n.d.

21 8 23 5.4

50 4 97e 3

60 n.d. 5 n.d.

22 n.d. 34 n.d.

) and Gly or GlyGly (50 mM) in 90% H2O, 10% D2O at pH 4 (entries 1, 5
b Inferred from the amount of 3 plus adenosine 20-phosphate A20P 12,
.17 c Not detected. d Initial pH 5.5. e Initial pH 4.

This journal is © The Royal Society of Chemistry 2018
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Scheme 2 Structure of nucleoside 30-phosphate imidoyl-13 and
carbonyl-14 mixed anhydride derivatives.
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chemistry. Whether this is either because imidazolides are not
formed or because they are formed and then hydrolysed has not
been investigated.

Next, we investigated whether Cu2+ could catalyse phosphate
activation using other prebiotically relevant nitrile-containing
molecules (Table 1).11 Acetonitrile 4, 3-aminopropionitrile 5
and glycolonitrile 6 were unsuccessful in promoting Cu(II)-cat-
alysed cyclization of A30P 2. Cyanate 7 and cyanogen 8 displayed
a dual behaviour, producing 3 together with the 20-adduct which
will be discussed later (9, Scheme 1). Intriguingly, cyanogen 8
reacts with A30P 2 even in the absence of a metal catalyst;
however, the relative formation of the cyclised product and the
20-transfer product is greatly affected by including Cu2+ in the
mixture. And the reaction of A30P with other nitriles in the
absence of Cu2+ is insignicant.

We then turned our attention to aminoacetonitrile 10 and 2-
aminopropionitrile 11, the Strecker precursors of glycine and
alanine, respectively, previously shown to originate from the
same prebiotic pathways that form ribonucleotides, amino
acids and phospholipid precursors.11c Interestingly, attack of
a nucleoside monophosphate onto an a-aminonitrile would
involve the formation of a transient imidoyl phosphate, analo-
gous to the mixed anhydride produced by aminoacylation of
nucleotides,14a,15 with the only difference being an imidoyl-13
instead of a carbonyl-14 derivative (Scheme 2). Based on the
observation by Moureu and Bongrand16 that cuprous
Scheme 1 Mechanism of cyclisation vs. transfer in the cyanate- or
cyanogen-mediated activation of 2 and 1H NMR spectra of the
mixtures. (a) 1H NMR spectrum after 20 h following incubation of 2 (50
mM), CuCl2 (25 mM) and cyanate 7 (100 mM) at pH 4, 40 �C, showing
the formation of 3 and 9a; (b) 1H NMR spectrum after 1 h following
incubation of 2 (12.5 mM), Gly (50 mM) CuCl2 (25 mM) and cyanogen 8
(100 mM) at pH 5.5, RT, showing the formation of 3 and 9b; (c) as (b)
but without CuCl2. N.B. conditions are different to Table 1.

This journal is © The Royal Society of Chemistry 2018
cyanoacetylide undergoes Glaser coupling17 to give dicyanodia-
cetylene on oxidation, we did not investigate Cu2+-catalysed
addition of phosphates to cyanoacetylene as the related Eglin-
ton reaction18 was anticipated.

Whilst mixed anhydride 14 has been previously been shown
to both cyclise and give the 20-adduct, both a-aminonitriles 10
and 11 triggered cyclisation of 2, but the related 20-transferred
products were not detected. We speculate that the reactivity
and/or the geometry of 13 could be altered by the simultaneous
coordination of both the imido- and amino-nitrogen atoms to
copper, somehow favouring cyclisation and hydrolysis over
transfer. In this regard, we performed an experiment in which
A50P, aminoacetonitrile and Cu2+ were incubated in either
H2

16O, H2
18O or a mixture of H2

16O/H2
18O (1 : 2), and moni-

tored the isotopic composition of the products by mass spec-
trometry. In the absence of a vicinal hydroxyl group, activation
of the 50-phosphate of A50P would result in the attack of water
either on the activated phosphate or on the imidoyl-carbon of
the imidoyl phosphate, producing 18O-labelled A50P or 18O-
labelled glycinamide, respectively (Scheme S1, S2 and
Fig. S1†). In our system, glycinamide was the only new labelled
product detected (the ratio of unlabelled/18O-labelled glycina-
mide was equal to the H2

16O/H2
18O ratio), thereby suggesting

the selective attack of water on the imidoyl-carbon, and possibly
a link with the aminoacyl-transfer chemistry described by
Schimmel and co-workers on a minihelix.19

Optimization for cyclisation of A30P 2 to 3 by modifying
reaction conditions revealed that moderate to high yields could
be obtained under slightly acidic conditions, but, alongside the
expected cyclized product, we could detect the formation of
adenosine 20-phosphate (A20P, 12, Tables 1 and S2†).

Reasoning that the latter derived from hydrolysis of the
former as the reaction progressed, we started examining the
hydrolysis of 3 under these reaction conditions. As expected,
Cu2+ catalysed the opening of the cyclic phosphate both at pH 4
and 5.5, producing 2 and 12 in 1.8 : 1 ratios.20 We thus
wondered if ligands able to coordinate Cu2+ would attenuate the
metal's hydrolytic activity. In particular, we focused our atten-
tion on prebiotically plausible chelating agents able to form bi-
and tri-dentate complexes with copper ions,21 namely glycina-
mide, as the by-product of the aminoacetonitrile-mediated
activation described above, its hydrolysis product glycine (Gly)
and the dipeptide glycylglycine (GlyGly). The excellent coordi-
nating properties of these ligands (Table S3†) considerably
decreased the degree of cyclic phosphate hydrolysis, probably
by competing with 3 for binding to the metal centre. In parallel,
we examined urea and ammonium carbonate, the by-products
Chem. Sci., 2018, 9, 7053–7057 | 7055
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Scheme 3 A synergistic system including activation and protection
chemistry.
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of the cyanamide and cyanate-mediated activation, respectively,
but, unsurprisingly, these failed to protect the cyclic phosphate
from hydrolysis, presumably as a consequence of less favour-
able monodentate binding to copper.

Cu2+, as Mg2+, and other divalent metal ions, is also well
known for its ability to catalyse RNA degradation,22 which
proceeds through attack on the phosphodiester bond by the
vicinal 20-OH group, with formation of shorter 20,30-cyclic
phosphate-terminated oligonucleotides (or a mixture of 20- and
30-monophosphates if the hydrolysis progresses further23). As
a model for RNA degradation, we followed the hydrolysis of a 6-
carboxyuorescein (FAM)-labelled 10-mer RNA oligonucleotide
incubated with CuCl2, in the presence or in the absence, of
different amounts of Gly or GlyGly (60 �C, reactions monitored
aer 23 and 48 h). Whilst at pH 4, Cu2+ didn't affect the integrity
of RNA (compared to buffer levels), at pH 5.2 and 7.0 (where-
upon extensive precipitation of Cu(OH)2 occurred) the metal
efficiently promoted RNA hydrolysis, with more than 96% and
57% degradation, respectively, aer only 23 h. Remarkably, RNA
was efficiently protected from Cu2+-catalysed degradation by
addition of a small excess of Gly or GlyGly, despite the higher
solubility of the metal under these conditions (Table S4 and
Fig. S2–S6†). This is reminiscent of the demonstration that
citrate protects RNA from Mg2+-catalysed degradation.24

We next tested the effect of these additives on the phosphate
activation reaction, incubating 2, cyanamide 1 and Cu2+ with
either Gly or GlyGly. Both ligands suppressed the Cu2+-catalysed
hydrolysis of the cyclic product, with the net effect of boosting
the yield of 3 (Tables S5 and S6†). In the presence of Gly the
activation of 2 to give 3 was highly efficient both at pH 4 and 5.5
(85% or 78%, respectively), however, with GlyGly the yields were
reduced when the reaction was performed at pH 5.5 (37%).
Likewise, the yields were negatively affected when the ligands
were in high excess relative to copper. EPR spectroscopy of the
Cu2+–GlyGly complex helped to elucidate the reasons for these
outcomes. The coordination mode of GlyGly to Cu2+ is highly
dependent on the pH of the solution, with the possibility of
forming multiple species at equilibrium (over the pH range 4–
7), including highly stable metal chelates.21 In agreement with
previous literature,25 the EPR spectra of Cu2+–GlyGly mixtures at
pH 4 mainly resembled the spectra of the aqua complex
Cu(H2O)6

2+, with smaller contributions from other species,
presumably the two GlyGly bidentate complexes (Scheme S3, Fig
S7 and Table S7†). Increasing the pH of the solution from 4 to
5.5 led to the almost complete disappearance of Cu(H2O)6

2+

signal, and the spectra were dominated by the tridentate
complex of Cu2+ and GlyGly (Fig. S7 and S8†). From these data,
it is clear that as the pH of the mixture increases, the tridentate
complex is formed at the expense of the cyanamide-induced
activation of 2. Thus, at high ligands concentrations, coordi-
nation of Gly and GlyGly to Cu2+ could saturate the metal ion
coordination sphere, preventing cyclic phosphate and RNA
hydrolysis. However, the competitive binding of 1 to Cu2+ in the
presence of these ligands is still possible. The available data do
not allow a detailed picture of the mechanism, although we
suspect that there are several catalytically active complexes.
Further investigation was not made as our interests were with
7056 | Chem. Sci., 2018, 9, 7053–7057
the conversion per se. With the possibility of small alterations in
the reaction conditions perturbing yields and product distri-
bution, we explored the cyanamide 1-Cu2+-mediated nucleotide
activation over a range of temperatures (Fig. S9†), pHs and
concentrations, obtaining the maximum yields of 84% and 90%
of 3 (other nucleotides shown in Table S8†) when the reaction
was performed with 1 (100 mM), 2 (12.5 mM) and CuCl2 (25
mM) in the presence of Gly (pH 5.5, 50 mM, 40 �C) or GlyGly (pH
4, 12.5 mM, 40 �C), respectively. It was found that multiple
equivalents of cyanamide are required for optimum yield, we
assume that water competes with phosphate in the attack on
metal coordinated cyanamide with the result that multiple
equivalents of urea are formed as a by-product.

Conclusions

Nucleotide activation has been a central problem in prebiotic
chemistry for nearly 60 years. Orgel1a rst showed uridine-20,30-
cyclic phosphate was generated under harsh conditions, using
high concentration of cyanamide and heating for a long time.
Then we found a-ketoacids catalyse cyclic phosphate formation
with cyanamide,14c and this prompted our search for other
catalysts in particular ones which would work with other
nitriles. In the present report, we show how Cu2+ ions efficiently
trigger the reactivity of prebiotically plausible nitriles, providing
a means to unlock the energy stored in these molecules and
efficiently use it in the context of nucleotide activation chem-
istry. Particularly intriguing is the discovery that amino-
acetonitrile, available from the same prebiotic pathways that
produce ribonucleotides,11c is able to promote activation of
nucleotides. The by-product of this reaction is glycinamide,
which upon (Cu2+-catalysed26) hydrolysis would deliver glycine
into the environment, establishing a further link between the
nucleotide and the amino acid sub-systems. In parallel, we
found that glycinamide, glycine and the dipeptide (GlyGly) are
needed to suppress the detrimental role that Cu2+ ions exert in
promoting the hydrolysis of cyclic phosphates and RNA phos-
phodiester bonds. A synergistic connection between activation
and protection chemistry is therefore evident, and suggestive of
a scenario in which progressive cycles of activation and
This journal is © The Royal Society of Chemistry 2018
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glycinamide hydrolysis will feed the glycine pool (and eventually
produce GlyGly under coupling conditions), thereby preventing
hydrolysis and enabling the accumulation of short oligonucle-
otides (Scheme 3).
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25 N. V. Nagy, T. Szabó-Plánka, A. Rockenbauer, G. Peintler,

I. Nagypál and L. Korecz, J. Am. Chem. Soc., 2003, 125, 5227.
26 H. L. Conley Jr and B. Martin, J. Phys. Chem., 1965, 69, 2914.
Chem. Sci., 2018, 9, 7053–7057 | 7057

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc02513d

	Tuning the reactivity of nitriles using Cu(ii) catalysis tnqh_x2013 potentially prebiotic activation of nucleotidesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02513d
	Tuning the reactivity of nitriles using Cu(ii) catalysis tnqh_x2013 potentially prebiotic activation of nucleotidesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02513d
	Tuning the reactivity of nitriles using Cu(ii) catalysis tnqh_x2013 potentially prebiotic activation of nucleotidesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02513d
	Tuning the reactivity of nitriles using Cu(ii) catalysis tnqh_x2013 potentially prebiotic activation of nucleotidesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02513d
	Tuning the reactivity of nitriles using Cu(ii) catalysis tnqh_x2013 potentially prebiotic activation of nucleotidesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02513d
	Tuning the reactivity of nitriles using Cu(ii) catalysis tnqh_x2013 potentially prebiotic activation of nucleotidesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02513d




