ChemComm

Binding and activation of small molecules by a quintuply bonded chromium dimer \dagger

Jingmei Shen, \ddagger Glenn P. A. Yap and Klaus H. Theopold*

Cite this: Chem. Commun., 2014, 50, 2579

Received 15th November 2013,
Accepted 8th January 2014
DOI: 10.1039/c3cc48746f
www.rsc.org/chemcomm

Abstract

The quintuply bonded $\left[{ }^{H} \mathrm{~L}^{\mathrm{iPr}} \mathrm{Cr}\right]_{2}$ reacts with various small molecules, revealing a pattern of two kinds of transformations. Unsaturated molecules that are neither polar nor oxidizing form binuclear $[2+n]$ cycloaddition products retaining $\mathrm{Cr}-\mathrm{Cr}$ quadruple bonds. In contrast, polar or oxidizing molecules effect the complete cleavage of the $\mathrm{Cr}-\mathrm{Cr}$ bond.

Occasioned by the discovery of a dinuclear chromium complex featuring a sterically accessible quintuple metal-metal bond, we have begun to explore the reactivity of this novel functional group unique to transition metal chemistry. Recent studies indicate that $\mathrm{M}-\mathrm{M}$ quintuple bonds have a remarkable reaction chemistry. ${ }^{1-16}$ Herein we describe the products of reactions between quintuply bonded $\left[{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}\right]_{2}\left(\mathbf{1}\right.$, where ${ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}}=\mathrm{Ar}-\mathrm{N}=\mathrm{C}(\mathrm{H})-(\mathrm{H}) \mathrm{C}=\mathrm{N}-\mathrm{Ar}$, with $\mathrm{Ar}=2,6$-diisopropylphenyl) ${ }^{17}$ and various small molecules (Scheme 1). These reactions are of interest in their own right and make for fascinating comparisons with the reactivities of other binuclear metal complexes.

1 reacts rapidly with molecules containing multiple bonds. For example, we have previously described [2+2] cycloaddition reactions between $\mathbf{1}$ and alkynes. ${ }^{18}$ While the analogous reaction with ethylene is apparently reversible, $\mathbf{1}$ adds to the destabilized $\mathrm{C}=\mathrm{C}$ double bond of 1,1-dimethylallene, yielding another isolable $[2+2]$ cycloaddition product, namely $\left[{ }_{\left[{ }^{\mathrm{H}}\right.}{ }^{\mathrm{iPr}} \mathrm{Cr}\right]_{2}\left(\mu-\eta^{1}: \eta^{1}-\right.$ $\mathrm{H}_{2} \mathrm{CCCMe}_{2}$) (2, see Fig. 1). The terminal $\mathrm{C}=\mathrm{C}$ bond of the allene ligand has added across the two metal centers, forming a fourmembered dimetallacycle. The C53-C54 distance of $1.466(5) \AA$ and the $\mathrm{Cr}-\mathrm{Cr}$ distance of $1.9462(8) \AA$ are consistent with a twoelectron reduction of allene and concomitant oxidation of the $\mathrm{Cr}-\mathrm{Cr}$ center, which, however, retains the short $\mathrm{Cr}-\mathrm{Cr}$ distance characteristic of a quadruple bond (see Table 1). The other $\mathrm{C}=\mathrm{C}$ bond of the allene remains essentially unperturbed (1.346(5) Å).

[^0]

Scheme 1 Reactions of 1 with alkyne, allene, sulfur, $\mathrm{PhN}=\mathrm{NPh}, \mathrm{AdN}_{3}$, CO, benzophenone and benzylideneaniline.

Fig. 1 The molecular structure of 2 (30\% probability level). Ligand i-Pr groups and H -atoms have been omitted for clarity.

Table 1 Selected interatomic distances (\AA) and angles (${ }^{\circ}$)

	$\mathrm{Cr}-\mathrm{Cr}$	$\mathrm{C}-\mathrm{C}^{\text {c }}$	$\mathrm{C}-\mathrm{N}^{c}$	θ^{a}	δ^{b}
1	1.8028(9)	1.350(5)	1.368(3)	N/A	N/A
2	1.9462(8)	1.337 (5)	1.380(4)	$24.3{ }^{\circ}$	$151{ }^{\circ}$
3	1.9305(8)	1.367 (3)	1.360 (3)	$15.6{ }^{\circ}$	$143{ }^{\circ}$
4	$2.498(4)$	1.395(11)	1.380(9)	N/A	N/A
5	$1.9575(11)^{\text {d }}$	1.346 (6)	1.385(6)	N/A	$142^{\text {od }}$
6	$3.1667(15)$	1.360 (6)	$1.336(6)$	N/A	N/A
7	N/A	$1.383(6)$	1.355(5)	N/A	N/A
1-Butyne ${ }^{18}$	1.9248(7)	1.352(4)	1.370(4)	23.7°	$146{ }^{\circ}$
${ }^{a}$ Twist angle (X-X)-(Cr-Cr) (X = C or S). ${ }^{b}$ Dihedral angle between two ligand planes (see the ESI for details). ${ }^{c}$ Average bond lengths in the α-diimine backbones. ${ }^{d}$ Average.					

The core of 2 adopts an almost planar geometry with a $(\mathrm{C}-\mathrm{C})-(\mathrm{Cr}-\mathrm{Cr})$ twist angle of 24.3°, similar to the aforementioned alkyne adducts. ${ }^{18}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 exhibited sharp resonances consistent with a diamagnetic ground state of the molecule.

Oxygen atom sources, such as $\mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}$, and NO led to decomposition of 1 accompanied by loss of the diimine ligand. This motivated us to extend the exploration to less oxidizing chalcogens. Thus, treatment of an $\mathrm{Et}_{2} \mathrm{O}$-toluene solution of 1 with elemental sulphur, at room temperature, caused the initially green solution to turn deep blue. A standard work-up of the reaction and recrystallization from diethyl ether yielded the simple binuclear adduct, $\left[{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}\right]_{2}\left(\mathrm{~S}_{2}\right)(3)$ in modest yield (20\%). The molecular structure of 3 is depicted in Fig. S1 (ESI \dagger); it features a four-membered $\mathrm{Cr}_{2} \mathrm{~S}_{2}$ ring. The "supershort" ($\mathrm{Cr}-\mathrm{Cr}<2.0 \AA$) $\mathrm{Cr}-\mathrm{Cr}$ bond of $3(1.9305(8) \AA$) is appreciably longer than that in $\mathbf{1}$ (1.8028(9) \AA), indicating an oxidation from $\mathrm{Cr}(\mathrm{I})$ to $\mathrm{Cr}(\mathrm{II})$ and hence a bond order reduced to 4 . The S-S bond length of $2.0513(10) \AA$ approximates that of Kempe's disulfide analog (2.058(4) \AA), ${ }^{2}$ which, however, features perpendicular coordination of the $\mathrm{S}_{2}{ }^{2-}$ unit and that of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{S})_{2}\left(\mu-\eta^{1}-\eta^{1}-\mathrm{S}_{2}\right)(2.028(2) \AA)^{19}$ As is typical of the [2+2] cycloaddition products of $\mathbf{1}$, the $\mathrm{Cr}_{2} \mathrm{~S}_{2}$ core is not perfectly planar. The ($\mathrm{S}-\mathrm{S}$)-($\mathrm{Cr}-\mathrm{Cr}$) twist angle for the core is 15.6°, somewhat smaller than the analogous angles in the alkyne adducts and 2.

Table 1 contains selected bond lengths and angles for compounds 2-7. All the 'cycloaddition' products of $\mathbf{1}$ that maintain $\mathrm{Cr}-\mathrm{Cr}$ bonds, i.e. 2, 3, and 1-2-butyne, exhibit the twisted $\mu-\eta^{1}: \eta^{1}$ bonding mode for the X_{2} ligands ($\mathrm{X}=\mathrm{C}, \mathrm{S}$); this differs from the perpendicular (i.e. $\mu_{2}-\eta^{2}: \eta^{2}$) bonding motif more typically observed for complexes with metal-metal bonds, e.g. in Kempe's aminopyridinato dichromium complexes. ${ }^{2-4,20}$ At the same time, the dihedral angles (δ) between the α-diimine ligand planes are significantly larger than those of the aminopyridinato complexes (e.g. 107° for both the disulfide and the tolylacetylene adduct). In other words, the $\left[\mathrm{L}_{2} \mathrm{Cr}_{2}\right]$ fragments of the α-diimine complexes are considerably flatter than those with aminopyridinato ligands. The near preservation of the planar geometry of $\mathbf{1}$ and the formation of unsaturated fourmembered $\mathrm{Cr}_{2} \mathrm{X}_{2}$ rings as opposed to tetrahedrane-like structures is unlikely to be steric in origin. An electronic explanation may be rooted in the electronic flexibility afforded by the redox-active α-diimine ligands; this remains to be explored.

An isoelectronic - but less oxidizing - analog of O_{2} is azobenzene $(\mathrm{PhN}=\mathrm{NPh})$. When one equivalent of the latter

Fig. 2 The molecular structure of $\mathbf{4}$ and $\mathbf{5}$ (both at 30% probability level).
was added to a solution of $\left(\mu-\eta^{1}: \eta^{1}-{ }_{-} \mathrm{L}^{\mathrm{iPr}}\right)_{2} \mathrm{Cr}_{2}$ (1) in diethyl ether, subsequent work-up and recrystallization produced redbrown crystals of dinuclear complex $\left[{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}(\mu-\mathrm{NPh})\right]_{2}$ (4) in 40% isolated yield. 4 is a dinuclear complex with bridging imido ligands (Fig. 2, top). This reaction may well go through an unstable [2+2] cycloaddition intermediate, which suffers oxidative addition, due to the high electronegativity of nitrogen. The molecular structure of $\mathbf{4}$ features four-coordinate chromium (ignoring the rather long $\mathrm{Cr}-\mathrm{C}$ interactions) adopting pseudotetrahedral geometry, which is the preferred geometry of 4 -coordinate $\operatorname{Cr}(\mathrm{III})$. The $\mathrm{N}=\mathrm{N}$ double bond has been severed completely $\left(N \cdots N_{\text {avg }}=2.695 \AA\right.$). Similarly, the distance between the two chromium atoms in 4 is 2.498(4) \AA, indicating the absence of any significant bonding interactions.

The average bond lengths of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ bonds in the backbone of the α-diimine ligand are $1.395(11)$ and $1.380(9) \AA$, characteristic of a diimine radical anion; accordingly, chromium is in the formal oxidation state + III $(S=3 / 2)$. The effective magnetic moment of 4 at room temperature was $2.4(1) \mu_{\mathrm{B}}$, consistent with antiferromagnetic coupling, both between the metal and its radical ligand as well as between the chromium atoms.

The reaction between $\left(\mu-\eta^{1}: \eta^{1}-{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}}\right)_{2} \mathrm{Cr}_{2}$ (1) and sterically demanding $\mathrm{Ad}-\mathrm{N}_{3}$ afforded another imido complex, namely
$\left[{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}\right]_{2}$ (NAd) (5), as shown in Fig. 2 (bottom). Only one imido group has been added across the $\mathrm{Cr}-\mathrm{Cr}$ bond. Once again, we suggest that a five-membered [2+3] cycloaddition product may be formed first, which rapidly extrudes N_{2}. The bond distances and angles of $\mathbf{5}$ are comparable to those of other known bridging imido complexes of chromium. ${ }^{22-26}$ Similar to the geometries of the $[2+2]$ cycloaddition products, the elongated $\mathrm{Cr}-\mathrm{Cr}$ distance of $1.9575(11) \AA$ is consistent with the twoelectron oxidation of the Cr_{2} unit (to $\mathrm{Cr}(\mathrm{II})$). 5 is also diamagnetic, presumably due to metal-metal quadruple bonding.

Finally, we were interested in studying the reactivity of 1 toward unsaturated molecules featuring $\mathrm{X}-\mathrm{Y}$ bonds $(\mathrm{X}, \mathrm{Y}=\mathrm{C}, \mathrm{N}, \mathrm{O})$. Exposure of a benzene solution of $\mathbf{1}$ to $\mathrm{CO}(1 \mathrm{~atm})$ produced the dark blue carbonyl ${ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}(\mathrm{CO})_{4}$, as confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{21}$ The reaction of 1 with benzophenone resulted in dinuclear $\left[{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}\left(\mu-\mathrm{OPh}_{2}\right)\right]_{2}$ (6). The structure of 6 (shown in Fig. S2, ESI \dagger) reveals a benzophenone-bridged dimer with square planar Cr centers. The average carbon-oxygen bond length of the benzophenone is $1.355(5) \AA$, which is much longer than the $1.230(3) \AA$ in benzophenone, ${ }^{27}$ suggesting some degree of reduction of the $\mathrm{C}=\mathrm{O}$ bonds. The average bond lengths of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ bonds of the backbone of the α-diimine ligand are 1.360(6) and 1.336(6) \AA, consistent with those of a monoanionic diimine ligand. ${ }^{21}$ These structural features suggest that 6 is a $\operatorname{Cr}(\mathrm{II})$ complex. Like $\left[{ }^{\mathrm{H}} \mathrm{L}^{\mathrm{iPr}} \mathrm{Cr}(\mu-\mathrm{Cl})\right]_{2},{ }^{17} 6$ exhibited a simple isotropically shifted and broadened ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$, with chemical shifts at 96 , $14.6,3.2,1.56$, and -13.0 ppm . $\mu_{\mathrm{eff}}(\mathrm{RT})$ of this complex was found to be $5.1(2) \mu_{\mathrm{B}}$ (3.6(1) μ_{B} per chromium), which is consistent with two antiferromagnetically coupled $\operatorname{Cr}(\mathrm{II})$ metal centers ($S=2$) coordinated by ligand radicals ($S=1 / 2$).

In contrast to $\mathbf{6}$, reductive coupling of $\mathrm{C}=\mathrm{N}$ double bonds was observed upon exposure of $\mathbf{1}$ to four equivalents of transbenzylideneaniline. The reaction was found to form the coupling product, ${ }^{H}{ }^{\mathrm{L} P r} \mathrm{Cr}\left(\kappa^{2}-\mathrm{N}_{2} \mathrm{C}_{26} \mathrm{H}_{22}\right)$ (7). The crystal structure is shown in Fig. 3. 7 adopts tetrahedral coordination about chromium

Fig. 3 The molecular structure of $\mathbf{7}$ (30% probability level).
with the α-diimine apparently being in the singly reduced state (see Table 1). The room temperature effective magnetic moment of 7 was found to be $2.9(1) \mu_{\mathrm{B}}$, consistent with a $\mathrm{Cr}($ III $)$ metal center $(S=3 / 2)$ strongly coupled to a ligand radical $(S=1 / 2)$.

In summary, reactivity studies on a quintuply bonded dichromium complex supported by α-diimine ligands have been extended to a variety of molecules. The products are varied and their structures differ from those established for quintuply bonded complexes supported by other ligands. A pervasive feature of 1 seems to be the formation of $[2+n]$ cycloaddition products with nonpolar substrates. Polar, heteroatomic multiple bonds on the other hand effect complete cleavage of the metal-metal bond.

This work was supported by the NSF (CHE-0911081).

Notes and references

1 A. Noor, T. Bauer, T. K. Todorova, B. Weber, L. Gagliardi and R. Kempe, Chem.-Eur. J., 2013, 19, 9825-9832.

2 E. S. Tamne, A. Noor, S. Qayyum, T. Bauer and R. Kempe, Inorg. Chem., 2012, 52, 329-336.
3 C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel, A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins, R. Kempe and M. Scheer, Angew. Chem., Int. Ed., 2011, 50, 7283-7286.
4 A. Noor, E. S. Tamne, S. Qayyum, T. Bauer and R. Kempe, Chem.-Eur. J., 2011, 17, 6900-6903.
5 A. Noor and R. Kempe, Chem. Rec., 2010, 10, 413-416.
6 F. R. Wagner, A. Noor and R. Kempe, Nat. Chem., 2009, 1, 529-536.
7 A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko and R. Kempe, Nat. Chem., 2009, 1, 322-325.
8 A. Noor, F. R. Wagner and R. Kempe, Angew. Chem., Int. Ed., 2008, 47, 7246-7249.
9 P.-F. Wu, S.-C. Liu, Y.-J. Shieh, T.-S. Kuo, G.-H. Lee, Y. Wang and Y.-C. Tsai, Chem. Commun., 2013, 49, 4391-4393.

10 H.-G. Chen, H.-W. Hsueh, T.-S. Kuo and Y.-C. Tsai, Angew. Chem., Int. Ed., 2013, 52, 10256-10260.
11 S.-C. Liu, W.-L. Ke, J.-S. K. Yu, T.-S. Kuo and Y.-C. Tsai, Angew. Chem., Int. Ed., 2012, 51, 6394-6397.
12 Y. L. Huang, D. Y. Lu, H. C. Yu, J. S. Yu, C. W. Hsu, T. S. Kuo, G. H. Lee, Y. Wang and Y. C. Tsai, Angew. Chem., Int. Ed., 2012, 51, 7781-7785.
13 Y.-C. Tsai, H.-Z. Chen, C.-C. Chang, J.-S. K. Yu, G.-H. Lee, Y. Wang and T.-S. Kuo, J. Am. Chem. Soc., 2009, 131, 12534-12535.
14 Y. C. Tsai, C. W. Hsu, J. S. Yu, G. H. Lee, Y. Wang and T. S. Kuo, Angew. Chem., Int. Ed., 2008, 47, 7250-7253.
15 Y.-C. Tsai, Y.-M. Lin, J.-S. K. Yu and J.-K. Hwang, J. Am. Chem. Soc., 2006, 128, 13980-13981.
16 C. Ni, B. D. Ellis, G. J. Long and P. P. Power, Chem. Commun., 2009, 2332-2334.
17 K. A. Kreisel, G. P. Yap, O. Dmitrenko, C. R. Landis and K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 14162-14163.

18 J. Shen, G. P. Yap, J. P. Werner and K. H. Theopold, Chem. Commun., 2011, 47, 12191-12193.
19 L. Y. Goh and T. C. W. Mak, J. Chem. Soc., Chem. Commun., 1986, 1474-1475.
20 M. J. Calhorda and R. Hoffmann, Organometallics, 1986, 5, 2181-2187.
21 K. A. Kreisel, G. P. Yap and K. H. Theopold, Inorg. Chem., 2008, 47, 5293-5303.
22 W. H. Monillas, G. P. A. Yap and K. H. Theopold, Inorg. Chim. Acta, 2011, 369, 103-119.
23 W. H. Monillas, G. P. Yap, L. A. MacAdams and K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 8090-8091.

24 A. A. Danopoulos, D. M. Hankin, G. Wilkinson, S. M. Cafferkey, T. K. N. Sweet and M. B. Hursthouse, Polyhedron, 1997, 16, 3879-3892.
25 A. A. Danopoulos, G. Wilkinson, T. K. N. Sweet and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1995, 2111-2123.

26 B. Moubaraki, K. S. Murray, P. J. Nichols, S. Thomson and B. O. West, Polyhedron, 1994, 13, 485-495.

27 E. B. Fleischer, N. Sung and S. Hawkinson, J. Phys. Chem., 1968, 72, 4311-4312.

[^0]: Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA. E-mail: theopold@udel.edu
 \dagger Electronic supplementary information (ESI) available: Preparative and crystallographic data. CCDC 971178-971183. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3cc48746f
 \# Current address: Department of Chemical and Biological Engineering, Northwestern University, USA.

